Evolutionary musicology

Last updated

Evolutionary musicology is a subfield of biomusicology that grounds the cognitive mechanisms of music appreciation and music creation in evolutionary theory. It covers vocal communication in other animals, theories of the evolution of human music, and holocultural universals in musical ability and processing.

Contents

History

The origins of the field can be traced back to Charles Darwin who wrote in The Descent of Man, and Selection in Relation to Sex :

When we treat of sexual selection we shall see that primeval man, or rather some early progenitor of man, probably first used his voice in producing true musical cadences, that is in singing, as do some of the gibbon-apes at the present day; and we may conclude from a widely-spread analogy, that this power would have been especially exerted during the courtship of the sexes,—would have expressed various emotions, such as love, jealousy, triumph,—and would have served as a challenge to rivals. It is, therefore, probable that the imitation of musical cries by articulate sounds may have given rise to words expressive of various complex emotions. [1]

This theory of a musical protolanguage has been revived and re-discovered repeatedly. [2]

The origins of music

Like the origin of language, the origin of music has been a topic for speculation and debate for centuries. [3] Leading theories include Darwin's theory of partner choice (women choose male partners based on musical displays), the idea that human musical behaviors are primarily based on behaviors of other animals (see zoomusicology), the idea that music emerged because it promotes social cohesion, the idea that music emerged because it helps children acquire verbal, social, and motor skills, and the idea that musical sound and movement patterns, and links between music, religion and spirituality, originated in prenatal psychology and mother-infant attachment.

Two major topics for any subfield of evolutionary psychology are the adaptive function (if any) and phylogenetic history of the mechanism or behavior of interest including when music arose in human ancestry and from what ancestral traits it developed. Current debate addresses each of these.

One part of the adaptive function question is whether music constitutes an evolutionary adaptation or exaptation (i.e. by-product of evolution). Steven Pinker, in his book How the Mind Works , for example, argues that music is merely "auditory cheesecake"—it was evolutionarily adaptive to have a preference for fat and sugar but cheesecake did not play a role in that selection process. This view has been directly countered by numerous music researchers. [4] [5] [6]

Adaptation, on the other hand, is highlighted in hypotheses such as the one by Edward Hagen and Gregory Bryant which posits that human music evolved from animal territorial signals, eventually becoming a method of signaling a group's social cohesion to other groups for the purposes of making beneficial multi-group alliances. [7] [8]

The bipedalism hypothesis

The evolutionary switch to bipedalism may have influenced the origins of music. [9] The background is that noise of locomotion and ventilation may mask critical auditory information. Human locomotion is likely to produce more predictable sounds than those of non-human primates. Predictable locomotion sounds may have improved our capacity of entrainment, which is the synchronization of behavior of different organisms by a regular beat. A sense of rhythm could aid the brain in distinguishing among sounds arising from discrete sources and also help individuals to synchronize their movements with one another. Synchronization of group movement may improve perception by providing periods of relative silence and by facilitating auditory processing. [10] [11] The adaptive value of such skills to early human ancestors may have been keener detection of prey or stalkers and enhanced communication. Thus, bipedal walking may have influenced the development of entrainment in humans and thereby the evolution of rhythmic abilities. Primitive hominids lived and moved around in small groups. The noise generated by the locomotion of two or more individuals can result in a complicated mix of footsteps, breathing, movements against vegetation, echoes, etc. The ability to perceive differences in pitch, rhythm, and harmonies, i.e. "musicality", could help the brain to distinguish among sounds arising from discrete sources, and also help the individual to synchronize movements with the group. Endurance and an interest in listening might, for the same reasons, have been associated with survival advantages eventually resulting in adaptive selection for rhythmic and musical abilities and reinforcement of such abilities. Listening to music seems to stimulate release of dopamine. Rhythmic group locomotion combined with attentive listening in nature may have resulted in reinforcement through dopamine release. A primarily survival-based behavior may eventually have attained similarities to dance and music, due to such reinforcement mechanisms. Since music may facilitate social cohesion, improve group effort, reduce conflict, facilitate perceptual and motor skill development, and improve trans-generational communication, [12] music-like behavior may at some stage have become incorporated into human culture.

