Territory (animal)

Last updated
A male South China tiger scent-marking his territory JenB Marking Territory.JPG
A male South China tiger scent-marking his territory

In ethology, territory is the sociographical area that an animal consistently defends against conspecific competition (or, occasionally, against animals of other species) using agonistic behaviors or (less commonly) real physical aggression. Animals that actively defend territories in this way are referred to as being territorial or displaying territorialism.


Territoriality is only shown by a minority of species. More commonly, an individual or a group of animals occupies an area that it habitually uses but does not necessarily defend; this is called its home range. The home ranges of different groups of animals often overlap, and in these overlap areas the groups tend to avoid each other rather than seeking to confront and expel each other. Within the home range there may be a core area that no other individual group uses, but, again, this is as a result of avoidance.


The ultimate function of animals inhabiting and defending a territory is to increase the individual fitness or inclusive fitness of the animals expressing the behaviour. Fitness in this biological sense relates to the ability of an animal to survive and raise young. The proximate functions of territory defense vary. For some animals, the reason for such protective behaviour is to acquire and protect food sources, nesting sites, mating areas, or to attract a mate.

Types and size

Among birds, territories have been classified as six types. [1]

Reports of territory size can be confused by a lack of distinction between home range and the defended territory. The size and shape of a territory can vary according to its purpose, season, the amount and quality of resources it contains, or the geography. The size is usually a compromise of resource needs, defense costs, predation pressure and reproductive needs.

Some species of squirrels may claim as much as 10 hectares (25 acres) of territory. [2] For European badgers, a home range may be as small as 30 hectares (74 acres) in a good rural habitat, but as large as 300 hectares (740 acres) in a poor habitat. On average, a territory may be approximately 50 hectares (120 acres), with main setts normally at least 500 metres (1,600 ft) apart. In urban areas, territories can be as small as 5 hectares (12 acres), if they can obtain enough food from bird tables, food waste or artificial feeding in suburban gardens. [3] Spotted hyenas (Crocuta crocuta) have highly variable territory sizes, ranging from less than 4,000 hectares (9,900 acres) in the Ngorongoro Crater to over 100,000 hectares (250,000 acres) in the Kalahari. [4]

In birds, golden eagles (Aquila chrysaetos) have territories of 9,000 hectares (22,000 acres), least flycatchers' (Empidonax minimus) territories are about 600 square metres (6,500 sq ft) and gulls have territories of only a few square centimetres in the immediate vicinity of the nest. [5]

Territories can be linear. Sanderlings (Calidris alba) forage on beaches and sandflats. When on beaches, they feed either in flocks or individual territories of 10 to 120 metres of shoreline. [6]

The time to develop territories varies between animals. The marine iguana (Amblyrhynchus cristatus) is a lekking reptile. Males start to establish small display territories two months ahead of the mating season. [7]

Retaining a territory

Rather than retaining a territory simply by fighting, for some animals this can be a 3-stage process. Many animals create "sign-posts" to advertise their territory. Sometimes these sign-posts are on the boundary thereby demarcating the territory, or, may be scattered throughout the territory. These communicate to other animals that the territory is occupied and may also communicate additional information such as the sex, reproductive status or dominance status of the territory-holder. Sign-posts may communicate information by olfactory, auditory, or visual means, or a combination of these. If an intruder progresses further into the territory beyond the sign-posts and encounters the territory-holder, both animals may begin ritualized aggression toward each other. This is a series of stylised postures, vocalisations, displays, etc. which function to solve the territory dispute without actual fighting as this could injure either or both animals. Ritualized aggression often ends by one of the animals fleeing (generally the intruder). If this does not happen, the territory may be defended by actual fighting, although this is generally a last resort.

