Aggression

Last updated

Depiction of French President Armand Fallieres's assault by a waiter named Jean Mattis Agression contre Fallieres - detail (Petit Parisien illustre, 1909-01-10).jpeg
Depiction of French President Armand Fallieres's assault by a waiter named Jean Mattis
Many mammals, such as the tiger, bare their teeth as a sign of aggression--a form of aposematism. Panthera tigris altaica 28 - Buffalo Zoo (1).jpg
Many mammals, such as the tiger, bare their teeth as a sign of aggression—a form of aposematism.

Aggression is a behavior aimed at opposing or attacking something or someone. Though often done with the intent to cause harm, it can be channeled into creative and practical outlets for some. [1] It may occur either reactively or without provocation. In humans, aggression can be caused by various triggers. For example, built-up frustration due to blocked goals or perceived disrespect. [2] Human aggression can be classified into direct and indirect aggression; while the former is characterized by physical or verbal behavior intended to cause harm to someone, the latter is characterized by behavior intended to harm the social relations of an individual or group. [3] [4] [5]

Contents

In definitions commonly used in the social sciences and behavioral sciences, aggression is an action or response by an individual that delivers something unpleasant to another person. [6] Some definitions include that the individual must intend to harm another person. [7]

In an interdisciplinary perspective, aggression is regarded as "an ensemble of mechanism formed during the course of evolution in order to assert oneself, relatives, or friends against others, to gain or to defend resources (ultimate causes) by harmful damaging means. These mechanisms are often motivated by emotions like fear, frustration, anger, feelings of stress, dominance or pleasure (proximate causes). Sometimes aggressive behavior serves as a stress relief or a subjective feeling of power." [8] [9] Predatory or defensive behavior between members of different species may not be considered aggression in the same sense.

Aggression can take a variety of forms, which may be expressed physically, or communicated verbally or non-verbally: including anti-predator aggression, defensive aggression (fear-induced), predatory aggression, dominance aggression, inter-male aggression, resident-intruder aggression, maternal aggression, species-specific aggression, sex-related aggression, territorial aggression, isolation-induced aggression, irritable aggression, and brain-stimulation-induced aggression (hypothalamus). There are two subtypes of human aggression: (1) controlled-instrumental subtype (purposeful or goal-oriented); and (2) reactive-impulsive subtype (often elicits uncontrollable actions that are inappropriate or undesirable). Aggression differs from what is commonly called assertiveness, although the terms are often used interchangeably among laypeople (as in phrases such as "an aggressive salesperson"). [10]

Overview

Dollard et al. (1939) proposed that aggression was due to frustration, which was described as an unpleasant emotion resulting from any interference with achieving a rewarding goal. [11] Berkowitz [12] extended this frustration–aggression hypothesis and proposed that it is not so much the frustration as the unpleasant emotion that evokes aggressive tendencies, and that all aversive events produce negative affect and thereby aggressive tendencies, as well as fear tendencies. Besides conditioned stimuli, Archer categorized aggression-evoking (as well as fear-evoking) stimuli into three groups; namely, pain, novelty, and frustration, although he also described "looming", which refers to an object rapidly moving towards the visual sensors of a subject, and can be categorized as "intensity." [13]

Aggression can have adaptive benefits or negative effects. Aggressive behavior is an individual or collective social interaction that is a hostile behavior with the intention of inflicting damage or harm. [3] [4] Two broad categories of aggression are commonly distinguished. One includes affective (emotional) and hostile, reactive, or retaliatory aggression that is a response to provocation, and the other includes instrumental, goal-oriented or predatory, in which aggression is used as a means to achieve a goal. [14] An example of hostile aggression would be a person who punches someone who insulted him or her. An instrumental form of aggression would be armed robbery. Research on violence from a range of disciplines lend some support to a distinction between affective and predatory aggression. [15] However, some researchers question the usefulness of a hostile versus instrumental distinction in humans, despite its ubiquity in research, because most real-life cases involve mixed motives and interacting causes. [16]

A number of classifications and dimensions of aggression have been suggested. These depend on such things as whether the aggression is verbal or physical; whether or not it involves relational aggression such as covert bullying and social manipulation; [17] whether harm to others is intended or not; whether it is carried out actively or expressed passively; and whether the aggression is aimed directly or indirectly. Classification may also encompass aggression-related emotions (e.g., anger) and mental states (e.g., impulsivity, hostility). [18] Aggression may occur in response to non-social as well as social factors, and can have a close relationship with stress coping style. [19] Aggression may be displayed in order to intimidate.

The operative definition of aggression may be affected by moral or political views. Examples are the axiomatic moral view called the non-aggression principle and the political rules governing the behavior of one country toward another. [20] Likewise in competitive sports, or in the workplace, some forms of aggression may be sanctioned and others not (see Workplace aggression). [21] Aggressive behaviors are associated with adjustment problems and several psychopathological symptoms such as antisocial personality disorder, borderline personality disorder, and intermittent explosive disorder. [22]

Biological approaches conceptualize aggression as an internal energy released by external stimuli, a product of evolution through natural selection, part of genetics, a product of hormonal fluctuations. Psychological approaches conceptualize aggression as a destructive instinct, a response to frustration, an affect excited by a negative stimulus, a result of observed learning of society and diversified reinforcement, a resultant of variables that affect personal and situational environments. [23] [24]

Etymology

The term aggression comes from the Latin word aggressio, meaning attack. The Latin was itself a joining of ad- and gradi-, which meant step at. The first known use dates back to 1611, in the sense of an unprovoked attack. [25]

A psychological sense of "hostile or destructive behavior" dates back to a 1912 English translation of Sigmund Freud's writing. [26] Alfred Adler theorized about an "aggressive drive" in 1908. Child raising experts began to refer to aggression, rather than anger, from the 1930s. [27]

Ethology

Male elephant seals fighting Elephant seal fight Part-1.jpg
Male elephant seals fighting

Ethologists study aggression as it relates to the interaction and evolution of animals in natural settings. In such settings aggression can involve bodily contact such as biting, hitting or pushing, but most conflicts are settled by threat displays and intimidating thrusts that cause no physical harm. This form of aggression may include the display of body size, antlers, claws or teeth; stereotyped signals including facial expressions; vocalizations such as bird song; the release of chemicals; and changes in coloration. [28] The term agonistic behaviour is sometimes used to refer to these forms of behavior.

Most ethologists believe that aggression confers biological advantages. Aggression may help an animal secure territory, including resources such as food and water. Aggression between males often occurs to secure mating opportunities, and results in selection of the healthier/more vigorous animal. Aggression may also occur for self-protection or to protect offspring. [29] Aggression between groups of animals may also confer advantage; for example, hostile behavior may force a population of animals into a new territory, where the need to adapt to a new environment may lead to an increase in genetic flexibility. [30]

Between species and groups

The most apparent type of interspecific aggression is that observed in the interaction between a predator and its prey. However, according to many researchers, predation is not aggression. A cat does not hiss or arch its back when pursuing a rat, and the active areas in its hypothalamus resemble those that reflect hunger rather than those that reflect aggression. [31] However, others refer to this behavior as predatory aggression, and point out cases that resemble hostile behavior, such as mouse-killing by rats. [32] In aggressive mimicry a predator has the appearance of a harmless organism or object attractive to the prey; when the prey approaches, the predator attacks.

An animal defending against a predator may engage in either "fight or flight" or "tend and befriend" in response to predator attack or threat of attack, depending on its estimate of the predator's strength relative to its own. Alternative defenses include a range of antipredator adaptations, including alarm signals. An example of an alarm signal is nerol, a chemical which is found in the mandibular glands of Trigona fulviventris individuals. [33] Release of nerol by T. fulviventris individuals in the nest has been shown to decrease the number of individuals leaving the nest by fifty percent, as well as increasing aggressive behaviors like biting. [33] Alarm signals like nerol can also act as attraction signals; in T. fulviventris, individuals that have been captured by a predator may release nerol to attract nestmates, who will proceed to attack or bite the predator. [33]

Aggression between groups is determined partly by willingness to fight, which depends on a number of factors including numerical advantage, distance from home territories, how often the groups encounter each other, competitive abilities, differences in body size, and whose territory is being invaded. [34] Also, an individual is more likely to become aggressive if other aggressive group members are nearby. [35] One particular phenomenon – the formation of coordinated coalitions that raid neighbouring territories to kill conspecifics – has only been documented in two species in the animal kingdom: 'common' chimpanzees and humans. [36]

Within a group

Aggression between conspecifics in a group typically involves access to resources and breeding opportunities. One of its most common functions is to establish a dominance hierarchy. This occurs in many species by aggressive encounters between contending males when they are first together in a common environment. [37] Usually the more aggressive animals become the more dominant. [38] [39] In test situations, most of the conspecific aggression ceases about 24 hours after the group of animals is brought together. [37] [40] Aggression has been defined from this viewpoint as "behavior which is intended to increase the social dominance of the organism relative to the dominance position of other organisms". [41] Losing confrontations may be called social defeat, and winning or losing is associated with a range of practical and psychological consequences. [42]

Conflicts between animals occur in many contexts, such as between potential mating partners, between parents and offspring, between siblings and between competitors for resources. Group-living animals may dispute over the direction of travel or the allocation of time to joint activities. Various factors limit the escalation of aggression, including communicative displays, conventions, and routines. In addition, following aggressive incidents, various forms of conflict resolution have been observed in mammalian species, particularly in gregarious primates. These can mitigate or repair possible adverse consequences, especially for the recipient of aggression who may become vulnerable to attacks by other members of a group. Conciliatory acts vary by species and may involve specific gestures or simply more proximity and interaction between the individuals involved. However, conflicts over food are rarely followed by post conflict reunions, even though they are the most frequent type in foraging primates. [43]

Other questions that have been considered in the study of primate aggression, including in humans, is how aggression affects the organization of a group, what costs are incurred by aggression, and why some primates avoid aggressive behavior. [44] For example, bonobo chimpanzee groups are known for low levels of aggression within a partially matriarchal society. Captive animals including primates may show abnormal levels of social aggression and self-harm that are related to aspects of the physical or social environment; this depends on the species and individual factors such as gender, age and background (e.g., raised wild or captive). [45]

Aggression, fear and curiosity

Within ethology, it has long been recognized that there is a relation between aggression, fear, and curiosity. [46] A cognitive approach to this relationship puts aggression in the broader context of inconsistency reduction, and proposes that aggressive behavior is caused by an inconsistency between a desired, or expected, situation and the actually perceived situation (e.g., "frustration"), and functions to forcefully manipulate the perception into matching the expected situation. [47] [13] [48] In this approach, when the inconsistency between perception and expectancy is small, learning as a result of curiosity reduces inconsistency by updating expectancy to match perception. If the inconsistency is larger, fear or aggressive behavior may be employed to alter the perception in order to make it match expectancy, depending on the size of the inconsistency as well as the specific context. Uninhibited fear results in fleeing, thereby removing the inconsistent stimulus from the perceptual field and resolving the inconsistency. In some cases thwarted escape may trigger aggressive behavior in an attempt to remove the thwarting stimulus. [48]

Evolutionary explanations

Like many behaviors, aggression can be examined in terms of its ability to help an animal itself survive and reproduce, or alternatively to risk survival and reproduction. This cost–benefit analysis can be looked at in terms of evolution. However, there are profound differences in the extent of acceptance of a biological or evolutionary basis for human aggression. [49]

According to the male warrior hypothesis, intergroup aggression represents an opportunity for men to gain access to mates, territory, resources and increased status. As such, conflicts may have created selection evolutionary pressures for psychological mechanisms in men to initiate intergroup aggression. [50] [51]

Violence and conflict

Aggression can involve violence that may be adaptive under certain circumstances in terms of natural selection. This is most obviously the case in terms of attacking prey to obtain food, or in anti-predatory defense. It may also be the case in competition between members of the same species or subgroup, if the average reward (e.g., status, access to resources, protection of self or kin) outweighs average costs (e.g., injury, exclusion from the group, death). There are some hypotheses of specific adaptions for violence in humans under certain circumstances, including for homicide, but it is often unclear what behaviors may have been selected for and what may have been a byproduct, as in the case of collective violence. [52] [53] [54] [55]

Although aggressive encounters are ubiquitous in the animal kingdom, with often high stakes, most encounters that involve aggression may be resolved through posturing, or displaying and trial of strength. Game theory is used to understand how such behaviors might spread by natural selection within a population, and potentially become 'Evolutionary Stable Strategies'. An initial model of resolution of conflicts is the hawk-dove game. Others include the Sequential assessment model and the Energetic war of attrition. These try to understand not just one-off encounters but protracted stand-offs, and mainly differ in the criteria by which an individual decides to give up rather than risk loss and harm in physical conflict (such as through estimates of resource holding potential). [56]

Gender

General

Gender plays an important role in human aggression. There are multiple theories that seek to explain findings that males and females of the same species can have differing aggressive behaviors. One review concluded that male aggression tended to produce pain or physical injury whereas female aggression tended towards psychological or social harm. [57]

In general, sexual dimorphism can be attributed to greater intraspecific competition in one sex, either between rivals for access to mates and/or to be chosen by mates. This may stem from the other gender being constrained by providing greater parental investment, in terms of factors such as gamete production, gestation, lactation, or upbringing of young. Although there is much variation in species, generally the more physically aggressive sex is the male, particularly in mammals. In species where parental care by both sexes is required, there tends to be less of a difference. When the female can leave the male to care for the offspring, then females may be the larger and more physically aggressive. Competitiveness despite parental investment has also been observed in some species. [58] A related factor is the rate at which males and females are able to mate again after producing offspring, and the basic principles of sexual selection are also influenced by ecological factors affecting the ways or extent to which one sex can compete for the other. The role of such factors in human evolution is controversial.

