Cognitive tradeoff hypothesis

Last updated

The cognitive tradeoff hypothesis argues that in the cognitive evolution of humans, there was an evolutionary tradeoff between short-term working memory and complex language skills. Specifically, early hominids sacrificed the robust working memory seen in chimpanzees for more complex representations and hierarchical organization used in language. The theory was first brought forth by Japanese primatologist Tetsuro Matsuzawa, a former director of the Primate Research Institute of Kyoto University (KUPRI).

Contents

Matsuzawa suggests that at a certain point in evolution, because of limitations in brain capacity, the human brain may have acquired new functions in parallel with losing others – such as acquiring language while losing visuospatial temporal storage ability.

Relevant research

Matsuzawa, whose research focuses on chimpanzee intelligence, suggests the tradeoff hypothesis as a possible explanation as to why chimpanzees have better memory than humans for immediately capturing and retaining visual stimuli in his paper "Symbolic representation of number in chimpanzees". [1] The following rationalization is his attempt to explain the reasoning behind the hypothesis: "The common ancestor of humans and chimpanzees may have had the same kind of memory skill. However, in the course of human evolution, we lost the skill while we acquired other language‐related skills: representation, chunking, hierarchical organization, syntactic rules, etc. Brain volume capacity was limited at a certain point in evolution, so we had to lose some function to get a new function." [2]

As a part of The Ai Project, [3] some chimpanzees at Matsuzawa's lab at KUPRI were trained to play a game that involved memorizing a series of numerals that flash on the screen for a brief period of time, as well as their respective positions. The study found that the chimpanzees completed the task with a higher level of accuracy and speed than did the human subjects, suggesting that their working memory capabilities are more powerful.

While the chimpanzees outperformed human adults in memorizing briefly presented numbers that appeared on the screen, [1] the researchers found that chimpanzees were less proficient at a variety of other cognitive tasks including imitation, cross-modal matching, symmetry of symbols and referents, and one-to-one correspondence. Matsuzawa came up with the cognitive tradeoff hypothesis to explain this difference in cognitive capabilities of human beings and chimpanzees, their closest living relatives.

Response and criticism

In his paper, Matsuzawa claims that his tradeoff theory has support from a phylogenetic as well as ontogenetic perspective. In human beings, the youth often outperform adults on certain memory tasks. In the course of cognitive development, human children may acquire linguistic skills at the cost of possessing a chimpanzee-like photographic memory.

Some critics have brought up research contradicting the ideas proposed by the cognitive tradeoff hypothesis: First, there is not necessarily a need to have lost certain functions to gain new facilities, as the human brain is about three times larger than the brain of the chimpanzee. Moreover, the cerebral cortex of the human brain – which plays a key role in memory, attention, awareness and thought – contains twice as many cells in humans as the same region in chimpanzees. [4] Secondly, the recent evolution of chimpanzees and humans has been in completely different environments, with different survival needs. Therefore, the difference in working memory capabilities and other cognitive functions discussed by Matsuzawa might be adaptive rather than "tradeoffs".

Despite these criticisms, the results from a study by Sean Roberts at the Max Planck Institute revealed that, accounting for task training, chimpanzees do appear to have enhanced working memory abilities in various tasks. While chimps have been reported to perform correctly 80% of the time, with 8 numerals at 210ms, out of a large pool of human participants, the best human performer was only able to get 80% of his trials correct on only 6 numerals, at 210ms. The authors conclude, "this study found evidence that humans can perform better than suggested by Matsuzawa in the limited-hold memory task. However, human performance is still below that of chimpanzees. This difference appears to stem from an inability to keep the location of symbols in working memory" [5]

The cognitive tradeoff hypothesis is referenced by the song of the same name in the album Cave World by Viagra Boys.

See also

Related Research Articles

<i>Pan</i> (genus) Genus of African great apes

The genus Pan consists of two extant species: the chimpanzee and the bonobo. Taxonomically, these two ape species are collectively termed panins. The two species were formerly collectively called "chimpanzees" or "chimps"; if bonobos were recognized as a separate group at all, they were referred to as "pygmy" or "gracile chimpanzees". Together with humans, gorillas, and orangutans they are part of the family Hominidae. Native to sub-Saharan Africa, chimpanzees and bonobos are currently both found in the Congo jungle, while only the chimpanzee is also found further north in West Africa. Both species are listed as endangered on the IUCN Red List of Threatened Species, and in 2017 the Convention on Migratory Species selected the chimpanzee for special protection.