Advertising the territory

Scent marking

Scent rubbing Self Indulgence (2526930264).jpg
Scent rubbing

Scent marking, also known as territorial marking or spraying when this involves urination, is a behaviour used by animals to identify their territory. [8] [9] [10] Most commonly, this is accomplished by depositing strong-smelling substances contained in the urine, faeces, or, from specialised scent glands located on various areas of the body. Often, the scent contains pheromones or carrier proteins such as the major urinary proteins to stabilize the odours and maintain them for longer. [11] [12] The animal sniffing the scent frequently displays a flehmen response to assist in detecting the mark. Scent marking is often performed by scent rubbing in many mammals. [13] In many mammal species, scent marking is more frequent during the breeding season. [14]

Felids such as leopards and jaguars mark by rubbing themselves against vegetation. Prosimians and New World monkeys also use scent marking, including urine washing (self-anointing the body with urine), to communicate. [15] [16] [17] Many ungulates, for example the blue wildebeest, use scent marking from two glands, the preorbital gland and a scent gland in the hoof.[ citation needed ]

Territorial scent marking may involve behaviours specific to this activity. When a wolf marks its territory, it lifts a hind leg and urinates on a scent post (usually an elevated position like a tree, rock, or bush). [18] This raised leg urination is different from normal urination, which is done while squatting. This posture is exclusive to alpha wolves of either sex, although the alpha male does this most often. The alpha female usually urinates on a scent post that her breeding partner has just urinated on, although during the mating season, the female may first urinate on the ground. All other females in the pack, and also young wolves and low-ranking male wolves, urinate while squatting. [19] Males and female ring-tailed lemurs (Lemur catta) scent-mark both vertical and horizontal surfaces at the overlaps in their home ranges using their anogenital scent glands. To do this, they perform a handstand to mark vertical surfaces, grasping the highest point with their feet while applying the scent. [20]

In the Eastern carpenter bee, Xylocopa virginica , both sexes have glands that evolved for marking the nest. Males, although they have the gland, are unable to produce the marking substance. Females secrete it near the nest site entrance to establish their territory. [21]

Wombats use feces to mark their territory. They have evolved specialized intestinal anatomy to produce cubical feces to ensure the feces do not roll away. [22]


Ring-tailed lemurs hold their distinctive tails high in the air during territorial scent marking. They also engage in "stink fights" with intruding males.
Lemur catta spur and antebrachial gland.jpg
The antebrachial scent gland and spur on the forearm of a male ring-tailed lemur

Visual sign-posts may be a short-term or long-term mode of advertising a territory. Short-term communication includes the colouration or behaviour of the animal, which can only be communicated when the resident is present. Other animals may use more long-term visual signals such as faecal deposits, or marks on the vegetation or ground. Visual marking of territory is often combined with other modes of animal communication.

Some animals have prominent "badges" or visual displays to advertise their territory, often in combination with scent marking or auditory signals. Male European robins are noted for their highly aggressive territorial behaviour. They attack other males that stray into their territories, and have been observed attacking other small birds without apparent provocation. Such attacks sometimes lead to fatalities, accounting for up to 10% of adult robin deaths in some areas. [23] The red breast of the bird (i.e. badge) is highly visible when it sings (vocal marking) at the boundary of its territory. The ring-tailed lemur (Lemur catta) advertises its territory with urine scent marks. When it is urinating for marking purposes, it holds its extremely distinctive tail high in the air adding a visual component to the advertisement; when it is urinating for eliminative purposes, its tail is only slightly raised. [24]

Rhinoceros have poor vision but may use visual marking. Dominant white rhino bulls mark their territory with faeces and urine (olfactory marking). [25] The dung is laid in well defined piles. There may be 20 to 30 of these piles to alert passing rhinoceroses that it is occupied territory. Other males may deposit dung over the piles of another and subsequently the sign-post grows larger and larger. Such a dung heap can become up to five metres wide and one metre high. [26] After defecating, greater one-horned rhinos scratch their hind feet in the dung. By continuing to walk, they "transport" their own smell around the paths, thus establishing a scent-marked trail. Another method of visually marking their territory is wiping their horns on bushes or the ground and scraping with the feet, although this is likely combined with the smell of the marking animal. The territorial male scrape-marks every 30 m (98 ft) or so around its territory boundary.