The pattern of male and female aggression is argued to be consistent with evolved sexually-selected behavioral differences, while alternative or complementary views emphasize conventional social roles stemming from physical evolved differences. [59] Aggression in women may have evolved to be, on average, less physically dangerous and more covert or indirect. [60] [61] However, there are critiques for using animal behavior to explain human behavior, especially in the application of evolutionary explanations to contemporary human behavior, including differences between the genders. [62]

According to the 2015 International Encyclopedia of the Social & Behavioral Sciences , sex differences in aggression is one of the most robust and oldest findings in psychology. [63] Past meta-analyses in the encyclopedia found males regardless of age engaged in more physical and verbal aggression while small effect for females engaging in more indirect aggression such as rumor spreading or gossiping. [63] It also found males tend to engage in more unprovoked aggression at higher frequency than females. [63] This analysis also conforms with the Oxford Handbook of Evolutionary Psychology which reviewed past analysis which found men to use more verbal and physical aggression with the difference being greater in the physical type. [64]

There are more recent findings that show that differences in male and female aggression appear at about two years of age, though the differences in aggression are more consistent in middle-aged children and adolescence. Tremblay, Japel and Pérusse (1999) asserted that physically aggressive behaviors such as kicking, biting and hitting are age-typical expressions of innate and spontaneous reactions to biological drives such as anger, hunger, and affiliation. [65] Girls' relational aggression, meaning non-physical or indirect, tends to increase after age two while physical aggression decreases. There was no significant difference in aggression between males and females before two years of age. [66] A possible explanation for this could be that girls develop language skills more quickly than boys, and therefore have better ways of verbalizing their wants and needs. They are more likely to use communication when trying to retrieve a toy with the words "Ask nicely" or "Say please." [67]

According to the journal of Aggressive Behaviour, an analysis across 9 countries found boys reported more in the use of physical aggression. [66] At the same time no consistent sex differences emerged within relational aggression. [66] It has been found that girls are more likely than boys to use reactive aggression and then retract, but boys are more likely to increase rather than to retract their aggression after their first reaction. Studies show girls' aggressive tactics included gossip, ostracism, breaking confidences, and criticism of a victim's clothing, appearance, or personality, whereas boys engage in aggression that involves a direct physical and/or verbal assault. [68] This could be due to the fact that girls' frontal lobes develop earlier than boys, allowing them to self-restrain. [67]

One factor that shows insignificant differences between male and female aggression is in sports. In sports, the rate of aggression in both contact and non-contact sports is relatively equal. Since the establishment of Title IX, female sports have increased in competitiveness and importance, which could contribute to the evening of aggression and the "need to win" attitude between both genders. Among sex differences found in adult sports were that females have a higher scale of indirect hostility while men have a higher scale of assault. [69] Another difference found is that men have up to 20 times higher levels of testosterone than women.

In intimate relationships

Some studies suggest that romantic involvement in adolescence decreases aggression in males and females, but decreases at a higher rate in females. Females will seem more desirable to their mate if they fit in with society and females that are aggressive do not usually fit well in society. They can often be viewed as antisocial. Female aggression is not considered the norm in society and going against the norm can sometimes prevent one from getting a mate. [70] However, studies have shown that an increasing number of women are getting arrested on domestic violence charges. In many states, women now account for a quarter to a third of all domestic violence arrests, up from less than 10 percent a decade ago.

The new statistics reflect a reality documented in research: women are perpetrators as well as victims of family violence. [71] However, another equally possible explanation is a case of improved diagnostics: it has become more acceptable for men to report female domestic violence to the authorities while at the same time actual female domestic violence has not increased at all. [72] This could be the case in a situation where men had become less ashamed of reporting female violence against themsuch a situation could conceivably lead to an increasing number of women being arrested despite the actual number of violent women remaining the same.

In addition, males in competitive sports are often advised by their coaches not to be in intimate relationships based on the premises that they become more docile and less aggressive during an athletic event. The circumstances in which males and females experience aggression are also different. A study showed that social anxiety and stress was positively correlated with aggression in males, meaning as stress and social anxiety increases so does aggression. Furthermore, a male with higher social skills has a lower rate of aggressive behavior than a male with lower social skills. In females, higher rates of aggression were only correlated with higher rates of stress. Other than biological factors that contribute to aggression there are physical factors as well. [73]

Physiological factors

Regarding sexual dimorphism, humans fall into an intermediate group with moderate sex differences in body size but relatively large testes. This is a typical pattern of primates where several males and females live together in a group and the male faces an intermediate number of challenges from other males compared to exclusive polygyny and monogamy but frequent sperm competition. [74]

Evolutionary psychology and sociobiology have also discussed and produced theories for some specific forms of male aggression such as sociobiological theories of rape and theories regarding the Cinderella effect. Another evolutionary theory explaining gender differences in aggression is the Male Warrior hypothesis, which explains that males have psychologically evolved for intergroup aggression in order to gain access to mates, resources, territory and status. [50] [51]

Physiology

Brain pathways

Many researchers focus on the brain to explain aggression. Numerous circuits within both neocortical and subcortical structures play a central role in controlling aggressive behavior, depending on the species, and the exact role of pathways may vary depending on the type of trigger or intention. [75] [4]

In mammals, the hypothalamus and periaqueductal gray of the midbrain are critical areas, as shown in studies on cats, rats, and monkeys. These brain areas control the expression of both behavioral and autonomic components of aggression in these species, including vocalization. Electrical stimulation of the hypothalamus causes aggressive behavior [76] and the hypothalamus has receptors that help determine aggression levels based on their interactions with serotonin and vasopressin. [77] In rodents, activation of estrogen receptor-expressing neurons in the ventrolateral portion of the ventromedial hypothalamus (VMHvl) was found to be sufficient to initiate aggression in both males and females. [78] [79] Midbrain areas involved in aggression have direct connections with both the brainstem nuclei controlling these functions, and with structures such as the amygdala and prefrontal cortex.

Stimulation of the amygdala results in augmented aggressive behavior in hamsters, [80] [81] while lesions of an evolutionarily homologous area in the lizard greatly reduce competitive drive and aggression (Bauman et al. 2006). [82] In rhesus monkeys, neonatal lesions in the amygdala or hippocampus results in reduced expression of social dominance, related to the regulation of aggression and fear. [83] Several experiments in attack-primed Syrian golden hamsters, for example, support the claim of circuitry within the amygdala being involved in control of aggression. [81] The role of the amygdala is less clear in primates and appears to depend more on situational context, with lesions leading to increases in either social affiliatory or aggressive responses. Amygdalotomy, which involves removing or destroying parts of the amygdala, has been performed on people to reduce their violent behaviour.

The broad area of the cortex known as the prefrontal cortex (PFC) is crucial for self-control and inhibition of impulses, including inhibition of aggression and emotions. Reduced activity of the prefrontal cortex, in particular its medial and orbitofrontal portions, has been associated with violent/antisocial aggression. [84] In addition, reduced response inhibition has been found in violent offenders, compared to non-violent offenders. [75]

The role of the chemicals in the brain, particularly neurotransmitters, in aggression has also been examined. This varies depending on the pathway, the context and other factors such as gender. A deficit in serotonin has been theorized to have a primary role in causing impulsivity and aggression. At least one epigenetic study supports this supposition. [85] Nevertheless, low levels of serotonin transmission may explain a vulnerability to impulsiveness, potential aggression, and may have an effect through interactions with other neurochemical systems. These include dopamine systems which are generally associated with attention and motivation toward rewards, and operate at various levels. Norepinephrine, also known as noradrenaline, may influence aggression responses both directly and indirectly through the hormonal system, the sympathetic nervous system or the central nervous system (including the brain). It appears to have different effects depending on the type of triggering stimulus, for example social isolation/rank versus shock/chemical agitation which appears not to have a linear relationship with aggression. Similarly, GABA, although associated with inhibitory functions at many CNS synapses, sometimes shows a positive correlation with aggression, including when potentiated by alcohol. [86] [87]

The hormonal neuropeptides vasopressin and oxytocin play a key role in complex social behaviours in many mammals such as regulating attachment, social recognition, and aggression. Vasopressin has been implicated in male-typical social behaviors which includes aggression. Oxytocin may have a particular role in regulating female bonds with offspring and mates, including the use of protective aggression. Initial studies in humans suggest some similar effects. [88] [89]

In human, aggressive behavior has been associated with abnormalities in three principal regulatory systems in the body serotonin systems, catecholamine systems, and the hypothalamic–pituitary–adrenal axis. Abnormalities in these systems also are known to be induced by stress, either severe, acute stress or chronic low-grade stress [90]

Testosterone

Early androgenization has an organizational effect on the developing brains of both males and females, making more neural circuits that control sexual behavior as well as intermale and interfemale aggression become more sensitive to testosterone. [91] There are noticeable sex differences in aggression. Testosterone is present to a lesser extent in females, who may be more sensitive to its effects. Animal studies have also indicated a link between incidents of aggression and the individual level of circulating testosterone. However, results in relation to primates, particularly humans, are less clear cut and are at best only suggestive of a positive association in some contexts. [92]

In humans, there is a seasonal variation in aggression associated with changes in testosterone. [93] For example, in some primate species, such as rhesus monkeys and baboons, females are more likely to engage in fights around the time of ovulation as well as right before menstruation. [91] If the results were the same in humans as they are in rhesus monkeys and baboons, then the increase in aggressive behaviors during ovulation is explained by the decline in estrogen levels. This makes normal testosterone levels more effective. [94] Castrated mice and rats exhibit lower levels of aggression. Males castrated as neonates exhibit low levels of aggression even when given testosterone throughout their development.

Challenge hypothesis

The challenge hypothesis outlines the dynamic relationship between plasma testosterone levels and aggression in mating contexts in many species. It proposes that testosterone is linked to aggression when it is beneficial for reproduction, such as in mate guarding and preventing the encroachment of intrasexual rivals. The challenge hypothesis predicts that seasonal patterns in testosterone levels in a species are a function of mating system (monogamy versus polygyny), paternal care, and male-male aggression in seasonal breeders.

This pattern between testosterone and aggression was first observed in seasonally breeding birds, such as the song sparrow, where testosterone levels rise modestly with the onset of the breeding season to support basic reproductive functions. [95] The hypothesis has been subsequently expanded and modified to predict relationships between testosterone and aggression in other species. For example, chimpanzees, which are continuous breeders, show significantly raised testosterone levels and aggressive male-male interactions when receptive and fertile females are present. [96] Currently, no research has specified a relationship between the modified challenge hypothesis and human behavior, or the human nature of concealed ovulation, although some suggest it may apply. [93]

Effects on the nervous system

Testosterone to Estradiol conversion Testosterone estradiol conversion.png
Testosterone to Estradiol conversion

Another line of research has focused on the proximate effects of circulating testosterone on the nervous system, as mediated by local metabolism within the brain. Testosterone can be metabolized to estradiol by the enzyme aromatase, or to dihydrotestosterone (DHT) by 5α-reductase. [97]

Aromatase is highly expressed in regions involved in the regulation of aggressive behavior, such as the amygdala and hypothalamus. In studies using genetic knockout techniques in inbred mice, male mice that lacked a functional aromatase enzyme displayed a marked reduction in aggression. Long-term treatment with estradiol partially restored aggressive behavior, suggesting that the neural conversion of circulating testosterone to estradiol and its effect on estrogen receptors influences inter-male aggression. In addition, two different estrogen receptors, ERα and ERβ, have been identified as having the ability to exert different effects on aggression in mice. However, the effect of estradiol appears to vary depending on the strain of mouse, and in some strains it reduces aggression during long days (16 h of light), while during short days (8 h of light) estradiol rapidly increases aggression. [97]

Another hypothesis is that testosterone influences brain areas that control behavioral reactions. Studies in animal models indicate that aggression is affected by several interconnected cortical and subcortical structures within the so-called social behavior network. A study involving lesions and electrical-chemical stimulation in rodents and cats revealed that such a neural network consists of the medial amygdala, medial hypothalamus and periaqueductal grey (PAG), and it positively modulates reactive aggression. [98] Moreover, a study done in human subjects showed that prefrontal-amygdala connectivity is modulated by endogenous testosterone during social emotional behavior. [99]

In human studies, testosterone-aggression research has also focused on the role of the orbitofrontal cortex (OFC). This brain area is strongly associated with impulse control and self-regulation systems that integrate emotion, motivation, and cognition to guide context-appropriate behavior. [100] Patients with localized lesions to the OFC engage in heightened reactive aggression. [101] Aggressive behavior may be regulated by testosterone via reduced medial OFC engagement following social provocation. [100] When measuring participants' salivary testosterone, higher levels can predict subsequent aggressive behavioral reactions to unfairness faced during a task. Moreover, brain scanning with fMRI shows reduced activity in the medial OFC during such reactions. Such findings may suggest that a specific brain region, the OFC, is a key factor in understanding reactive aggression.