Another proposed adaptive function is creating intra-group bonding. In this aspect it has been seen as complementary to language by creating strong positive emotions while not having a specific message people may disagree on. Music's ability to cause entrainment has also been pointed out. A different explanation is that signaling fitness and creativity by the producer or performer to attract mates. Still another is that music may have developed from human mother-infant auditory interactions (motherese) since humans have a very long period of infant and child development, infants can perceive musical features, and some infant-mother auditory interaction have resemblances to music. [13]

Part of the problem in the debate is that music, like any complex cognitive function, is not a holistic entity but rather modular [14] —perception and production of rhythm, melodies, harmony and other musical parameters may thus involve multiple cognitive functions with possibly quite distinct evolutionary histories. [15]

The Musilanguage hypothesis

"Musilanguage" is a term coined by Steven Brown to describe his hypothesis of the ancestral human traits that evolved into language and musical abilities. It is both a model of musical and linguistic evolution and a term coined to describe a certain stage in that evolution. Brown argues that both music and human language have origins in a "musilanguage" stage of evolution and that the structural features shared by music and language are not the results of mere chance parallelism, nor are they a function of one system emerging from the other. This model argues that "music emphasizes sound as emotive meaning and language emphasizes sound as referential meaning." [16] The musilanguage model is a structural model of music evolution, meaning that it views music's acoustic properties as effects of homologous precursor functions. This can be contrasted with functional models of music evolution, which view music's innate physical properties to be determined by its adaptive roles.

The musilanguage evolutionary stage is argued to exhibit three properties found in both music and language: lexical tone, combinatorial phrase formation, and expressive phrasing mechanisms. Many of these ideas have their roots in existing phonological theory in linguistics, but Brown argues that phonological theory has largely neglected the strong mechanistic parallels between melody, phrasing, and rhythm in speech and music.

Lexical tone refers to the pitch of speech as a vehicle for semantic meaning. The importance of pitch to conveying musical ideas is well-known, but the linguistic importance of pitch is less obvious. Tonal languages such as Thai and Cantonese, wherein the lexical meaning of a sound depends heavily on its pitch relative to other sounds, are seen as evolutionary artifacts of musilanguage. Non-tonal, or "intonation" languages, which do not depend heavily on pitch for lexical meaning, are seen as evolutionary late-comers that have discarded their dependence on tone. Intermediate states, known as pitch accent languages, which exhibit some lexical dependence on tone, but also depend heavily on intonation, are exemplified by Japanese, Swedish, and Serbo-Croatian.

Combinatorial formation refers to the ability to form small phrases from different tonal elements. These phrases must be able to exhibit melodic, rhythmic, and semantic variation, and must be able to combine with other phrases to create global melodic formulas capable of conveying emotive meaning. Examples in modern speech would be the rules for arranging letters to form words and then words to form sentences. In music, the notes of different scales are combined according to their own unique rules to form larger musical ideas.

Expressive phrasing is the device by which expressive emphasis can be added to the phrases, both at a local (in the sense of individual units) and global (in the sense of phrases) level. There are numerous ways this can occur in both speech and music that exhibit interesting parallels. For instance, the increase in the amplitude of a sound being played by an instrument accents that sound much the same way that an increase in amplitude can emphasize a particular point in speech. Similarly, speaking very rapidly often creates a frenzied effect that mirrors that of a fast and agitated musical passage.

AVID model of music evolution

Joseph Jordania has suggested that music (as well as several other universal elements of contemporary human culture, including dance and body painting) was part of a predator control system used by early hominids. He suggested that rhythmic loud singing and drumming, together with the threatening rhythmic body movements and body painting, was the core element of the ancient "Audio-Visual Intimidating Display" (AVID). [17] AVID was also a key factor in putting the hominid group into a specific altered state of consciousness which he calls "battle trance" where they would not feel fear and pain and would be religiously dedicated to group interests. Jordania suggested that listening and dancing to the sounds of loud rhythmic rock music, used in many contemporary combat units before the combat missions is directly related to this. [18] Apart from the defense from predators, Jordania suggested that this system was the core strategy to obtain food via confrontational, or aggressive scavenging.

It is theorized that humming could have played an important role in the early human (hominid) evolution as contact calls. Many social animals produce seemingly haphazard and indistinctive sounds (like chicken cluck) when they are going about their everyday business (foraging, feeding). These sounds have two functions: (1) to let group members know that they are among kin and there is no danger, and (2) in case of the appearance of any signs of danger (suspicious sounds, movements in a forest), the animal that notices danger first, stops moving, stops producing sounds, remains silent and looks in the direction of the danger sign. Other animals quickly follow suit and very soon all the group is silent and is scanning the environment for the possible danger. Charles Darwin was the first to notice this phenomenon, having observed it among wild horses and cattle. [19] Jordania suggested that for humans, as for many social animals, silence can be a sign of danger, and that's why gentle humming and musical sounds relax humans (see the use of gentle music in music therapy, lullabies).