<span class="mw-page-title-main">Primatology</span> Scientific study of primates

Primatology is the scientific study of primates. It is a diverse discipline at the boundary between mammalogy and anthropology, and researchers can be found in academic departments of anatomy, anthropology, biology, medicine, psychology, veterinary sciences and zoology, as well as in animal sanctuaries, biomedical research facilities, museums and zoos. Primatologists study both living and extinct primates in their natural habitats and in laboratories by conducting field studies and experiments in order to understand aspects of their evolution and behavior.

The origin of language, its relationship with human evolution, and its consequences have been subjects of study for centuries. Scholars wishing to study the origins of language must draw inferences from evidence such as the fossil record, archaeological evidence, contemporary language diversity, studies of language acquisition, and comparisons between human language and systems of communication existing among animals. Many argue that the origins of language probably relate closely to the origins of modern human behavior, but there is little agreement about the facts and implications of this connection.

<span class="mw-page-title-main">Great ape language</span> Efforts to teach non-human primates to communicate with humans

Research into great ape language has involved teaching chimpanzees, bonobos, gorillas and orangutans to communicate with humans and each other using sign language, physical tokens, lexigrams, and imitative human speech. Some primatologists argue that the use of these communication methods indicate primate "language" ability, though this depends on one's definition of language. The cognitive tradeoff hypothesis suggests that human language skills evolved at the expense of the short-term and working memory capabilities observed in other hominids.

Dog intelligence or dog cognition is the process in dogs of acquiring information and conceptual skills, and storing them in memory, retrieving, combining and comparing them, and using them in new situations.

The evolution of human intelligence is closely tied to the evolution of the human brain and to the origin of language. The timeline of human evolution spans approximately seven million years, from the separation of the genus Pan until the emergence of behavioral modernity by 50,000 years ago. The first three million years of this timeline concern Sahelanthropus, the following two million concern Australopithecus and the final two million span the history of the genus Homo in the Paleolithic era.

Cognitive specialization suggests that certain behaviors, often in the domain of social communication, are passed on to offspring and refined to be maximally beneficial by the process of natural selection. Specializations serve an adaptive purpose for an organism by allowing the organism to be better suited for its habitat. Over time, specializations often become essential to the species' continued survival. Cognitive specialization in humans has been thought to underlie the acquisition, development, and evolution of language, theory of mind, and specific social skills such as trust and reciprocity. These specializations are considered to be critical to the survival of the species, even though there are successful individuals who lack certain specializations, including those diagnosed with autism spectrum disorder or who lack language abilities. Cognitive specialization is also believed to underlie adaptive behaviors such as self-awareness, navigation, and problem solving skills in several animal species such as chimpanzees and bottlenose dolphins.

Ellen Bialystok, OC, FRSC is a Canadian psychologist and professor. She carries the rank of Distinguished Research Professor at York University in Toronto, Ontario where she is director of the Lifespan Cognition and Development Lab. She is also an associate scientist at the Rotman Research Institute of the Baycrest Centre for Geriatric Care.

In the field of psychology, nativism is the view that certain skills or abilities are "native" or hard-wired into the brain at birth. This is in contrast to the "blank slate" or tabula rasa view, which states that the brain has inborn capabilities for learning from the environment but does not contain content such as innate beliefs. This factor contributes to the ongoing nature versus nurture dispute, one borne from the current difficulty of reverse engineering the subconscious operations of the brain, especially the human brain.

Ai is a female western chimpanzee, currently living at the Primate Research Institute of Kyoto University. She is the first subject of the Ai project, a research program started in 1978 by Kiyoko Murofushi and Tetsuro Matsuzawa which is aimed at understanding chimpanzee cognition through computer interface experiments.

<span class="mw-page-title-main">Tetsuro Matsuzawa</span>

Tetsuro Matsuzawa is a primatologist who was a past director of the Primate Research Institute of Kyoto University. He graduated from Kyoto University with a B.A. degree in 1974, a Psy.M. degree in 1976 and a Ph.D. degree in Science in 1989.

The critical period hypothesis or sensitive period hypothesis claims that there is an ideal time window of brain development to acquire language in a linguistically rich environment, after which further language acquisition becomes much more difficult and effortful. It is the subject of a long-standing debate in linguistics and language acquisition over the extent to which the ability to acquire language is biologically linked to developmental stages of the brain. The critical period hypothesis was first proposed by Montreal neurologist Wilder Penfield and co-author Lamar Roberts in their 1959 book Speech and Brain Mechanisms, and was popularized by Eric Lenneberg in 1967 with Biological Foundations of Language.