General associations with behavior

Scientists have for a long time been interested in the relationship between testosterone and aggressive behavior. In most species, males are more aggressive than females. Castration of males usually has a pacifying effect on aggressive behavior in males. In humans, males engage in crime and especially violent crime more than females. The involvement in crime usually rises in the early teens to mid teens which happen at the same time as testosterone levels rise. Research on the relationship between testosterone and aggression is difficult since the only reliable measurement of brain testosterone is by a lumbar puncture which is not done for research purposes. Studies therefore have often instead used more unreliable measurements from blood or saliva. [102]

The Handbook of Crime Correlates, a review of crime studies, states most studies support a link between adult criminality and testosterone although the relationship is modest if examined separately for each sex. However, nearly all studies of juvenile delinquency and testosterone are not significant. Most studies have also found testosterone to be associated with behaviors or personality traits linked with criminality such as antisocial behavior and alcoholism. Many studies have also been done on the relationship between more general aggressive behavior/feelings and testosterone. About half the studies have found a relationship and about half no relationship. [102]

Studies of testosterone levels of male athletes before and after a competition revealed that testosterone levels rise shortly before their matches, as if in anticipation of the competition, and are dependent on the outcome of the event: testosterone levels of winners are high relative to those of losers. No specific response of testosterone levels to competition was observed in female athletes, although a mood difference was noted. [103] In addition, some experiments have failed to find a relationship between testosterone levels and aggression in humans. [104] [22] [105]

The possible correlation between testosterone and aggression could explain the "roid rage" that can result from anabolic steroid use, [106] [107] although an effect of abnormally high levels of steroids does not prove an effect at physiological levels.

Dehydroepiandrosterone

Dehydroepiandrosterone (DHEA) is the most abundant circulating androgen hormone and can be rapidly metabolized within target tissues into potent androgens and estrogens. Gonadal steroids generally regulate aggression during the breeding season, but non-gonadal steroids may regulate aggression during the non-breeding season. Castration of various species in the non-breeding season has no effect on territorial aggression. In several avian studies, circulating DHEA has been found to be elevated in birds during the non-breeding season. These data support the idea that non-breeding birds combine adrenal and/or gonadal DHEA synthesis with neural DHEA metabolism to maintain territorial behavior when gonadal testosterone secretion is low. Similar results have been found in studies involving different strains of rats, mice, and hamsters. DHEA levels also have been studied in humans and may play a role in human aggression. Circulating DHEAS (its sulfated ester) levels rise during adrenarche (≈7 years of age) while plasma testosterone levels are relatively low. This implies that aggression in pre-pubertal children with aggressive conduct disorder might be correlated with plasma DHEAS rather than plasma testosterone, suggesting an important link between DHEAS and human aggressive behavior. [97]

Glucocorticoids

Glucocorticoid hormones have an important role in regulating aggressive behavior. In adult rats, acute injections of corticosterone promote aggressive behavior and acute reduction of corticosterone decreases aggression; however, a chronic reduction of corticosterone levels can produce abnormally aggressive behavior. In addition, glucocorticoids affect development of aggression and establishment of social hierarchies. Adult mice with low baseline levels of corticosterone are more likely to become dominant than are mice with high baseline corticosterone levels. [97]

Glucocorticoids are released by the hypothalamic pituitary adrenal (HPA) axis in response to stress, of which cortisol is the most prominent in humans. Results in adults suggest that reduced levels of cortisol, linked to lower fear or a reduced stress response, can be associated with more aggression. However, it may be that proactive aggression is associated with low cortisol levels while reactive aggression may be accompanied by elevated levels. Differences in assessments of cortisol may also explain a diversity of results, particularly in children. [92]

The HPA axis is related to the general fight-or-flight response or acute stress reaction, and the role of catecholamines such as epinephrine, popularly known as adrenaline.

Pheromones

In many animals, aggression can be linked to pheromones released between conspecifics. In mice, major urinary proteins (Mups) have been demonstrated to promote innate aggressive behavior in males, [108] [109] and can be mediated by neuromodulatory systems. [110] Mups activate olfactory sensory neurons in the vomeronasal organ (VNO), a subsystem of the nose known to detect pheromones via specific sensory receptors, of mice [109] and rats. [111] Pheremones have also been identified in fruit flies, detected by neurons in the antenna, that send a message to the brain eliciting aggression; it has been noted that aggression pheremones have not been identified in humans. [112]

Genetics

In general, differences in a continuous phenotype such as aggression are likely to result from the action of a large number of genes each of small effect, which interact with each other and the environment through development and life.

In a non-mammalian example of genes related to aggression, the fruitless gene in fruit flies is a critical determinant of certain sexually dimorphic behaviors, and its artificial alteration can result in a reversal of stereotypically male and female patterns of aggression in fighting. However, in what was thought to be a relatively clear case, inherent complexities have been reported in deciphering the connections between interacting genes in an environmental context and a social phenotype involving multiple behavioral and sensory interactions with another organism. [113]

In mice, candidate genes for differentiating aggression between the sexes are the Sry (sex determining region Y) gene, located on the Y chromosome and the Sts (steroid sulfatase) gene. The Sts gene encodes the steroid sulfatase enzyme, which is pivotal in the regulation of neurosteroid biosynthesis. It is expressed in both sexes, is correlated with levels of aggression among male mice, and increases dramatically in females after parturition and during lactation, corresponding to the onset of maternal aggression. [81] At least one study has found a possible epigenetic signature (i.e., decreased methylation at a specific CpG site on the promoter region) of the serotonin receptor 5-HT3a that is associated with maternal aggression among human subjects. [85]

Mice with experimentally elevated sensitivity to oxidative stress (through inhibition of copper-zinc superoxide dismutase, SOD1 activity) were tested for aggressive behavior. [114] Males completely deficient in SOD1 were found to be more aggressive than both wild-type males and males that express 50% of this antioxidant enzyme. They were also faster to attack another male. The causal connection between SOD1 deficiency and increased aggression is not yet understood.

In humans, there is good evidence that the basic human neural architecture underpinning the potential for flexible aggressive responses is influenced by genes as well as environment. In terms of variation between individual people, more than 100 twin and adoption studies have been conducted in recent decades examining the genetic basis of aggressive behavior and related constructs such as conduct disorders. According to a meta-analysis published in 2002, approximately 40% of variation between individuals is explained by differences in genes, and 60% by differences in environment (mainly non-shared environmental influences rather than those that would be shared by being raised together). However, such studies have depended on self-report or observation by others including parents, which complicates interpretation of the results.

The few laboratory-based analyses have not found significant amounts of individual variation in aggression explicable by genetic variation in the human population. Furthermore, linkage and association studies that seek to identify specific genes, for example that influence neurotransmitter or hormone levels, have generally resulted in contradictory findings characterized by failed attempts at replication. One possible factor is an allele (variant) of the MAO-A gene which, in interaction with certain life events such as childhood maltreatment (which may show a main effect on its own), can influence development of brain regions such as the amygdala and as a result some types of behavioral response may be more likely. The generally unclear picture has been compared to equally difficult findings obtained in regard to other complex behavioral phenotypes. [115] [116] For example, both 7R and 5R, ADHD-linked VNTR alleles of dopamine receptor D4 gene are directly associated with the incidence of proactive aggression in the men with no history of ADHD. [117]

Society and culture

Humans share aspects of aggression with non-human animals, and have specific aspects and complexity related to factors such as genetics, early development, social learning and flexibility, culture and morals. Konrad Lorenz stated in his 1963 classic, On Aggression, that human behavior is shaped by four main, survival-seeking animal drives. Taken together, these drives—hunger, fear, reproduction, and aggression—achieve natural selection. [118] E. O. Wilson elaborated in On Human Nature that aggression is, typically, a means of gaining control over resources. Aggression is, thus, aggravated during times when high population densities generate resource shortages. [119] According to Richard Leakey and his colleagues, aggression in humans has also increased by becoming more interested in ownership and by defending his or her property. [120] However, UNESCO adopted the Seville Statement of Violence in 1989 that refuted claims, by evolutionary scientists, that genetics by itself was the sole cause of aggression. [121] [122]

Social and cultural aspects may significantly interfere with the distinct expression of aggressiveness. For example, a high population density, when associated with a decrease of available resources, might be a significant intervening variable for the occurrence of violent acts. [123]

Culture

Culture is one factor that plays a role in aggression. Tribal or band societies existing before or outside of modern states have sometimes been depicted as peaceful 'noble savages'. The ǃKung people were described as 'The Harmless People' in a popular work by Elizabeth Marshall Thomas in 1958, [124] while Lawrence Keeley's 1996 War Before Civilization suggested that regular warfare without modern technology was conducted by most groups throughout human history, including most Native American tribes. [125] Studies of hunter-gatherers show a range of different societies. In general, aggression, conflict and violence sometimes occur, but direct confrontation is generally avoided and conflict is socially managed by a variety of verbal and non-verbal methods. Different rates of aggression or violence, currently or in the past, within or between groups, have been linked to the structuring of societies and environmental conditions influencing factors such as resource or property acquisition, land and subsistence techniques, and population change. [126]

American psychologist Peter Gray hypothesizes that band hunter-gatherer societies are able to reduce aggression while maintaining relatively peaceful, egalitarian relations between members through various methods, such as fostering a playful spirit in all areas of life, the use of humor to counter the tendency of any one person to dominate the group, and non-coercive or "indulgent" child-rearing practices. Gray likens hunter-gatherer bands to social play groups, while stressing that such play is not frivolous or even easy at all times. [127] According to Gray, "Social play—that is, play involving more than one player—is necessarily egalitarian. It always requires a suspension of aggression and dominance along with a heightened sensitivity to the needs and desires of the other players". [128]

Joan Durrant at the University of Manitoba writes that a number of studies have found physical punishment to be associated with "higher levels of aggression against parents, siblings, peers and spouses", even when controlling for other factors. [129] According to Elizabeth Gershoff at the University of Texas at Austin, the more that children are physically punished, the more likely they are as adults to act violently towards family members, including intimate partners. [130] In countries where physical punishment of children is perceived as being more culturally accepted, it is less strongly associated with increased aggression; however, physical punishment has been found to predict some increase in child aggression regardless of culture. [131] While these associations do not prove causality, a number of longitudinal studies suggest that the experience of physical punishment has a direct causal effect on later aggressive behaviors. [129] In examining several longitudinal studies that investigated the path from disciplinary spanking to aggression in children from preschool age through adolescence, Gershoff concluded: "Spanking consistently predicted increases in children's aggression over time, regardless of how aggressive children were when the spanking occurred". [132] similar results were found by Catherine Taylor at Tulane University in 2010. [133] Family violence researcher Murray A. Straus argues, "There are many reasons this evidence has been ignored. One of the most important is the belief that spanking is more effective than nonviolent discipline and is, therefore, sometimes necessary, despite the risk of harmful side effects". [134]

Analyzing aggression culturally or politically is complicated by the fact that the label 'aggressive' can itself be used as a way of asserting a judgement from a particular point of view.[ according to whom? ] Whether a coercive or violent method of social control is perceived as aggression – or as legitimate versus illegitimate aggression – depends on the position of the relevant parties in relation to the social order of their culture. This in turn can relate to factors such as: norms for coordinating actions and dividing resources; what is considered self-defense or provocation; attitudes towards 'outsiders', attitudes towards specific groups such as women, disabled people or those with lower status; the availability of alternative conflict resolution strategies; trade interdependence and collective security pacts; fears and impulses; and ultimate goals regarding material and social outcomes. [123]

Cross-cultural research has found differences in attitudes towards aggression in different cultures. In one questionnaire study of university students, in addition to men overall justifying some types of aggression more than women, United States respondents justified defensive physical aggression more readily than Japanese or Spanish respondents, whereas Japanese students preferred direct verbal aggression (but not indirect) more than their American and Spanish counterparts. [135] Within American culture, southern men were shown in a study on university students to be more affected and to respond more aggressively than northerners when randomly insulted after being bumped into, which was theoretically related to a traditional culture of honor in the Southern United States, or "saving face." [136] Other cultural themes sometimes applied to the study of aggression include individualistic versus collectivist styles, which may relate, for example, to whether disputes are responded to with open competition or by accommodating and avoiding conflicts. In a study including 62 countries school principals reported aggressive student behavior more often the more individualist, and hence less collectivist, their country's culture. [137] Other comparisons made in relation to aggression or war include democratic versus authoritarian political systems and egalitarian versus stratified societies. [123] The economic system known as capitalism has been viewed by some as reliant on the leveraging of human competitiveness and aggression in pursuit of resources and trade, which has been considered in both positive and negative terms. [138] Attitudes about the social acceptability of particular acts or targets of aggression are also important factors. This can be highly controversial, as for example in disputes between religions or nation states, for example in regard to the Arab–Israeli conflict. [139] [140]

Media

Some scholars believe that behaviors like aggression may be partially learned by watching and imitating people's behavior, while other researchers have concluded that the media may have some small effects on aggression. [141] There is also research questioning this view. [142] For instance, a long-term outcome study of youth found no long-term relationship between playing violent video games and youth violence or bullying. [143] One study suggested there is a smaller effect of violent video games on aggression than has been found with television violence on aggression. This effect is positively associated with type of game violence and negatively associated to time spent playing the games. [144] The author concluded that insufficient evidence exists to link video game violence with aggression. However, another study suggested links to aggressive behavior. [145]

Children

The frequency of physical aggression in humans peaks at around 2–3 years of age. It then declines gradually on average. [146] [147] These observations suggest that physical aggression is not only a learned behavior but that development provides opportunities for the learning and biological development of self-regulation. However, a small subset of children fail to acquire all the necessary self-regulatory abilities and tend to show atypical levels of physical aggression across development. They may be at risk for later violent behavior or, conversely, lack of aggression that may be considered necessary within society.