Comparative musicology in animals

Singing animals

Scholars agree that singing is strongly present in many different species. [20] [21] Wide dispersal of singing behavior among very different animal species, like birds, gibbons, whales, and many others strongly suggests that singing appeared independently in different species. Currently, there are about 5,400 species of animals that are known to sing. At least some singing species demonstrate the ability to learn their songs, to improvise and even to compose new melodies. [22] In some animal species singing is a group activity (see, for example, singing in gibbon families [23] ).

Singing to animals

Herders in Scandinavia use songs known as kulning to call livestock. Mongolian herders use species-specific songs to encourage bonding between animals and their newborn offspring. [24]

See also

Related Research Articles

<span class="mw-page-title-main">Bipedalism</span> Terrestrial locomotion using two limbs

Bipedalism is a form of terrestrial locomotion where a tetrapod moves by means of its two rear limbs or legs. An animal or machine that usually moves in a bipedal manner is known as a biped, meaning 'two feet'. Types of bipedal movement include walking or running and hopping.

<span class="mw-page-title-main">Music</span> Form of art using sound

Music is the arrangement of sound to create some combination of form, harmony, melody, rhythm, or otherwise expressive content. Music is generally agreed to be a cultural universal that is present in all human societies. Definitions of music vary widely in substance and approach. While scholars agree that music is defined by a small number of specific elements, there is no consensus as to what these necessary elements are. Music is often characterized as a highly versatile medium for expressing human creativity. Diverse activities are involved in the creation of music, and are often divided into categories of composition, improvisation, and performance. Music may be performed using a wide variety of musical instruments, including the human voice.

<span class="mw-page-title-main">Polyphony</span> Simultaneous lines of independent melody

Polyphony is a type of musical texture consisting of two or more simultaneous lines of independent melody, as opposed to a musical texture with just one voice (monophony) or a texture with one dominant melodic voice accompanied by chords (homophony).

Rhythm generally means a "movement marked by the regulated succession of strong and weak elements, or of opposite or different conditions". This general meaning of regular recurrence or pattern in time can apply to a wide variety of cyclical natural phenomena having a periodicity or frequency of anything from microseconds to several seconds ; to several minutes or hours, or, at the most extreme, even over many years.

Musicality is "sensitivity to, knowledge of, or talent for music" or "the quality or state of being musical", and is used to refer to specific if vaguely defined qualities in pieces and/or genres of music, such as melodiousness and harmoniousness. These definitions are somewhat hampered by the difficulty of defining music, but, colloquially, "music" is often contrasted with noise and randomness. Judges of contest music may describe a performance as bringing the music on the page to life; of expressing more than the mere faithful reproduction of pitches, rhythms, and composer dynamic markings. In the company of two or more musicians, there is the added experience of the ensemble effect in which the players express something greater than the sum of their individual parts. A person considered musical has the ability to perceive and reproduce differences in aspects of music including pitch, rhythm, and harmony. Two types of musicality may be differentiated: to be able to perceive music and to be able to reproduce music in addition to creating music.

A hum is a sound made by producing a wordless tone with the mouth closed, forcing the sound to emerge from the nose. To hum is to produce such a sound, often with a melody. It is also associated with thoughtful absorption, 'hmm'.

The origin of language, its relationship with human evolution, and its consequences have been subjects of study for centuries. Scholars wishing to study the origins of language must draw inferences from evidence such as the fossil record, archaeological evidence, contemporary language diversity, studies of language acquisition, and comparisons between human language and systems of animal communication. Many argue that the origins of language probably relate closely to the origins of modern human behavior, but there is little agreement about the facts and implications of this connection.

<span class="mw-page-title-main">Biomusicology</span> Field of Musical Study

Biomusicology is the study of music from a biological point of view. The term was coined by Nils L. Wallin in 1991 to encompass several branches of music psychology and musicology, including evolutionary musicology, neuromusicology, and comparative musicology.

Prehistoric music is a term in the history of music for all music produced in preliterate cultures (prehistory), beginning somewhere in very late geological history. Prehistoric music is followed by ancient music in different parts of the world, but still exists in isolated areas. However, it is more common to refer to the "prehistoric" music which still survives as folk, indigenous or traditional music. Prehistoric music is studied alongside other periods within music archaeology.

<span class="mw-page-title-main">Speech</span> Human vocal communication using spoken language

Speech is a human vocal communication using language. Each language uses phonetic combinations of vowel and consonant sounds that form the sound of its words, and using those words in their semantic character as words in the lexicon of a language according to the syntactic constraints that govern lexical words' function in a sentence. In speaking, speakers perform many different intentional speech acts, e.g., informing, declaring, asking, persuading, directing, and can use enunciation, intonation, degrees of loudness, tempo, and other non-representational or paralinguistic aspects of vocalization to convey meaning. In their speech, speakers also unintentionally communicate many aspects of their social position such as sex, age, place of origin, physical states, psychological states, physico-psychological states, education or experience, and the like.