Ayumu is a chimpanzee currently living at the Primate Research Institute of Kyoto University. He is the son of chimpanzee Ai and has been a participant since infancy in the Ai Project, an ongoing research effort aimed at understanding chimpanzee cognition. As part of the Ai Project, Ayumu participated in a series of short-term memory tasks, such as to remember the sequential order of numbers displaying on a touch-sensitive computer screen. His performance in the tasks was superior to that of comparably trained university students, leading to a possible conclusion that young chimpanzees have better working memory than adult humans, although this has been disputed.

Domain-general learning theories of development suggest that humans are born with mechanisms in the brain that exist to support and guide learning on a broad level, regardless of the type of information being learned. Domain-general learning theories also recognize that although learning different types of new information may be processed in the same way and in the same areas of the brain, different domains also function interdependently. Because these generalized domains work together, skills developed from one learned activity may translate into benefits with skills not yet learned. Another facet of domain-general learning theories is that knowledge within domains is cumulative, and builds under these domains over time to contribute to our greater knowledge structure. Psychologists whose theories align with domain-general framework include developmental psychologist Jean Piaget, who theorized that people develop a global knowledge structure which contains cohesive, whole knowledge internalized from experience, and psychologist Charles Spearman, whose work led to a theory on the existence of a single factor accounting for all general cognitive ability.

<span class="mw-page-title-main">Primate cognition</span> Study of non-human primate intellect

Primate cognition is the study of the intellectual and behavioral skills of non-human primates, particularly in the fields of psychology, behavioral biology, primatology, and anthropology.

Procedural memory is a type of implicit memory which aids the performance of particular types of tasks without conscious awareness of these previous experiences.

Secondary consciousness is an individual's accessibility to their history and plans. The ability allows its possessors to go beyond the limits of the remembered present of primary consciousness. Primary consciousness can be defined as simple awareness that includes perception and emotion. As such, it is ascribed to most animals. By contrast, secondary consciousness depends on and includes such features as self-reflective awareness, abstract thinking, volition and metacognition. The term was coined by Gerald Edelman.

<span class="mw-page-title-main">Neuronal recycling hypothesis</span>

The neuronal recycling hypothesis was proposed by Stanislas Dehaene in the field of cognitive neuroscience in an attempt to explain the underlying neural processes which allow humans to acquire recently invented cognitive capacities. This hypothesis was formulated in response to the 'reading paradox', which states that these cognitive processes are cultural inventions too modern to be the products of evolution. The paradox lies within the fact that cross-cultural evidence suggests specific brain areas are associated with these functions. The concept of neuronal recycling resolves this paradox by suggesting that novel functions actually utilize and 'recycle' existing brain circuitry. Once these cognitive functions find a cortical area devoted to a similar purpose, they can invade the existing circuit. Through plasticity, the cortex can adapt in order to accommodate for these novel functions.

In evolutionary anthropology and evolutionary linguistics, the mimetic theory of speech origins is an analysis of the factors leading to the evolution of language in human ancestors, typically during the Homo erectus era.

Number sense in animals is the ability of creatures to represent and discriminate quantities of relative sizes by number sense. It has been observed in various species, from fish to primates. Animals are believed to have an approximate number system, the same system for number representation demonstrated by humans, which is more precise for smaller quantities and less so for larger values. An exact representation of numbers higher than three has not been attested in wild animals, but can be demonstrated after a period of training in captive animals.

References

  1. 1 2 Matsuzawa, T. (2009). Symbolic representation of number in chimpanzees. Current Opinion in Neurobiology, 19(1), pp. 92–98.
  2. Matsuzawa, Tetsuro. (2007). Comparative Cognitive Development. Developmental Science, 10(1), 97-103.}
  3. Matsuzawa, T. (2003). The Ai project: Historical and ecological contexts. Animal Cognition, 6(4), pp. 199–211.
  4. Mora-Bermúdez, Felipe; Badsha, Farhath; Kanton, Sabina; Camp, J Gray; Vernot, Benjamin; Köhler, Kathrin; Voigt, Birger; Okita, Keisuke; Maricic, Tomislav (2016-09-26). "Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development". eLife. 5. doi: 10.7554/elife.18683 . ISSN   2050-084X. PMC   5110243 . PMID   27669147.
  5. Roberts, S. G., & Quillinan, J. (2014). The Chimp Challenge: Working memory in chimps and humans. In L. McCrohon, B. Thompson, T. Verhoef, & H. Yamauchi (Eds.), The Past, Present and Future of Language Evolution Research: Student volume of the 9th International Conference on the Evolution of Language (pp. 31-39). Tokyo: EvoLang9 Organising Committee.