However, some findings suggest that early aggression does not necessarily lead to aggression later on, although the course through early childhood is an important predictor of outcomes in middle childhood. In addition, physical aggression that continues is likely occurring in the context of family adversity, including socioeconomic factors. Moreover, 'opposition' and 'status violations' in childhood appear to be more strongly linked to social problems in adulthood than simply aggressive antisocial behavior. [148] [149] Social learning through interactions in early childhood has been seen as a building block for levels of aggression which play a crucial role in the development of peer relationships in middle childhood. [150] Overall, an interplay of biological, social and environmental factors can be considered. [151] Some research indicates that changes in the weather can increase the likelihood of children exhibiting deviant behavior. [152]

Typical expectations

  • Young children preparing to enter kindergarten need to develop the socially important skill of being assertive. Examples of assertiveness include asking others for information, initiating conversation, or being able to respond to peer pressure.
  • In contrast, some young children use aggressive behavior, such as hitting or biting, as a form of communication.
  • Aggressive behavior can impede learning as a skill deficit, while assertive behavior can facilitate learning. However, with young children, aggressive behavior is developmentally appropriate and can lead to opportunities of building conflict resolution and communication skills.
  • By school age, children should learn more socially appropriate forms of communicating such as expressing themselves through verbal or written language; if they have not, this behavior may signify a disability or developmental delay.

Aggression triggers

The Bobo doll experiment was conducted by Albert Bandura in 1961. In this work, Bandura found that children exposed to an aggressive adult model acted more aggressively than those who were exposed to a nonaggressive adult model. This experiment suggests that anyone who comes in contact with and interacts with children can affect the way they react and handle situations. [153]

Summary points from recommendations by national associations
  • American Academy of Pediatrics (2011): "The best way to prevent aggressive behavior is to give your child a stable, secure home life with firm, loving discipline and full-time supervision during the toddler and preschool years. Everyone who cares for your child should be a good role model and agree on the rules he's expected to observe as well as the response to use if he disobeys." [154]
  • National Association of School Psychologists (2008): "Proactive aggression is typically reasoned, unemotional, and focused on acquiring some goal. For example, a bully wants peer approval and victim submission, and gang members want status and control. In contrast, reactive aggression is frequently highly emotional and is often the result of biased or deficient cognitive processing on the part of the student." [155]

Gender

Gender is a factor that plays a role in both human and animal aggression. Males are historically believed to be generally more physically aggressive than females from an early age, [156] [157] and men commit the vast majority of murders (Buss 2005). This is one of the most robust and reliable behavioral sex differences, and it has been found across many different age groups and cultures. However, some empirical studies have found the discrepancy in male and female aggression to be more pronounced in childhood and the gender difference in adults to be modest when studied in an experimental context. [57] Still, there is evidence that males are quicker to aggression (Frey et al. 2003) and more likely than females to express their aggression physically. [158] When considering indirect forms of non-violent aggression, such as relational aggression and social rejection, some scientists argue that females can be quite aggressive, although female aggression is rarely expressed physically. [159] [160] [161] An exception is intimate partner violence that occurs among couples who are engaged, married, or in some other form of intimate relationship.

Although females are less likely than males to initiate physical violence, they can express aggression by using a variety of non-physical means. Exactly which method women use to express aggression is something that varies from culture to culture. On Bellona Island, a culture based on male dominance and physical violence, women tend to get into conflicts with other women more frequently than with men. When in conflict with males, instead of using physical means, they make up songs mocking the man, which spread across the island and humiliate him. If a woman wanted to kill a man, she would either convince her male relatives to kill him or hire an assassin. Although these two methods involve physical violence, both are forms of indirect aggression, since the aggressor herself avoids getting directly involved or putting herself in immediate physical danger. [162]

See also the sections on testosterone and evolutionary explanations for gender differences above.

Situational factors

There has been some links between those prone to violence and their alcohol use. Those who are prone to violence and use alcohol are more likely to carry out violent acts. [163] Alcohol impairs judgment, making people much less cautious than they usually are (MacDonald et al. 1996). It also disrupts the way information is processed (Bushman 1993, 1997; Bushman & Cooper 1990).

Pain and discomfort also increase aggression. Even the simple act of placing one's hands in hot water can cause an aggressive response. Hot temperatures have been implicated as a factor in a number of studies. One study completed in the midst of the civil rights movement found that riots were more likely on hotter days than cooler ones (Carlsmith & Anderson 1979). Students were found to be more aggressive and irritable after taking a test in a hot classroom (Anderson et al. 1996, Rule, et al. 1987). Drivers in cars without air conditioning were also found to be more likely to honk their horns (Kenrick & MacFarlane 1986), which is used as a measure of aggression and has shown links to other factors such as generic symbols of aggression or the visibility of other drivers. [164]

Frustration is another major cause of aggression. [165] The Frustration aggression theory states that aggression increases if a person feels that he or she is being blocked from achieving a goal (Aronson et al. 2005). One study found that the closeness to the goal makes a difference. The study examined people waiting in line and concluded that the 2nd person was more aggressive than the 12th one when someone cut in line (Harris 1974). Unexpected frustration may be another factor. In a separate study to demonstrate how unexpected frustration leads to increased aggression, Kulik & Brown (1979) selected a group of students as volunteers to make calls for charity donations. One group was told that the people they would call would be generous and the collection would be very successful. The other group was given no expectations. The group that expected success was more upset when no one was pledging than the group who did not expect success (everyone actually had horrible success). This research suggests that when an expectation does not materialize (successful collections), unexpected frustration arises which increases aggression.

There is some evidence to suggest that the presence of violent objects such as a gun can trigger aggression. In a study done by Leonard Berkowitz and Anthony Le Page (1967), college students were made angry and then left in the presence of a gun or badminton racket. They were then led to believe they were delivering electric shocks to another student, as in the Milgram experiment. Those who had been in the presence of the gun administered more shocks. It is possible that a violence-related stimulus increases the likelihood of aggressive cognitions by activating the semantic network.

A new proposal links military experience to anger and aggression, developing aggressive reactions and investigating these effects on those possessing the traits of a serial killer. Castle and Hensley state, "The military provides the social context where servicemen learn aggression, violence, and murder." [166] Post-traumatic stress disorder (PTSD) is also a serious issue in the military, also believed to sometimes lead to aggression in soldiers who are suffering from what they witnessed in battle. They come back to the civilian world and may still be haunted by flashbacks and nightmares, causing severe stress. In addition, it has been claimed that in the rare minority who are claimed to be inclined toward serial killing, violent impulses may be reinforced and refined in war, possibly creating more effective murderers. [167]

As a positive adaptation theory

Some recent scholarship has questioned traditional psychological conceptualizations of aggression as universally negative. [41] [168] Most traditional psychological definitions of aggression focus on the harm to the recipient of the aggression, implying this is the intent of the aggressor; however this may not always be the case. [169] From this alternate view, although the recipient may or may not be harmed, the perceived intent is to increase the status of the aggressor, not necessarily to harm the recipient. [170] Such scholars contend that traditional definitions of aggression have no validity because of how challenging it is to study directly. [171]

From this view, rather than concepts such as assertiveness, aggression, violence and criminal violence existing as distinct constructs, they exist instead along a continuum with moderate levels of aggression being most adaptive. [41] Such scholars do not consider this a trivial difference, noting that many traditional researchers' aggression measurements may measure outcomes lower down in the continuum, at levels which are adaptive, yet they generalize their findings to non-adaptive levels of aggression, thus losing precision. [172]

See also

Related Research Articles

<span class="mw-page-title-main">Fear</span> Basic emotion induced by a perceived threat

Fear is an intensely unpleasant emotion in response to perceiving or recognizing a danger or threat. Fear causes psychological changes that may produce behavioral reactions such as mounting an aggressive response or fleeing the threat. Fear in human beings may occur in response to a certain stimulus occurring in the present, or in anticipation or expectation of a future threat perceived as a risk to oneself. The fear response arises from the perception of danger leading to confrontation with or escape from/avoiding the threat, which in extreme cases of fear can be a freeze response. The fear response is also implicated in a number of mental disorders, particularly anxiety disorders.

<span class="mw-page-title-main">Testosterone</span> Primary male sex hormone

Testosterone is the primary male sex hormone and androgen in males. In humans, testosterone plays a key role in the development of male reproductive tissues such as testicles and prostate, as well as promoting secondary sexual characteristics such as increased muscle and bone mass, and the growth of body hair. It is associated with increased aggression, sex drive, dominance, courtship display, and a wide range of behavioral characteristics. In addition, testosterone in both sexes is involved in health and well-being, where it has a significant effect on overall mood, cognition, social and sexual behavior, metabolism and energy output, the cardiovascular system, and in the prevention of osteoporosis. Insufficient levels of testosterone in men may lead to abnormalities including frailty, accumulation of adipose fat tissue within the body, anxiety and depression, sexual performance issues, and bone loss.

<span class="mw-page-title-main">Amygdala</span> Each of two small structures deep within the temporal lobe of complex vertebrates

The amygdala is a paired nuclear complex present in the cerebral hemispheres of vertebrates. It is considered part of the limbic system. In primates, it is located medially within the temporal lobes. It consists of many nuclei, each made up of further subnuclei. The subdivision most commonly made is into the basolateral, central, cortical, and medial nuclei together with the intercalated cell clusters. The amygdala has a primary role in the processing of memory, decision-making, and emotional responses. The amygdala was first identified and named by Karl Friedrich Burdach in 1822.

<span class="mw-page-title-main">Dominance hierarchy</span> Type of socially subordinate ranking

In the zoological field of ethology, a dominance hierarchy is a type of social hierarchy that arises when members of animal social groups interact, creating a ranking system. A dominant higher-ranking individual is sometimes called an alpha, and a submissive lower-ranking individual is called a beta. Different types of interactions can result in dominance depending on the species, including ritualized displays of aggression or direct physical violence. In social living groups, members are likely to compete for access to limited resources and mating opportunities. Rather than fighting each time they meet, individuals of the same sex establish a relative rank, with higher-ranking individuals often gaining more access to resources and mates. Based on repetitive interactions, a social order is created that is subject to change each time a dominant animal is challenged by a subordinate one.

Testosterone poisoning is a popular term used to explain behaviors that are deemed excessively masculine.

Sex differences in psychology are differences in the mental functions and behaviors of the sexes and are due to a complex interplay of biological, developmental, and cultural factors. Differences have been found in a variety of fields such as mental health, cognitive abilities, personality, emotion, sexuality, friendship, and tendency towards aggression. Such variation may be innate, learned, or both. Modern research attempts to distinguish between these causes and to analyze any ethical concerns raised. Since behavior is a result of interactions between nature and nurture, researchers are interested in investigating how biology and environment interact to produce such differences, although this is often not possible.

<span class="mw-page-title-main">Social behavior</span> Behavior among two or more organisms within the same species

Social behavior is behavior among two or more organisms within the same species, and encompasses any behavior in which one member affects the other. This is due to an interaction among those members. Social behavior can be seen as similar to an exchange of goods, with the expectation that when you give, you will receive the same. This behavior can be affected by both the qualities of the individual and the environmental (situational) factors. Therefore, social behavior arises as a result of an interaction between the two—the organism and its environment. This means that, in regards to humans, social behavior can be determined by both the individual characteristics of the person, and the situation they are in.