After leaving a urination mark, some animals scrape or dig the ground nearby, thereby leaving a visual advertisement of the territory. This includes domestic dogs.

Several species scratch or chew trees leaving a visual mark of their territory. This is sometimes combined with rubbing on the tree which may leave tufts of fur. These include the Canada lynx (Lynx canadensis) [27] and the American black bear (Ursus americanus). [28] [29] Many animals have scent glands in their paws or deposit fur during tree-marking, so tree-marking may be a combination of both visual and olfactory advertising of the territory. The male ring-tailed lemur has a specialised adaptation to assist in leaving visual/olfactory territorial marks. On their inner forearm (antebrachial) is a scent gland which is covered by a spur. In a behaviour called "spur marking", they grasp the substrate, usually a small sapling, and drag the spur over it, cutting into the wood and spreading the gland's secretions. When on the ground, ring-tailed lemurs preferentially mark small saplings and when high in the trees, they usually mark small vertical branches. [20]

European wildcats (Felis silvestris) deposit their faecal marks on plants with high visual conspicuousness that enhances the visual effectiveness of the signal. [30]


Many animals use vocalisations to advertise their territory. These are short-term signals transmitted only when the animal is present, but can travel long distances and over varied habitats. Examples of animals which use auditory signals include birds, frogs and canids.

Ritualized aggression

Two domestic cats posturing during ritualized aggression over a territory Catch cats 3.JPG
Two domestic cats posturing during ritualized aggression over a territory

Animals use a range of behaviours to intimidate intruders and defend their territories, but without engaging in fights which are expensive in terms of energy and the risk of injury. This is ritualized aggression. Such defense frequently involves a graded series of behaviours or displays that include threatening gestures (such as vocalizations, spreading of wings or gill covers, lifting and presentation of claws, head bobbing, tail and body beating) and finally, direct attack.


Territories may be held by an individual, a mated or unmated pair, or a group. Territoriality is not always a fixed behavioural characteristic of a species. For example, red foxes (Vulpes vulpes) either establish stable home ranges within particular areas or are itinerant with no fixed abode. [34] Territories may vary with time (season), for example, European robins defend territories as pairs during the breeding season but as individuals during the winter. Resource availability may cause changes in territoriality, for example, some nectarivores defend territories only during the mornings when plants are richest in nectar. In species that do not form pair bonds, male and female territories are often independent, i.e. males defend territories only against other males and females only against other females. In this case, if the species is polygynous, one male territory probably contains several female territories, while in some polyandrous species such as the northern jacana, this situation is reversed.


Animals may use several strategies to defend their territories.

The first game theory model of fighting is known as the hawk-dove game . This model pits a hawk strategy (always try to injure your opponent and only withdraw from the contest if an injury is received) against a dove strategy (always use a non-injurious display if the rival is another dove and always withdraw if the rival is a hawk).

Another strategy used in territory defence is the war of attrition. In this model of aggression, two contestants compete for a resource by persisting while constantly accumulating costs over the time that the contest lasts. Strategically, the game is an auction in which the prize goes to the player with the highest bid, and each player pays the loser's low bid.

Some animals use a strategy termed the dear enemy effect in which two neighbouring territorial animals become less aggressive toward one another once territorial borders are well-established and they are familiar to each other, but aggression toward unfamiliar animals remains unaffected. [35] The converse of this is the nasty neighbour effect in which a territory-holder shows heightened aggression toward neighbouring territory-holders but unaffected aggression to unfamiliar animals or distant territory-holders. These contrasting strategies depend on which intruder (familiar or unfamiliar) poses the greatest threat to the resident territory-holder. [36]

In territory defence by groups of animals, reciprocal altruism can operate whereby the cost to the benefactor in helping defend the territory is less than the gains to the beneficiary.

Resources defended

An animal chooses its territory by deciding what part of its home range it will defend. In selecting a territory, the size and quality play crucial roles in determining an animal's habitat. Territory size generally tends to be no larger than the organism requires to survive, because defending a larger territory incurs greater energy, time and risk of injury costs. For some animals, the territory size is not the most important aspect of territoriality, but rather the quality of the defended territory.