Music psychology, or the psychology of music, may be regarded as a branch of both psychology and musicology. It aims to explain and understand musical behaviour and experience, including the processes through which music is perceived, created, responded to, and incorporated into everyday life. Modern music psychology is primarily empirical; its knowledge tends to advance on the basis of interpretations of data collected by systematic observation of and interaction with human participants. Music psychology is a field of research with practical relevance for many areas, including music performance, composition, education, criticism, and therapy, as well as investigations of human attitude, skill, performance, intelligence, creativity, and social behavior.

<span class="mw-page-title-main">Biolinguistics</span> Study of the biology and evolution of language

Biolinguistics can be defined as the study of biology and the evolution of language. It is highly interdisciplinary as it is related to various fields such as biology, linguistics, psychology, anthropology, mathematics, and neurolinguistics to explain the formation of language. It seeks to yield a framework by which we can understand the fundamentals of the faculty of language. This field was first introduced by Massimo Piattelli-Palmarini, professor of Linguistics and Cognitive Science at the University of Arizona. It was first introduced in 1971, at an international meeting at the Massachusetts Institute of Technology (MIT).

Sing-along, also called community singing or group singing, is an event of singing together at gatherings or parties, less formally than choir singing. One can use a songbook. Common genres are folk songs, patriotic songs, kids' songs, spirituals, campfire songs, nonsense songs, humorous songs, hymns and drinking songs. Children around the world usually sing together. Sing-along can be based on unison singing, or on singing in harmony.

<span class="mw-page-title-main">Entrainment (biomusicology)</span> Coordination of organisms towards sounds

Entrainment in the biomusicological sense refers to the synchronization of organisms to an external perceived rhythm such as human music and dance. Humans are the only species for which all individuals experience entrainment, although there are documented examples of entrained nonhuman individuals.

The neuroscience of music is the scientific study of brain-based mechanisms involved in the cognitive processes underlying music. These behaviours include music listening, performing, composing, reading, writing, and ancillary activities. It also is increasingly concerned with the brain basis for musical aesthetics and musical emotion. Scientists working in this field may have training in cognitive neuroscience, neurology, neuroanatomy, psychology, music theory, computer science, and other relevant fields.

<span class="mw-page-title-main">Joseph Jordania</span> Australian-Georgian musicologist

Joseph Jordania is an Australian–Georgian ethnomusicologist and evolutionary musicologist and professor. He is an Honorary Fellow of the Melbourne Conservatorium of Music at the University of Melbourne and the Head of the Foreign Department of the International Research Centre for Traditional Polyphony at Tbilisi State Conservatory. Jordania is known for his model of the origins of human choral singing in the wide context of human evolution and was one of founders of the International Research Centre for Traditional Polyphony in Georgia.

Bjorn Merker, Swedish citizen born May 15, 1943, in Tetschen, is a neuroscientist and an independent interdisciplinary scholar educated in the USA, now living in southern Sweden.

<span class="mw-page-title-main">Origin of speech</span>

The origin of speech differs from the origin of language because language is not necessarily spoken; it could equally be written or signed. Speech is a fundamental aspect of human communication and plays a vital role in the everyday lives of humans. It allows them to convey thoughts, emotions, and ideas, and providing the ability to connect with others and shape collective reality.

The temporal dynamics of music and language describes how the brain coordinates its different regions to process musical and vocal sounds. Both music and language feature rhythmic and melodic structure. Both employ a finite set of basic elements that are combined in ordered ways to create complete musical or lingual ideas.

Aniruddh (Ani) D. Patel is a cognitive psychologist known for his research on music cognition and the cognitive neuroscience of music. He is Professor of Psychology at Tufts University, Massachusetts. From a background in evolutionary biology, his work includes empirical research, theoretical studies, brain imaging techniques, and acoustical analysis applied to areas such as cognitive musicology, parallel relationships between music and language, and evolutionary musicology. Patel received a Guggenheim Fellowship in 2018 to support his work on the evolution of musical cognition.