Sex differences in crime are differences between men and women as the perpetrators or victims of crime. Such studies may belong to fields such as criminology, sociobiology, or feminist studies. Despite the difficulty of interpreting them, crime statistics may provide a way to investigate such a relationship from a gender differences perspective. An observable difference in crime rates between men and women might be due to social and cultural factors, crimes going unreported, or to biological factors. The nature or motive of the crime itself may also require consideration as a factor. Gendered profiling might affect the reported crime rates.

<span class="mw-page-title-main">Monoamine oxidase A</span> Endogenous enzyme

Monoamine oxidase A, also known as MAO-A, is an enzyme that in humans is encoded by the MAOA gene. This gene is one of two neighboring gene family members that encode mitochondrial enzymes which catalyze the oxidative deamination of amines, such as dopamine, norepinephrine, and serotonin. A mutation of this gene results in Brunner syndrome. This gene has also been associated with a variety of other psychiatric disorders, including antisocial behavior. Alternatively spliced transcript variants encoding multiple isoforms have been observed.

Psychopathy, or psychopathic personality, is a personality construct characterized by impaired empathy and remorse, in combination with traits of boldness, disinhibition, and egocentrism. These traits are often masked by superficial charm and immunity to stress, which create an outward appearance of apparent normalcy.

<span class="mw-page-title-main">Sexual selection in humans</span> Evolutionary effects of sexual selection on humans

Sexual selection in humans concerns the concept of sexual selection, introduced by Charles Darwin as an element of his theory of natural selection, as it affects humans. Sexual selection is a biological way one sex chooses a mate for the best reproductive success. Most compete with others of the same sex for the best mate to contribute their genome for future generations. This has shaped human evolution for many years, but reasons why humans choose their mates are not fully understood. Sexual selection is quite different in non-human animals than humans as they feel more of the evolutionary pressures to reproduce and can easily reject a mate. The role of sexual selection in human evolution has not been firmly established although neoteny has been cited as being caused by human sexual selection. It has been suggested that sexual selection played a part in the evolution of the anatomically modern human brain, i.e. the structures responsible for social intelligence underwent positive selection as a sexual ornamentation to be used in courtship rather than for survival itself, and that it has developed in ways outlined by Ronald Fisher in the Fisherian runaway model. Fisher also stated that the development of sexual selection was "more favourable" in humans.

Workplace aggression is a specific type of aggression which occurs in the workplace. Workplace aggression is any type of hostile behavior that occurs in the workplace. It can range from verbal insults and threats to physical violence, and it can occur between coworkers, supervisors, and subordinates. Common examples of workplace aggression include gossiping, bullying, intimidation, sabotage, sexual harassment, and physical violence. These behaviors can have serious consequences, including reduced productivity, increased stress, and decreased morale.

Anne C. Campbell was a British academic and author specializing in evolutionary psychology. Her research was largely concerned with sex differences in aggression between men and women. She was professor of psychology at Durham University.

<span class="mw-page-title-main">Biosocial criminology</span> Psychosocial examination of crime

Biosocial criminology is an interdisciplinary field that aims to explain crime and antisocial behavior by exploring biocultural factors. While contemporary criminology has been dominated by sociological theories, biosocial criminology also recognizes the potential contributions of fields such as behavioral genetics, neuropsychology, and evolutionary psychology.

The frustration–aggression hypothesis, also known as the frustration–aggression–displacement theory, is a theory of aggression proposed by John Dollard, Neal Miller, Leonard Doob, Orval Mowrer, and Robert Sears in 1939, and further developed by Neal Miller in 1941 and Leonard Berkowitz in 1989. The theory says that aggression is the result of blocking, or frustrating, a person's efforts to attain a goal.

The challenge hypothesis outlines the dynamic relationship between testosterone and aggression in mating contexts. It proposes that testosterone promotes aggression when it would be beneficial for reproduction, such as mate guarding, or strategies designed to prevent the encroachment of intrasexual rivals. The positive correlation between reproductive aggression and testosterone levels is seen to be strongest during times of social instability. The challenge hypothesis predicts that seasonal patterns in testosterone levels are a function of mating system, paternal care, and male-male aggression in seasonal breeders.

<span class="mw-page-title-main">Neuroscience of sex differences</span> Characteristics of the brain that differentiate the male brain and the female brain

The neuroscience of sex differences is the study of characteristics that separate brains of different sexes. Psychological sex differences are thought by some to reflect the interaction of genes, hormones, and social learning on brain development throughout the lifespan. A 2021 meta-synthesis led by Lise Eliot found that sex accounted for 1% of the brain's structure or laterality, finding large group-level differences only in total brain volume. A subsequent 2021 led by Camille Michèle Williams contradicted Eliot's conclusions, finding that sex differences in total brain volume are not accounted for merely by sex differences in height and weight, and that once global brain size is taken into account, there remain numerous regional sex differences in both directions. A 2022 follow-up meta-analysis led by Alex DeCasien analyzed the studies from both Eliot and Williams, concluding that "The human brain shows highly reproducible sex differences in regional brain anatomy above and beyond sex differences in overall brain size" and that these differences are of a "small-moderate effect size." A review from 2006 and a meta-analysis from 2014 found that some evidence from brain morphology and function studies indicates that male and female brains cannot always be assumed to be identical from either a structural or functional perspective, and some brain structures are sexually dimorphic.

<span class="mw-page-title-main">Male warrior hypothesis</span> Hypothesis in evolutionary psychology

The male warrior hypothesis (MWH) is an evolutionary psychology hypothesis by Professor Mark van Vugt which argues that human psychology has been shaped by between-group competition and conflict. Specifically, the evolutionary history of coalitional aggression between groups of men may have resulted in sex-specific differences in the way outgroups are perceived, creating ingroup vs. outgroup tendencies that are still observable today.

Female intrasexual competition is competition between women over a potential mate. Such competition might include self-promotion, derogation of other women, and direct and indirect aggression toward other women. Factors that influence female intrasexual competition include the genetic quality of available mates, hormone levels, and interpersonal dynamics.

<span class="mw-page-title-main">Evolutionary neuroandrogenic theory</span>

The evolutionary neuroandrogenic (ENA) theory is a conceptual framework which seeks to explain trends in violent and criminal behavior from an evolutionary and biological perspective. It was first proposed by the sociologist Lee Ellis in 2005 in his paper "A Theory Explaining Biological Correlates of Criminality" published in the European Journal of Criminology. Since then, it has expanded into an interdisciplinary field that intersects biology, psychology, and sociology. The theory rests on two propositions. The first is that in human mating behavior, females prefer males that appear to be more competent providers of resources, and so males exhibit increased competitive behavior than females to obtain access to those resources. The second is that biological mechanisms lead to differential development in the male brain which then mediates the increased competitive behaviors that cause criminality. Though it was originally intended to explain high rates of criminality in young men, it has since been used as a framework to explain gang behavior, terrorism, and the rise of the criminal justice system.