Behavioural ecologists have argued that food distribution determines whether a species is territorial or not, however, this may be too narrow a perspective. Several other type of resource may be defended including partners, potential mates, offspring, nests or lairs, display areas or leks. Territoriality emerges where there is a focused resource that provides enough for the individual or group, within a boundary that is small enough to be defended without the expenditure of excessive effort. Territoriality is often most strong towards conspecifics, as shown in the case of redlip blenny. [37] This is because the conspecifics share exactly the same set of resources.

Several types of resource in a territory may be defended.

A western marsh harrier is mobbed by a northern lapwing. The marsh harrier, a male, had been quartering the ground in which lapwing and redshank were nesting. Vanellus vanellus mobbing Circus aeruginosus.jpg
A western marsh harrier is mobbed by a northern lapwing. The marsh harrier, a male, had been quartering the ground in which lapwing and redshank were nesting.

Food: Large solitary (or paired) carnivores, such as bears and the bigger raptors require an extensive protected area to guarantee their food supply. This territoriality only breaks down when there is a glut of food, for example when grizzly bears are attracted to migrating salmon.

Food related territoriality is least likely with insectivorous birds, where the food supply is plentiful but unpredictably distributed. Swifts rarely defend an area larger than the nest. Conversely, other insectivorous birds that occupy more constrained territories, such as the ground-nesting blacksmith lapwing may be very territorial, especially in the breeding season during which they not only threaten or attack many kinds of intruders, but have stereotyped display behaviour to deter conspecifics sharing neighbouring nesting spots.

The owl limpet (Lottia gigantea) is a large (up to 8 cm in length) limpet. It lives in association with an approximately 1,000 cm^2 area of algal film in which its grazing marks can be seen, whereas the remainder of the rock surface is usually free of any visible film. These areas of algal film represent the territories of the Lottia; within them the animals do all their grazing. They keep their territories free of other organisms by shoving off any intruders: other Lottia, grazing limpets of the genus Acmaea, predatory snails, and sessile organisms such as anemones and barnacles. [38]

Nests and offspring: Many birds, particularly seabirds, nest in dense communities but are nonetheless territorial in defending their nesting site to within the distance they can reach while brooding. This is necessary to prevent attacks on their own chicks or nesting material from neighbours. Commonly the resulting superimposition of the short-range repulsion onto the long-range attraction characteristically leads to the well-known roughly hexagonal spacing of nests. One gets a similar hexagonal spacing resulting from the territorial behaviour of gardening limpets such as species of Scutellastra. [39] They vigorously defend their gardens of particular species of algae, that extend for perhaps 1–2 cm around the periphery of their shells.

The desert grass spider, Agelenopsis aperta, often engages in fights over its territory and the most combative spiders have the largest territories. [40]

Some species of penguin defend their nests from intruders trying to steal the pebbles from which the nest is constructed. [5]

Mating opportunities: The striped mouse ( Rhabdomys pumilio) is group living with one single breeding male and up to 4 communally breeding females per group. Groups typically contain several philopatric adult sons (and daughters) that are believed not to breed in their natal group and all group members participate in territorial defence. Males defend their territory using a nasty neignbour strategy. Group-living male breeders are nearly five times more aggressive towards their neighbours than towards strangers, leading to the prediction that neighbours are the most important competitors for paternity. Using a molecular parentage analysis it has been shown that 28% of offspring are sired by neighbouring males and only 7% by strangers. [41] In certain species of butterflies, such as the Australian painted lady butterfly and the speckled wood butterfly, the male defends territories that receptive females are likely to fly through such as sunny hilltops and sunspots on a forest's floor. [42] [43]

Territory defence in male variegated pupfish ( Cyprinodon variegatus) is dependent on the presence of females. Reduced aggression consistent with the dear enemy effect occurs between conspecific neighbours in the absence of females, but the presence of a female in a male's territory instigates comparably greater aggression between the neighbours. [44]