References

  1. "The Descent of Man, and Selection in Relation to Sex". 1871.
  2. Wallin, Nils; Merker, Björn; Brown, Steven, eds. (2000). The Origins of Music. Cambridge: MIT Press. p. 11. ISBN   978-0-262-73143-0.
  3. Zimmer, Carl (15 May 2024). "Why Do People Make Music? - In a new study, researchers found universal features of songs across many cultures, suggesting that music evolved in our distant ancestors". The New York Times . Archived from the original on 16 May 2024. Retrieved 16 May 2024.
  4. Perlovsky, L (2011). "Music. Cognitive Function, Origin, And Evolution of Musical Emotions". WebmedCentral PSYCHOLOGY. 2 (2): WMC001494.
  5. Abbott, Alison (2002). "Neurobiology: Music, maestro, please!". Nature. 416 (6876): 12–14. Bibcode:2002Natur.416...12A. doi: 10.1038/416012a . PMID   11882864.
  6. Carroll, Joseph (1998). "Steven Pinker's Cheesecake for the Mind". Cogweb.ucla.edu. Retrieved 29 December 2012.
  7. Hagen, Edward H; Bryant, Gregory A (2003). "Music and dance as a coalition signaling system" (PDF). Human Nature. 14 (1): 21–51. doi:10.1007/s12110-003-1015-z. PMID   26189987. S2CID   12799432. Archived from the original (PDF) on 12 June 2007. Retrieved 3 December 2007.
  8. Hagen, Edward H; Hammerstein P (2009). "Did Neanderthals and other early humans sing? Seeking the biological roots of music in the loud calls of primates, lions, hyenas, and wolves" (PDF). Musicae Scientiae. 13: 291–320. doi:10.1177/1029864909013002131. S2CID   39481097.
  9. Larsson, Matz (August 2013). "Self-generated sounds of locomotion and ventilation and the evolution of human rhythmic abilities". Animal Cognition. 17 (1): 1–14. doi:10.1007/s10071-013-0678-z. PMC   3889703 . PMID   23990063.
  10. Larsson, Matz (2009). "Possible functions of the octavolateralis system in fish schooling". Fish and Fisheries. 10 (3): 344–355. Bibcode:2009AqFF...10..344L. doi:10.1111/j.1467-2979.2009.00330.x.
  11. Larsson, Matz (2012). "Incidental sounds of locomotion in animal cognition". Animal Cognition. 15 (1): 1–13. doi:10.1007/s10071-011-0433-2. PMC   3249174 . PMID   21748447.
  12. Huron, David (2001). "Is music an evolutionary adaptation?". Ann N Y Acad Sci. 930 (1): 43–61. Bibcode:2001NYASA.930...43H. doi:10.1111/j.1749-6632.2001.tb05724.x. PMID   11458859. S2CID   11261226.
  13. The Oxford Handbook of Evolutionary Psychology, Edited by Robin Dunbar and Louise Barret, Oxford University Press, 2007, Chapter 45 Music and cognitive evolution.
  14. Fodor, Jerry A. (1983). Modularity of Mind: An Essay on Faculty Psychology. Cambridge, Massachusetts: MIT Press. ISBN   0-262-56025-9
  15. Honing, H. (ed.) (2018). The Origins of Musicality. Cambridge, Massachusetts: MIT Press.
  16. Brown S (3 December 1999). "The "Musilanguage" Model of Music Evolution". In Wallin NL, Merker B, Brown S (eds.). The Origins of Music. The MIT Press. pp. 271–301. ISBN   0-262-23206-5.
  17. Jordania J. Who Asked the First Question? The Origins of Human Choral Singing, Intelligence, Language and Speech (2006) Logos
  18. Jordania, J. (2009) Times to fight and times to relax: Singing and humming at the beginning of Human evolutionary history 1: 272–277
  19. Darwin, C. Descent of Men, 2004:123
  20. Marler, Peter (1970). "Birdsong and speech development: Could there be parallels?". American Scientist. 58 (6): 669–73. JSTOR   27829317. PMID   5480089.
  21. Wallin, Nils, Bjorn Merker, Steven Brown. (Editors) (2000). The origins of music. Cambridge, Massachusetts: MIT
  22. Wallin, Nils L.; Merker, Bjorn; Brown, Steven (27 July 2001). The Origins of Music. MIT Press. ISBN   978-0-262-73143-0.
  23. Geissmann, Thomas. 2000. "Gibbon songs and human music from an evolutionary perspective." (archived 3 January 2011) In The origins of Music. Edited by N. Wallin, B. Merker and S. Brown, pp. 103–124. Cambridge, Massachusetts: MIT
  24. Hutchins, K. G. (2019). "Like a Lullaby: Song as Herding Tool in Rural Mongolia". Journal of Ethnobiology. 39 (3): 445. doi:10.2993/0278-0771-39.3.445. S2CID   204126120.

Further reading