References

  1. Maremmani I., Avella M.T., Novi M., Bacciardi S., Maremmani A.G.I. Aggressive Behavior and Substance Use Disorder: The Heroin Use Disorder as a Case Study. Addict. Disord. Treat.. 2020;19(3):161-173. doi:10.1097/ADT.0000000000000199
  2. DeBono, Amber; Muraven, Mark (1 November 2014). "Rejection perceptions: feeling disrespected leads to greater aggression than feeling disliked". Journal of Experimental Social Psychology. 55: 43–52. doi:10.1016/j.jesp.2014.05.014. ISSN   0022-1031.
  3. 1 2 De Almeida, Rosa Maria Martins; Cabral, João Carlos Centurion; Narvaes, Rodrigo (2015). "Behavioural, hormonal and neurobiological mechanisms of aggressive behaviour in human and nonhuman primates". Physiology & Behavior. 143: 121–35. doi:10.1016/j.physbeh.2015.02.053. PMID   25749197. S2CID   27711931.
  4. 1 2 3 Miczek, Klaus A.; Almeida, Rosa M. M. de; Kravitz, Edward A.; Rissman, Emilie F.; Boer, Sietse F. de; Raine, Adrian (31 October 2007). "Neurobiology of Escalated Aggression and Violence". Journal of Neuroscience. 27 (44): 11803–11806. doi:10.1523/JNEUROSCI.3500-07.2007. ISSN   0270-6474. PMC   2667097 . PMID   17978016.
  5. Hollowood, Lorna (2022). "Micro refers to its subtle delivery not its impact". rcn.org.uk. Royal College of Nursing. Microaggressions are something that somebody says to you; they can be a way that you've been made to feel. They are often subtle behaviours, but their effects are far from subtle
  6. Buss, A. H. (1961). The psychology of aggression. Hoboken, NJ: John Wiley.[ page needed ]
  7. Anderson, Craig A.; Bushman, Brad J. (2002). "Human Aggression". Annual Review of Psychology. 53: 27–51. doi:10.1146/annurev.psych.53.100901.135231. PMID   11752478. S2CID   227846.
  8. Wahl, Klaus (2020). The Radical Right. Biopsychosocial Roots and International Variations. London: Palgrave Macmillan. p. 47. ISBN   978-3-030-25130-7. OCLC   1126278982.
  9. Wahl, Klaus (2013). Aggression und Gewalt. Ein biologischer, psychologischer und sozialwissenschaftlicher Überblick. Heidelberg: Spektrum Akademischer Verlag. p. 2. ISBN   978-3-8274-3120-2. OCLC   471933605.
  10. Akert, R.M., Aronson, E., & Wilson, T.D. (2010). Social Psychology (7th ed.). Upper Saddle River, NJ: Prentice Hall.
  11. Dollard, J.; Doob, L.W.; Miller, N.E.; Mowrer, O.H.; Sears, R.R. (1939). Frustration and Aggression. New Haven, CT: Yale University Press.
  12. Berkowitz, L. (1987). "Frustrations, appraisals, and aversively stimulated aggression". Aggressive Behavior. 14 (1): 3–11. doi:10.1037/0033-2909.106.1.59. PMID   2667009.
  13. 1 2 Archer, J. (1976). "The organization of aggression and fear in vertebrates". In Bateson, P.P.G.; Klopfer, P.H. (eds.). Perspectives in Ethology (Vol.2). New York, NY: Plenum. pp. 231–298.
  14. Berkowitz, L. (1993). Aggression: Its causes, consequences, and control. New York, NY: McGraw-Hill.
  15. McEllistrem, Joseph E. (2004). "Affective and predatory violence: A bimodal classification system of human aggression and violence". Aggression and Violent Behavior. 10 (1): 1–30. doi:10.1016/j.avb.2003.06.002.
  16. Bushman, Brad J.; Anderson, Craig A. (2001). "Is it time to pull the plug on hostile versus instrumental aggression dichotomy?". Psychological Review. 108 (1): 273–9. doi:10.1037/0033-295X.108.1.273. PMID   11212630. S2CID   14223373.
  17. Ellie L. Young, David A. Nelson, America B. Hottle, Brittney Warburton, and Bryan K. Young (2010) Relational Aggression Among Students Principal Leadership, October, copyright the National Association of Secondary School Principals
  18. Ramírez, J.M.; Andreu, J.M. (2006). "Aggression, and some related psychological constructs (anger, hostility, and impulsivity) Some comments from a research project". Neuroscience & Biobehavioral Reviews. 30 (3): 276–91. doi:10.1016/j.neubiorev.2005.04.015. PMID   16081158. S2CID   17678048.
  19. Veenema, Alexa H.; Neumann, Inga D. (2007). "Neurobiological Mechanisms of Aggression and Stress Coping: A Comparative Study in Mouse and Rat Selection Lines". Brain, Behavior and Evolution. 70 (4): 274–85. doi:10.1159/000105491. PMID   17914259. S2CID   25067952.
  20. Simons, Marlise (May 2010). "International Court May Define Aggression as Crime". The New York Times.
  21. Nathaniel Snow Violence and Aggression in Sports: An In-Depth Look (Part One) (Part 2 Part 3) Bleacher Report, 23 March 2010
  22. 1 2 Coccaro, Emil F.; Beresford, Brendan; Minar, Philip; Kaskow, Jon; Geracioti, Thomas (2007). "CSF testosterone: Relationship to aggression, impulsivity, and venturesomeness in adult males with personality disorder". Journal of Psychiatric Research . 41 (6): 488–92. doi:10.1016/j.jpsychires.2006.04.009. PMID   16765987.
  23. Barbara Krahé (11 February 2013). The Social Psychology of Aggression: 2nd Edition. Psychology Press. p. 16. ISBN   978-1-136-17772-9.
  24. Elizabeth Kande Englander (30 January 2003). Understanding Violence. Psychology Press. pp. 55–86. ISBN   978-1-135-65676-8.
  25. Merriam-Webster: Aggression Retrieved 10 January 2012
  26. Online Etymology Dictionary: Aggression Retrieved 10 January 2012
  27. Stearns, D. C. (2003). Anger and aggression. Encyclopedia of Children and Childhood: In History and Society. Paula S. Fass (Ed.). Macmillan Reference Books
  28. Van Staaden, M.J, Searcy, W.A. & Hanlon, R.T. 'Signaling Aggression' in Aggression Academic Press, Stephen F. Goodwin, 2011
  29. Maestripieri, Dario (1992). "Functional aspects of maternal aggression in mammals". Canadian Journal of Zoology. 70 (6): 1069–77. doi:10.1139/z92-150.
  30. Psychology- The Science of Behaviour, pg 420, Neil R Clarkson (4th Edition)
  31. Gleitman, Henry, Alan J. Fridlund, and Daniel Reisberg. Psychology. 6th ed. New York: W W Norton and Company, 2004. 431–432.
  32. Gendreau, PL & Archer, J. 'Subtypes of Aggression in Humans and Animals', in Developmental Origins of Aggression, 2005, The Guilford Press.
  33. 1 2 3 Johnson, L. K.; Wiemer, D. F. (1982). "Nerol: An alarm substance of the stingless bee, Trigona fulviventris (Hymenoptera: Apidae)". Journal of Chemical Ecology. 8 (9): 1167–81. Bibcode:1982JCEco...8.1167J. doi:10.1007/BF00990750. PMID   24413960. S2CID   25056451.
  34. Rusch, H.; Gavrilets, S. (2017). "The logic of animal intergroup conflict: A review". Journal of Economic Behavior and Organization. 178: 1014–1030. doi: 10.1016/j.jebo.2017.05.004 . S2CID   49359988.
  35. Tanner, C. J (2006). "Numerical assessment affects aggression and competitive ability: A team-fighting strategy for the ant Formica xerophila". Proceedings of the Royal Society B: Biological Sciences. 273 (1602): 2737–42. doi:10.1098/rspb.2006.3626. JSTOR   25223670. PMC   1635503 . PMID   17015327.
  36. Mitani, John C.; Watts, David P.; Amsler, Sylvia J. (2010). "Lethal intergroup aggression leads to territorial expansion in wild chimpanzees". Current Biology. 20 (12): R507–8. Bibcode:2010CBio...20.R507M. doi: 10.1016/j.cub.2010.04.021 . PMID   20620900. S2CID   6493161.
  37. 1 2 Issa, F. A.; Adamson, D. J.; Edwards, D. H. (1999). "Dominance hierarchy formation in juvenile crayfish procambarus clarkii". The Journal of Experimental Biology. 202 (24): 3497–506. doi:10.1242/jeb.202.24.3497. PMID   10574728.
  38. Heitor, Filipa; Oom, Maria do Mar; Vicente, Luís (2006). "Social relationships in a herd of Sorraia horses". Behavioural Processes. 73 (2): 170–7. doi:10.1016/j.beproc.2006.05.004. PMID   16815645. S2CID   24008518.
  39. Cant, Michael A.; Llop, Justine B.; Field, Jeremy (2006). "Individual Variation in Social Aggression and the Probability of Inheritance: Theory and a Field Test" (PDF). The American Naturalist. 167 (6): 837–52. doi:10.1086/503445. hdl: 10871/26263 . PMID   16615035. S2CID   12094679.
  40. Bragin, A. V.; Osadchuk, L. V.; Osadchuk, A. V. (2006). "The experimental model of establishment and maintenance of social hierarchy in laboratory mice". Zhurnal Vysshei Nervnoi Deiatelnosti imeni I P Pavlova. 56 (3): 412–9. PMID   16869278.
  41. 1 2 3 Ferguson, Christopher J.; Beaver, Kevin M. (2009). "Natural born killers: The genetic origins of extreme violence". Aggression and Violent Behavior. 14 (5): 286–94. doi:10.1016/j.avb.2009.03.005.
  42. Hsu, Yuying; Earley, Ryan L.; Wolf, Larry L. (2005). "Modulation of aggressive behaviour by fighting experience: Mechanisms and contest outcomes". Biological Reviews. 81 (1): 33–74. doi: 10.1017/S146479310500686X . PMID   16460581. S2CID   14284236.
  43. Aureli, Filippo; Cords, Marina; Van Schaik, Carel P. (2002). "Conflict resolution following aggression in gregarious animals: A predictive framework". Animal Behaviour. 64 (3): 325–43. doi:10.1006/anbe.2002.3071. S2CID   54361369.
  44. Silverberg, James; J. Patrick Gray (1992) Aggression and Peacefulness in Humans and Other Primates ISBN   0-19-507119-0
  45. Honess, P.E.; Marin, C.M. (2006). "Enrichment and aggression in primates". Neuroscience & Biobehavioral Reviews. 30 (3): 413–36. doi:10.1016/j.neubiorev.2005.05.002. PMID   16055188. S2CID   33130527.
  46. Hinde, R.A. (1970). Animal Behaviour: A Synthesis of Ethology and Comparative Psychology (2nd Ed.). New York, NY: McGraw-Hill.
  47. Hebb, D.O. (1949). The Organisation of Behavior. New York, NY: Wiley.
  48. 1 2 van Kampen, H.S. (2019). "The principle of consistency and the cause and function of behaviour". Behavioural Processes. 159: 42–54. doi:10.1016/j.beproc.2018.12.013. PMID   30562561. S2CID   56478466.
  49. Somit, A. (1990). "Humans, Chimps, and Bonobos: The Biological Bases of Aggression, War, and Peacemaking". Journal of Conflict Resolution. 34 (3): 553–82. doi:10.1177/0022002790034003008. JSTOR   174228. S2CID   145380530.
  50. 1 2 McDonald, M. M.; Navarrete, C. D.; Van Vugt, M. (2012). "Evolution and the psychology of intergroup conflict: The male warrior hypothesis". Philosophical Transactions of the Royal Society B: Biological Sciences. 367 (1589): 670–9. doi:10.1098/rstb.2011.0301. JSTOR   41433544. PMC   3260849 . PMID   22271783.
  51. 1 2 Vugt, Mark Van; Cremer, David De; Janssen, Dirk P. (2007). "Gender Differences in Cooperation and Competition". Psychological Science. 18 (1): 19–23. CiteSeerX   10.1.1.518.3529 . doi:10.1111/j.1467-9280.2007.01842.x. PMID   17362372. S2CID   3566509.
  52. Buss, D.M. (2005). The murderer next door: Why the mind Is designed to kill . New York: Penguin Press.
  53. McCall, Grant S.; Shields, Nancy (2008). "Examining the evidence from small-scale societies and early prehistory and implications for modern theories of aggression and violence". Aggression and Violent Behavior. 13 (1): 1–9. doi:10.1016/j.avb.2007.04.001.
  54. Buss, D. M.; Duntley, J. D. (2006). "The evolution of aggression". In Schaller, M.; Simpson, J. A.; Kenrick, D. T. (eds.). Evolution and Social Psychology. New York: Psychology Press. pp. 263–86.
  55. Durrant, Russil (2011). "Collective violence: An evolutionary perspective". Aggression and Violent Behavior. 16 (5): 428–36. doi:10.1016/j.avb.2011.04.014.
  56. Briffa, Mark (2010). "Territoriality and Aggression". Nature Education Knowledge. 3 (10): 81.
  57. 1 2 Eagly, Alice H.; Steffen, Valerie J. (1986). "Gender and aggressive behavior: A meta-analytic review of the social psychological literature". Psychological Bulletin. 100 (3): 309–30. doi:10.1037/0033-2909.100.3.309. PMID   3797558.
  58. Clutton-Brock, T. H.; Hodge, S. J.; Spong, G.; Russell, A. F.; Jordan, N. R.; Bennett, N. C.; Sharpe, L. L.; Manser, M. B. (2006). "Intrasexual competition and sexual selection in cooperative mammals". Nature. 444 (7122): 1065–8. Bibcode:2006Natur.444.1065C. doi:10.1038/nature05386. PMID   17183322. S2CID   4397323.
  59. Archer, John (2009). "Does sexual selection explain human sex differences in aggression?" (PDF). Behavioral and Brain Sciences. 32 (3–4): 249–66, discussion 266–311. doi:10.1017/S0140525X09990951. PMID   19691899.
  60. Campbell, Anne (1999). "Staying alive: Evolution, culture, and women's intrasexual aggression". Behavioral and Brain Sciences. 22 (2): 203–14, discussion 214–52. doi:10.1017/s0140525x99001818. PMID   11301523. S2CID   1081104.
  61. The Handbook of Evolutionary Psychology, edited by David M. Buss, John Wiley & Sons, Inc., 2005. Chapter 21 by Anne Campbell.[ page needed ]
  62. Zuk, M. "Sexual Selections: What We Can and Can't Learn about Sex from Animals." University of California Press, 2002[ page needed ]