In the Skylark (Alauda arvensis), playbacks of neighbour and stranger songs at three periods of the breeding season show that neighbours are dear enemies in the middle of the season, when territories are stable, but not at the beginning of the breeding season, during settlement and pair formation, nor at the end, when bird density increases due to the presence of young birds becoming independent. Thus, this dear enemy territoriality relationship is not a fixed pattern but a flexible one likely to evolve with social and ecological circumstances. [45]

Some species of bees also exhibit territoriality to defend mating sites. For example, in Euglossa imperialis, a non-social bee species, males have been observed to occasionally form aggregations of fragrance-rich territories, considered to be leks. These leks serve only a facultative purpose for this species, in which the more fragrance-rich sites there are, the greater the number of habitable territories. Since these territories are aggregated, females have a large selection of males with whom to potentially mate within the aggregation, giving females the power of mate choice. [46] Similar behaviour is also observed in the Eulaema meriana orchid bee. Males in this species of bee show alternative behaviours of territoriality and transiency. Transient male bees did not defend territories, but instead flew from one territory to the other. They also did not engage in physical contact with the territorial males. On the other hand, territorial males patrolled an area around a tree and used the same territory for up to 49 days. It also appeared that they gave up territories to new males without violence. Males defend territories solely for mating, and no other resources such as fragrances, nests, nest construction materials, nectar, or pollen are found at these territories. [47]

Single resource territories

Although most territories contain multiple (potential) resources, some territories are defended for only one purpose. European blackbirds may defend feeding territories that are distant from their nest sites, and in some species that form leks, for example in the Uganda kob (a grazing antelope) and the marine iguana, males defend the lek site which is used only for mating.


Many species demonstrate polyterritoriality, referring to the act of claiming or defending more than one territory. In the European pied flycatcher (Ficedula hypoleuca), researchers assert that males exhibit polyterritoriality to deceive females of the species into entering into polygynous relationships. This hypothesis, named the deception hypothesis, claims that males have territories at distances sufficiently great that females are unable to discern already-mated males. The observation that males travelled long distances, ranging from 200m to 3.5 km, to find a second mate supports this argument. [48] The debate about polyterritoriality in this species may initiate research about the evolution and reasons for polyterritoriality in other unrelated species.

See also

Related Research Articles

<span class="mw-page-title-main">Urination</span> Release of urine from the urinary bladder

Urination is the release of urine from the urinary bladder through the urethra to the outside of the body. It is the urinary system's form of excretion. It is also known medically as micturition, voiding, uresis, or, rarely, emiction, and known colloquially by various names including peeing, weeing, pissing, and going number one. In healthy humans and other animals, the process of urination is under voluntary control. In infants, some elderly individuals, and those with neurological injury, urination may occur as a reflex. It is normal for adult humans to urinate up to seven times during the day.

<span class="mw-page-title-main">Ring-tailed lemur</span> A large lemur from Madagascar

The ring-tailed lemur is a medium- to larger-sized strepsirrhine (wet-nosed) primate, and the most internationally-recognized lemur species, owing to its long, black-and-white, ringed tail. It belongs to Lemuridae, one of five lemur families, and is the only member of the Lemur genus. Like all lemurs, it is endemic to the island of Madagascar, where it is endangered. Known locally in Malagasy as maky or hira, it ranges from gallery forests to spiny scrub in the southern regions of the island. It is omnivorous, as well as the most adapted to living terrestrially of the extant lemurs.

<span class="mw-page-title-main">Dog communication</span> Communication of dogs with other dogs and as well as humans

Dog communication is the transfer of information between dogs, as well as between dogs and humans. Behaviors associated with dog communication are categorized into visual and vocal. Visual communication includes mouth shape and head position, licking and sniffing, ear and tail positioning, eye gaze, facial expression, and body posture. Dog vocalizations, or auditory communication, can include barks, growls, howls, whines and whimpers, screams, pants and sighs. Dogs also communicate via gustatory communication, utilizing scent and pheromones.