  63. 1 2 3 Del Giudice, Marco (2015). "Gender Differences in Personality and Social Behavior". International Encyclopedia of the Social & Behavioral Sciences. pp. 750–6. doi:10.1016/B978-0-08-097086-8.25100-3. hdl:2318/1852940. ISBN   978-0-08-097087-5.
  64. Campbell, Anne (2012). "Sex differences in aggression". In Barrett, Louise; Dunbar, Robin (eds.). Oxford Handbook of Evolutionary Psychology. pp. 365–82. doi:10.1093/oxfordhb/9780198568308.013.0025. ISBN   978-0-19-856830-8.
  65. Lussier, Patrick; Corrado, Raymond; Tzoumakis, Stacy (2012). "Gender Differences in Physical Aggression and Associated Developmental Correlates in a Sample of Canadian Preschoolers". Behavioral Sciences & the Law. 30 (5): 643–71. doi:10.1002/bsl.2035. PMID   22996132.
  66. 1 2 3 Lansford, Jennifer E.; Skinner, Ann T.; Sorbring, Emma; Giunta, Laura Di; Deater-Deckard, Kirby; Dodge, Kenneth A.; Malone, Patrick S.; Oburu, Paul; Pastorelli, Concetta; Tapanya, Sombat; Uribe Tirado, Liliana Maria; Zelli, Arnaldo; Al-Hassan, Suha M.; Peña Alampay, Liane; Bacchini, Dario; Bombi, Anna Silvia; Bornstein, Marc H.; Chang, Lei (2012). "Boys' and Girls' Relational and Physical Aggression in Nine Countries". Aggressive Behavior. 38 (4): 298–308. doi:10.1002/ab.21433. PMC   3736589 . PMID   23935227.
  67. 1 2 Hay, Dale F.; Nash, Alison; Caplan, Marlene; Swartzentruber, Jan; Ishikawa, Fumiko; Vespo, Jo Ellen (2011). "The emergence of gender differences in physical aggression in the context of conflict between young peers". British Journal of Developmental Psychology. 29 (2): 158–75. doi:10.1111/j.2044-835x.2011.02028.x. PMID   21592146. S2CID   206006344.
  68. Hess, Nicole H.; Hagen, Edward H. (2006). "Sex differences in indirect aggression". Evolution and Human Behavior. 27 (3): 231–45. doi:10.1016/j.evolhumbehav.2005.11.001.
  69. Keeler, Linda A (2007). "The differences in sport aggression, life aggression, and life assertion among adult male and female collision, contact, and non-contact sport athletes". Journal of Sport Behavior. 30 (1): 57–76.
  70. Xie, Hongling; Drabick, Deborah A.G.; Chen, Diane (2011). "Developmental trajectories of aggression from late childhood through adolescence: Similarities and differences across gender". Aggressive Behavior. 37 (5): 387–404. doi:10.1002/ab.20404. PMC   4332584 . PMID   21748751.
  71. Young, Cathy (26 November 1999). "Feminists Play the Victim Game". The New York Times. Retrieved 6 December 2012.
  72. "What To Do If Your Partner Has A Steamroller Personality". Archived from the original on 7 September 2021.
  73. Al-Ali, Majed. M.; Singh, Ajai Pratap; Smekal, Vladimir (2011). "Social anxiety in relation to social skills, aggression, and stress among male and female commercial institute students". Education. 132 (2): 351–61.
  74. Low, Bobbi S. (2012). "Ecological and socio-cultural impacts on mating and marriage systems". In Barrett, Louise; Dunbar, Robin (eds.). Oxford Handbook of Evolutionary Psychology. pp. 449–62. doi:10.1093/oxfordhb/9780198568308.013.0030. ISBN   978-0-19-856830-8.
  75. 1 2 Meijers, J.; Harte, J. M.; Meynen, G.; Cuijpers, P. (1 February 2017). "Differences in executive functioning between violent and non-violent offenders". Psychological Medicine. 47 (10): 1784–1793. doi:10.1017/S0033291717000241. hdl: 1871.1/371bdff2-a6df-45ee-a1fd-90995ea811d7 . ISSN   0033-2917. PMID   28173890. S2CID   4481557.
  76. Kruk, Menno R.; Van Der Poel, A.M.; Meelis, W.; Hermans, J.; Mostert, P.G.; Mos, J.; Lohman, A.H.M. (1983). "Discriminant analysis of the localization of aggression-inducing electrode placements in the hypothalamus of male rats". Brain Research. 260 (1): 61–79. doi:10.1016/0006-8993(83)90764-3. PMID   6681724. S2CID   3231548.
  77. Ferris, C. F.; Melloni, R. H. Jr.; Koppel, G; Perry, K. W.; Fuller, R. W.; Delville, Y (1997). "Vasopressin/serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters". The Journal of Neuroscience. 17 (11): 4331–40. doi:10.1523/JNEUROSCI.17-11-04331.1997. PMC   6573530 . PMID   9151749.
  78. Lee, H (2014). "Scalable control of mounting and attack by Esr1+ neurons in the ventromedial hypothalamus". Nature. 509 (7502): 627–32. Bibcode:2014Natur.509..627L. doi:10.1038/nature13169. PMC   4098836 . PMID   24739975.
  79. Hashikawa, K (2017). "Esr1+ cells in the ventromedial hypothalamus control female aggression". Nat. Neurosci. 11 (20): 1580–1590. doi:10.1038/nn.4644. PMC   5953764 . PMID   28920934.
  80. Potegal, M.; Hebert, M.; Decoster, M.; Meyerhoff, J. L. (1996). "Brief, high-frequency stimulation of the corticomedial amygdala induces a delayed and prolonged increase of aggressiveness in male Syrian golden hamsters". Behavioral Neuroscience. 110 (2): 401–12. doi:10.1037/0735-7044.110.2.401. PMID   8731066.
  81. 1 2 3 Potegal, M.; Ferris, C.F.; Hebert, M.; Meyerhoff, J.; Skaredoff, L. (1996). "Attack priming in female Syrian golden hamsters is associated with a c-fos-coupled process within the corticomedial amygdala". Neuroscience. 75 (3): 869–80. doi:10.1016/0306-4522(96)00236-9. PMID   8951880. S2CID   24136851.
  82. Greenberg, Neil; Scott, Michelle; Crews, David (1984). "Role of the amygdala in the reproductive and aggressive behavior of the lizard, Anolis carolinensis". Physiology & Behavior. 32 (1): 147–51. doi:10.1016/0031-9384(84)90088-X. PMID   6538977. S2CID   9987359.
  83. Bauman, M. D.; Toscano, J. E.; Mason, W. A.; Lavenex, P.; Amaral, D. G. (2006). "The expression of social dominance following neonatal lesions of the amygdala or hippocampus in rhesus monkeys (Macaca mulatta)" (PDF). Behavioral Neuroscience. 120 (4): 749–60. doi:10.1037/0735-7044.120.4.749. PMID   16893283.
  84. Paus, T. 'Mapping Brain Development' in Developmental Origins of Aggression, 2005, The Guilford Press.
  85. 1 2 Schechter, Daniel S.; Moser, Dominik A.; Pointet, Virginie C.; Aue, Tatjana; Stenz, Ludwig; Paoloni-Giacobino, Ariane; Adouan, Wafae; Manini, Aurélia; Suardi, Francesca; Vital, Marylene; Sancho Rossignol, Ana; Cordero, Maria I.; Rothenberg, Molly; Ansermet, François; Rusconi Serpa, Sandra; Dayer, Alexandre G. (2016). "The association of serotonin receptor 3A methylation with maternal violence exposure, neural activity, and child aggression". Behavioural Brain Research. 325 (Pt B): 268–277. doi: 10.1016/j.bbr.2016.10.009 . PMID   27720744.
  86. Caramaschi, Doretta; De Boer, Sietse F.; De Vries, Han; Koolhaas, Jaap M. (2008). "Development of violence in mice through repeated victory along with changes in prefrontal cortex neurochemistry" (PDF). Behavioural Brain Research. 189 (2): 263–72. doi:10.1016/j.bbr.2008.01.003. hdl: 11370/f683911d-3c8b-4ba6-a6bb-12cbaf11dead . PMID   18281105. S2CID   14888253.
  87. Pihl, RO & Benkelfat, C. 'Neuromodulators in the Development and Expression of Inhibition and Aggression' in Developmental_origins_of_aggression.html?id=XmSfJEl2v4sC Developmental Origins of Aggression, 2005, The Guilford Press.
  88. Heinrichs, M; Domes, G (2008). "Neuropeptides and social behaviour: Effects of oxytocin and vasopressin in humans". Advances in Vasopressin and Oxytocin – from Genes to Behaviour to Disease. Progress in Brain Research. Vol. 170. pp. 337–50. doi:10.1016/S0079-6123(08)00428-7. ISBN   978-0-444-53201-5. PMID   18655894.
  89. Campbell, Anne (2008). "Attachment, aggression and affiliation: The role of oxytocin in female social behavior" (PDF). Biological Psychology. 77 (1): 1–10. doi:10.1016/j.biopsycho.2007.09.001. PMID   17931766. S2CID   33228118.
  90. Walton, Kenneth G.; Levitsky, Debra K. (2003). "Effects of the Transcendental Meditation Program on Neuroendocrine Abnormalities Associated with Aggression and Crime". Journal of Offender Rehabilitation. 36 (1–4): 67–87. doi:10.1300/J076v36n01_04. S2CID   144374302.
  91. 1 2 Carlson, N. 'Hormonal Control of Aggressive Behavior' Chapter 11 in [Physiology of Behavior],2013, Pearson Education Inc.
  92. 1 2 Van Goozen, S. 'Hormones and the Developmental Origins of Aggression' Chapter 14 in Developmental Origins of Aggression, 2005, The Guilford Press.
  93. 1 2 Archer, John (2006). "Testosterone and human aggression: An evaluation of the challenge hypothesis". Neuroscience & Biobehavioral Reviews . 30 (3): 319–45. doi:10.1016/j.neubiorev.2004.12.007. PMID   16483890. S2CID   26405251.
  94. "Three Important Physical Ovulation Symptoms" from BabyMed.com
  95. Wingfield, John C.; Ball, Gregory F.; Dufty, Alfred M.; Hegner, Robert E.; Ramenofsky, Marilyn (1987). "Testosterone and Aggression in Birds". American Scientist . 75 (6): 602–8. Bibcode:1987AmSci..75..602W.
  96. Muller, Martin N; Wrangham, Richard W (2004). "Dominance, aggression and testosterone in wild chimpanzees: A test of the 'challenge hypothesis'". Animal Behaviour . 67: 113–23. doi:10.1016/j.anbehav.2003.03.013. S2CID   8041587.
  97. 1 2 3 4 Soma, Kiran K.; Scotti, Melissa-Ann L.; Newman, Amy E.M.; Charlier, Thierry D.; Demas, Gregory E. (2008). "Novel mechanisms for neuroendocrine regulation of aggression". Frontiers in Neuroendocrinology . 29 (4): 476–89. doi:10.1016/j.yfrne.2007.12.003. PMID   18280561. S2CID   32650274.
  98. Siegel, Allan; Bhatt, Suresh; Bhatt, Rekha; Zalcman, Steven (2007). "The Neurobiological Bases for Development of Pharmacological Treatments of Aggressive Disorders". Current Neuropharmacology . 5 (2): 135–47. doi:10.2174/157015907780866929. PMC   2435345 . PMID   18615178.
  99. Volman, I.; Toni, I.; Verhagen, L.; Roelofs, K. (2011). "Endogenous Testosterone Modulates Prefrontal-Amygdala Connectivity during Social Emotional Behavior". Cerebral Cortex . 21 (10): 2282–90. doi:10.1093/cercor/bhr001. PMC   3169658 . PMID   21339377.
  100. 1 2 Mehta, Pranjal H.; Beer, Jennifer (2010). "Neural Mechanisms of the Testosterone–Aggression Relation: The Role of Orbitofrontal Cortex". Journal of Cognitive Neuroscience . 22 (10): 2357–68. CiteSeerX   10.1.1.518.2751 . doi:10.1162/jocn.2009.21389. PMID   19925198. S2CID   710598.
  101. Siever, Larry J. (2008). "Neurobiology of Aggression and Violence". American Journal of Psychiatry . 165 (4): 429–42. doi:10.1176/appi.ajp.2008.07111774. PMC   4176893 . PMID   18346997.
  102. 1 2 Handbook of Crime Correlates; Lee Ellis, Kevin M. Beaver, John Wright; 2009; Academic Press
  103. Mazur, Allan; Booth, Alan (1998). "Testosterone and dominance in men". Behavioral and Brain Sciences . 21 (3): 353–63, discussion 363–97. CiteSeerX   10.1.1.421.3005 . doi:10.1017/s0140525x98001228. PMID   10097017. S2CID   9462611.
  104. Albert, D.J.; Walsh, M.L.; Jonik, R.H. (1993). "Aggression in humans: What is its biological foundation?". Neuroscience & Biobehavioral Reviews. 17 (4): 405–25. doi:10.1016/S0149-7634(05)80117-4. PMID   8309650. S2CID   28557481.
  105. Constantino, John N.; Grosz, Daniel; Saenger, Paul; Chandler, Donald W.; Nandi, Reena; Earls, Felton J. (1993). "Testosterone and Aggression in Children". Journal of the American Academy of Child & Adolescent Psychiatry. 32 (6): 1217–22. doi:10.1097/00004583-199311000-00015. PMID   8282667.
  106. Pibiri, Fabio; Nelson, Marianela; Carboni, Giovanni; Pinna, Graziano (2006). "Neurosteroids regulate mouse aggression induced by anabolic androgenic steroids". NeuroReport . 17 (14): 1537–41. doi:10.1097/01.wnr.0000234752.03808.b2. PMID   16957604. S2CID   42991833.
  107. Choi, P. Y. L.; Parrott, A. C.; Cowan, D. (1990). "High-dose anabolic steroids in strength athletes: Effects upon hostility and aggression". Human Psychopharmacology: Clinical and Experimental. 5 (4): 349–56. doi:10.1002/hup.470050407. S2CID   37157824.
  108. "Aggression protein found in mice". BBC News . 5 December 2007. Retrieved 26 September 2009.
  109. 1 2 Chamero P; Marton TF; Logan DW; et al. (December 2007). "Identification of protein pheromones that promote aggressive behaviour". Nature. 450 (7171): 899–902. Bibcode:2007Natur.450..899C. doi:10.1038/nature05997. PMID   18064011. S2CID   4398766.
  110. Smith, R. S.; Hu, R.; Desouza, A.; Eberly, C. L.; Krahe, K.; Chan, W.; Araneda, R. C. (2015). "Differential Muscarinic Modulation in the Olfactory Bulb". Journal of Neuroscience. 35 (30): 10773–85. doi:10.1523/JNEUROSCI.0099-15.2015. PMC   4518052 . PMID   26224860.
  111. Krieger, J.; Schmitt, A.; Lobel, D.; Gudermann, T.; Schultz, G.; Breer, H.; Boekhoff, I. (1999). "Selective Activation of G Protein Subtypes in the Vomeronasal Organ upon Stimulation with Urine-derived Compounds". Journal of Biological Chemistry. 274 (8): 4655–62. doi: 10.1074/jbc.274.8.4655 . PMID   9988702.
  112. Caltech Scientists Discover Aggression-Promoting Pheromone in Flies Caltech press release, 2009
  113. Siwicki, Kathleen K; Kravitz, Edward A (2009). "Fruitless, doublesex and the genetics of social behavior in Drosophila melanogaster". Current Opinion in Neurobiology. 19 (2): 200–6. doi:10.1016/j.conb.2009.04.001. PMC   2716404 . PMID   19541474.
  114. Garratt M, Brooks RC (January 2015). "A genetic reduction in antioxidant function causes elevated aggression in mice". J. Exp. Biol. 218 (Pt 2): 223–7. doi: 10.1242/jeb.112011 . PMID   25524980.
  115. Perusse, D. & Gendreau, P. 'Genetics and the Development of Aggression' in Developmental Origins of Aggression, 2005, The Guilford Press.[ page needed ]
  116. Derringer, Jaime; Krueger, Robert F.; Irons, Daniel E.; Iacono, William G. (2010). "Harsh Discipline, Childhood Sexual Assault, and MAOA Genotype: An Investigation of Main and Interactive Effects on Diverse Clinical Externalizing Outcomes". Behavior Genetics. 40 (5): 639–48. doi:10.1007/s10519-010-9358-9. PMC   2912157 . PMID   20364435.
  117. Cherepkova, Elena V; Maksimov, Vladimir N; Aftanas, Lyubomir I; Menshanov, Petr N (2015). "Genotype and haplotype frequencies of the DRD4 VNTR polymorphism in the men with no history of ADHD, convicted of violent crimes". Journal of Criminal Justice. 43 (6): 464–469. doi:10.1016/j.jcrimjus.2015.10.002.
  118. Konrad Lorenz, On Aggression (1963).[ page needed ]
  119. E.O. Wilson, On Human Nature (Harvard, 1978) pp.101–107.
  120. Leakey, R.,& Lewin, R. (1978). People of the lake. New York: Anchor Press/Doubleday.
  121. UNESCO, (1989). The Seville Statement, Retrieved: http://www.unesco.org/cpp/uk/declarations/seville.pdf Archived 12 August 2013 at the Wayback Machine
  122. UNESCO Prize for Peace Education, (1989), Retrieved:http://www.demilitarisation.org/IMG/article_PDF/Seville-Statement-UNESCO-1989_a143.pdf
  123. 1 2 3 Bond, MH. (2004) 'Aggression and culture', in Encyclopedia of applied psychology, Volume 1.
  124. Thomas, E.M. (1958). The harmless people . New York: Vintage Books.[ page needed ]
  125. Keeley, L.H. (1996). War Before Civilization: The myth of the peaceful savage. New York: Oxford University Press.
  126. Lomas, W. (2009) Conflict, Violence, and Conflict Resolution in Hunting and Gathering Societies Totem: The University of Western Ontario Journal of Anthropology, Volume 17, Issue 1, Article 13
  127. Gray, Peter (Spring 2009). "Play as a Foundation for Hunter-Gatherer Social Existence" (PDF). American Journal of Play. 1 (4): 476–522.[ permanent dead link ]
  128. Gray, Peter (16 May 2011). "How Hunter-Gatherers Maintained Their Egalitarian Ways". Psychology Today.
  129. 1 2 Durrant, J.; Ensom, R. (2012). "Physical punishment of children: Lessons from 20 years of research". Canadian Medical Association Journal. 184 (12): 1373–7. doi:10.1503/cmaj.101314. PMC   3447048 . PMID   22311946.
  130. Gershoff, E.T. (2008). Report on Physical Punishment in the United States: What Research Tells Us About Its Effects on Children (PDF). Columbus, OH: Center for Effective Discipline. p. 16. Archived from the original (PDF) on 27 January 2016. Retrieved 15 December 2015.
  131. "Corporal Punishment" (2008). International Encyclopedia of the Social Sciences.
  132. Gershoff, Elizabeth T. (2013). "Spanking and Child Development: We Know Enough Now to Stop Hitting Our Children". Child Development Perspectives. 7 (3): 133–137. doi:10.1111/cdep.12038. PMC   3768154 . PMID   24039629.
  133. Taylor, C. A.; Manganello, J. A.; Lee, S. J.; Rice, J. C. (2010). "Mothers' Spanking of 3-Year-Old Children and Subsequent Risk of Children's Aggressive Behavior". Pediatrics. 125 (5): e1057–65. doi:10.1542/peds.2009-2678. PMC   5094178 . PMID   20385647.
  134. Straus, Murray A.; Douglas, Emily M.; Madeiros, Rose Ann (2013). The Primordial Violence: Spanking Children, Psychological Development, Violence, and Crime. New York: Routledge. p. 81. ISBN   978-1-84872-953-7.
  135. Fujihara, Takehiro; Kohyama, Takaya; Andreu, J. Manuel; Ramirez, J. Martin (1999). "Justification of interpersonal aggression in Japanese, American, and Spanish students". Aggressive Behavior. 25 (3): 185–95. doi:10.1002/(SICI)1098-2337(1999)25:3<185::AID-AB3>3.0.CO;2-K. S2CID   145166936.
  136. Cohen, Dov; Nisbett, Richard E.; Bowdle, Brian F.; Schwarz, Norbert (1996). "Insult, aggression, and the southern culture of honor: An "experimental ethnography."" (PDF). Journal of Personality and Social Psychology. 70 (5): 945–59. doi:10.1037/0022-3514.70.5.945. hdl: 2027.42/92155 . PMID   8656339.
  137. Bergmüller, Silvia (2013). "The Relationship Between Cultural Individualism-Collectivism and Student Aggression Across 62 Countries". Aggressive Behavior. 39 (3): 182–200. doi:10.1002/ab.21472. PMID   23494751.
  138. Nolan, P. (2007) Capitalism and freedom: the contradictory character of globalisation From page 2. Anthem Studies in Development and Globalization, Anthem Press
  139. Sherer, Moshe; Karnieli-Miller, Orit (2004). "Aggression and violence among Jewish and Arab Youth in Israel". International Journal of Intercultural Relations. 28 (2): 93–109. doi:10.1016/j.ijintrel.2004.03.004.
  140. Amjad, Naumana; Wood, Alex M. (2009). "Identifying and changing the normative beliefs about aggression which lead young Muslim adults to join extremist anti-Semitic groups in Pakistan". Aggressive Behavior. 35 (6): 514–9. CiteSeerX   10.1.1.332.6476 . doi:10.1002/ab.20325. PMID   19790255.
  141. Akert, M. Robin, Aronson, E., and Wilson, D.T. "Social Psychology", 5th Edition. Pearson Education, Inc. 2005[ page needed ]
  142. Freedman, J. (2002). Media violence and its effect on aggression: Assessing the scientific evidence . Toronto: University of Toronto Press.
  143. Christopher J. Ferguson, (2010) "Video Games and Youth Violence: A Prospective Analysis in Adolescents Archived 25 May 2012 at the Wayback Machine ", Journal of Youth and Adolescence
  144. Sherry, J. (2001). "The effects of violent video games on aggression. A meta-analysis". Human Communication Research. 27 (3): 409–31. doi:10.1093/hcr/27.3.409. S2CID   6322160.
  145. Anderson, Craig A.; Dill, Karen E. (2000). "Video games and aggressive thoughts, feelings, and behavior in the laboratory and in life". Journal of Personality and Social Psychology. 78 (4): 772–90. CiteSeerX   10.1.1.1006.1548 . doi:10.1037/0022-3514.78.4.772. PMID   10794380.
  146. Tremblay, Richard E. (2000). "The development of aggressive behaviour during childhood: What have we learned in the past century?". International Journal of Behavioral Development. 24 (2): 129–41. CiteSeerX   10.1.1.487.7070 . doi:10.1080/016502500383232. S2CID   145617291.
  147. Bongers, Ilja L.; Koot, Hans M.; Van Der Ende, Jan; Verhulst, Frank C. (2004). "Developmental Trajectories of Externalizing Behaviors in Childhood and Adolescence". Child Development. 75 (5): 1523–37. doi:10.1111/j.1467-8624.2004.00755.x. PMID   15369529. S2CID   12514300.
  148. NICHD Early Child Care Research Network. (2004). "Trajectories of physical aggression from toddlerhood to middle childhood: Predictors, correlates, and outcomes". Monographs of the Society for Research in Child Development. 69 (4): vii, 1–129. doi:10.1111/j.0037-976X.2004.00312.x. PMID   15667346.
  149. Bongers, I. L.; Koot, H. M.; Van Der Ende, J.; Verhulst, F. C. (2007). "Predicting young adult social functioning from developmental trajectories of externalizing behaviour". Psychological Medicine. 38 (7): 989–99. CiteSeerX   10.1.1.572.4309 . doi:10.1017/S0033291707002309. PMID   18047767. S2CID   6218999.
  150. Schellenberg, R. (2000). "Aggressive personality: When does it develop and why?". Virginia Counselors Journal. 26: 67–76.
  151. Tremblay, Richard E; Hartup, Willard W.; Archer, John, eds. (2005). Developmental Origins of Aggression. New York: The Guilford Press. ISBN   978-1-59385-110-1.
  152. Dabb, C (May 1997). The relationship between weather and children's behavior: a study of teacher perceptions. USU Thesis.
  153. Bandura, Albert; Ross, Dorothea; Ross, Sheila A. (1961). "Transmission of aggression through imitation of aggressive models". The Journal of Abnormal and Social Psychology. 63 (3): 575–82. doi:10.1037/h0045925. PMID   13864605. S2CID   18361226.
  154. American Academy of Pediatrics (2011) Ages & Stages: Aggressive Behavior HealthChildren.org, retrieved January 2012
  155. National Association of School Psychologists (2008) Angry and Aggressive Students
  156. Coie, J.D. & Dodge, K.A. (1997). Aggression and antisocial behavior. In W. Damon & N. Eisenberg (Eds). Handbook of Child Psychology, Vol. 3: Social, emotional and personality development
  157. Maccoby. E.E. & Jacklin. C.N. (1974). The psychology of sex differences , Stanford: Stanford University Press.
  158. Björkqvist, Kaj; Österman, Karin; Lagerspetz, Kirsti M. J. (1994). "Sex differences in covert aggression among adults" (PDF). Aggressive Behavior. 20: 27–33. CiteSeerX   10.1.1.453.7106 . doi:10.1002/1098-2337(1994)20:1<27::aid-ab2480200105>3.0.co;2-q. Archived from the original (PDF) on 3 December 2011. Retrieved 6 December 2018.
  159. Archer, John (2004). "Sex Differences in Aggression in Real-World Settings: A Meta-Analytic Review". Review of General Psychology. 8 (4): 291–322. doi:10.1037/1089-2680.8.4.291. S2CID   26394462.
  160. Card, Noel A.; Stucky, Brian D.; Sawalani, Gita M.; Little, Todd D. (2008). "Direct and Indirect Aggression During Childhood and Adolescence: A Meta-Analytic Review of Gender Differences, Intercorrelations, and Relations to Maladjustment". Child Development. 79 (5): 1185–229. doi:10.1111/j.1467-8624.2008.01184.x. PMID   18826521. S2CID   7942628.
  161. Hines, Denise A.; Saudino, Kimberly J. (2003). "Gender Differences in Psychological, Physical, and Sexual Aggression Among College Students Using the Revised Conflict Tactics Scales". Violence and Victims. 18 (2): 197–217. doi:10.1891/vivi.2003.18.2.197. PMID   12816404. S2CID   28687366.
  162. Björkqvist, Kaj (1994). "Sex differences in physical, verbal, and indirect aggression: A review of recent research". Sex Roles. 30 (3–4): 177–88. doi:10.1007/BF01420988. S2CID   142759440.
  163. Navis, Charlene; Brown, Stephen L.; Heim, Derek (2008). "Predictors of injurious assault committed during or after drinking alcohol: A case–control study of young offenders". Aggressive Behavior. 34 (2): 167–74. doi:10.1002/ab.20231. PMID   17922526.
  164. Turner, Charles W.; Layton, John F.; Simons, Lynn S. (1975). "Naturalistic studies of aggressive behavior: Aggressive stimuli, victim visibility, and horn honking". Journal of Personality and Social Psychology. 31 (6): 1098–107. doi:10.1037/h0076960. PMID   1142063. S2CID   36562997.
  165. Berkowitz L (July 1989). "Frustration-aggression hypothesis: examination and reformulation". Psychol Bull. 106 (1): 59–73. doi:10.1037/0033-2909.106.1.59. PMID   2667009.
  166. Castle, T.; Hensley, C (2002). "Serial Killers with Military Experience: Applying Learning Theory to Serial Murder". International Journal of Offender Therapy and Comparative Criminology. 46 (4): 453–65. doi:10.1177/0306624X02464007. PMID   12150084. S2CID   35278358.
  167. blennow; Manhem (20 January 2021). "CSF studies in violent offenders". Journal of Neural Transmission. 108: 869–878 via Forsman A.
  168. Dolan, Eric W. (30 September 2023). "Contrary to popular belief, recent psychology findings suggest aggression isn't always tied to a lack of self-control". PsyPost. Retrieved 2 October 2023.
  169. Smith, P. (2007). "Why has aggression been thought of as maladaptive?". Aggression and Adaptation: the Bright Side to Bad Behavior. Routledge. pp. 65–83. ISBN   978-1-135-59375-9.
  170. Hawley, Patricia H.; Vaughn, Brian E. (2003). "Aggression and Adaptive Functioning: The Bright Side to Bad Behavior". Merrill-Palmer Quarterly. 49 (3): 239–42. doi:10.1353/mpq.2003.0012. JSTOR   23096055. S2CID   54998386.
  171. Bjørkly, Stâl (2006), "Psychological Theories of Aggression: Principles and Application to Practice", Violence in Mental Health Settings, New York, NY: Springer New York, pp. 27–46, doi:10.1007/978-0-387-33965-8_2, ISBN   978-0-387-33964-1 , retrieved 5 May 2021
  172. Ferguson, Christopher J. (2010). "Blazing angels or resident evil? Can violent video games be a force for good?" (PDF). Review of General Psychology. 14 (2): 68–81. CiteSeerX   10.1.1.360.3176 . doi:10.1037/a0018941. S2CID   3053432.

Further reading