<span class="mw-page-title-main">Scent gland</span> Exocrine glands found in most mammals

Scent gland are exocrine glands found in most mammals. They produce semi-viscous secretions which contain pheromones and other semiochemical compounds. These odor-messengers indicate information such as status, territorial marking, mood, and sexual behaviour. The odor may be subliminal—not consciously detectable. Though it is not their primary function, the salivary glands may also function as scent glands in some animals.

<span class="mw-page-title-main">Brown-mantled tamarin</span> Species of New World monkey

The brown-mantled tamarin, also known as Spix's saddle-back tamarin, is a species of saddle-back tamarin. This New World monkey is found in the Southern American countries of Bolivia, Brazil and Peru. This omnivorous member of the Callitrichidae family is usually found in smaller groups ranging between 4 and 15 individuals. This species communicates vocally and largely rely their olfactory system. The brown-mantled tamarin is considered as a species of Least Concern by the International Union for Conservation of Nature, despite a decreasing population and being threatened by poaching, habitat loss and capture for the illegal pet trade.

<span class="mw-page-title-main">Eastern carpenter bee</span> Species of insect

Xylocopa virginica, sometimes referred to as the eastern carpenter bee, extends through the eastern United States and into Canada. They are sympatric with Xylocopa micans in much of southeastern United States. They nest in various types of wood and eat pollen and nectar. In X. virginica, dominant females do not focus solely on egg-laying, as in other bee species considered to have "queens". Instead, dominant X. virginica females are responsible for a full gamut of activities including reproduction, foraging, and nest construction, whereas subordinate bees may engage in little activity outside of guarding the nest.

<i>Podarcis hispanicus</i> Species of lizard

Podarcis hispanicus, also known as Iberian wall lizard, is a small wall lizard species of the genus Podarcis. It is found in the Iberian peninsula, in northwestern Africa and in coastal districts in Languedoc-Roussillon in France. In Spanish, this lizard is commonly called lagartija Ibérica.

<span class="mw-page-title-main">Cat communication</span> Feline means of sending or receiving information

Cats need to communicate with each other for bonding, and relating with each other; they need to collaborate, play, and share resources. When they communicate with people, they do so to get what they need or want, such as food, affection, or play.

<span class="mw-page-title-main">Reproductive suppression</span>

Reproductive suppression is the prevention or inhibition of reproduction in otherwise healthy adult individuals. It includes delayed sexual maturation (puberty) or inhibition of sexual receptivity, facultatively increased interbirth interval through delayed or inhibited ovulation or spontaneous or induced abortion, abandonment of immature and dependent offspring, mate guarding, selective destruction and worker policing of eggs in some eusocial insects or cooperatively breeding birds, and infanticide, and infanticide in carnivores of the offspring of subordinate females either by directly killing by dominant females or males in mammals or indirectly through the withholding of assistance with infant care in marmosets and some carnivores. The Reproductive Suppression Model argues that "females can optimize their lifetime reproductive success by suppressing reproduction when future conditions for the survival of offspring are likely to be greatly improved over present ones”. When intragroup competition is high it may be beneficial to suppress the reproduction of others, and for subordinate females to suppress their own reproduction until a later time when social competition is reduced. This leads to reproductive skew within a social group, with some individuals having more offspring than others. The cost of reproductive suppression to the individual is lowest at the earliest stages of a reproductive event and reproductive suppression is often easiest to induce at the pre-ovulatory or earliest stages of pregnancy in mammals, and greatest after a birth. Therefore, neuroendocrine cues for assessing reproductive success should evolve to be reliable at early stages in the ovulatory cycle. Reproductive suppression occurs in its most extreme form in eusocial insects such as termites, hornets and bees and the mammalian naked mole rat which depend on a complex division of labor within the group for survival and in which specific genes, epigenetics and other factors are known to determine whether individuals will permanently be unable to breed or able to reach reproductive maturity under particular social conditions, and cooperatively breeding fish, birds and mammals in which a breeding pair depends on helpers whose reproduction is suppressed for the survival of their own offspring. In eusocial and cooperatively breeding animals most non-reproducing helpers engage in kin selection, enhancing their own inclusive fitness by ensuring the survival of offspring they are closely related to. Wolf packs suppress subordinate breeding.

A cat pheromone is a chemical molecule, or compound, that is used by cats and other felids for communication. These pheromones are produced and detected specifically by the body systems of cats and evoke certain behavioural responses.

The dear enemy effect or dear enemy recognition is an ethological phenomenon in which two neighbouring territorial animals become less aggressive toward one another once territorial borders are well established. As territory owners become accustomed to their neighbours, they expend less time and energy on defensive behaviors directed toward one another. However, aggression toward unfamiliar neighbours remains the same. Some authors have suggested the dear enemy effect is territory residents displaying lower levels of aggression toward familiar neighbours compared to unfamiliar individuals who are non-territorial "floaters".

<span class="mw-page-title-main">Preorbital gland</span> Paired exocrine gland in many hoofed animals

The preorbital gland is a paired exocrine gland found in many species of hoofed animals, which is homologous to the lacrimal gland found in humans. These glands are trenchlike slits of dark blue to black, nearly bare skin extending from the medial canthus of each eye. They are lined by a combination of sebaceous and sudoriferous glands, and they produce secretions which contain pheromones and other semiochemical compounds. Ungulates frequently deposit these secretions on twigs and grass as a means of communication with other animals.

<span class="mw-page-title-main">Spur (zoology)</span> Anatomical term for an outgrowth of bone covered in a sheath of horn

A spur is an outgrowth of bone covered in a sheath of horn found in various anatomical locations in some animals. Unlike claws or nails, which grow from the tip of the toes, spurs form from other parts of the foot, usually in connection with joints where the toes meet the foot or the foot meets the long bones. Spurs are most commonly found on the hindfeet, though some birds possess spurs at the leading edge of the wings.

<span class="mw-page-title-main">Self-anointing in animals</span> A behaviour whereby a non-human animal smears odoriferous substances over themselves

Self-anointing in animals, sometimes called anointing or anting, is a behaviour whereby a non-human animal smears odoriferous substances over themselves. These substances are often the secretions, parts, or entire bodies of other animals or plants. The animal may chew these substances and then spread the resulting saliva mixture over their body, or they may apply the source of the odour directly with an appendage, tool or by rubbing their body on the source.

<i>Mischocyttarus flavitarsis</i> Species of wasp

Mischocyttarus flavitarsis is a social paper wasp found in western North America. Their nests can be found both in forests close to rivers or in close proximity to human life under the eaves of roofs. Despite the fact that M. flavitarsis nests are frequently in close contact with humans, M. flavitarsis typically will not sting, but rather ram into the threatening individual. Their colony cycle typically begins before May and will last until October. The queen will then seek a hibernation site for the winter. Perched near female hibernation sites are males with whom the female will mate. The males have claimed their territory by rubbing sternal brushes along the border of the site, leaving a chemical that deters other individuals from approaching. M. flavitarsis feed on arthropods, nectar, and animal carcasses and are often prey to birds, ants, and praying mantis.

<i>Xylocopa pubescens</i> Species of carpenter bee

Xylocopa pubescens is a species of large carpenter bee. Females form nests by excavation with their mandibles, often in dead or soft wood. X. pubescens is commonly found in areas extending from India to Northeast and West Africa. It must reside in these warm climates because it requires a minimum ambient temperature of 18 °C (64 °F) in order to forage.

<i>Xylocopa micans</i> Species of bee

Xylocopa micans, also known as the southern carpenter bee, is a species of bee within Xylocopa, the genus of carpenter bees. The southern carpenter bee can be found mainly in the coastal and gulf regions of the southeastern United States, as well as Mexico and Guatemala. Like all Xylocopa bees, X. micans bees excavate nests in woody plant material. However, unlike its sympatric species Xylocopa virginica, X. micans has not been found to construct nest galleries in structural timbers of building, making it less of an economic nuisance to humans. Carpenter bees have a wide range of mating strategies between different species. The southern carpenter bee exhibits a polymorphic mating strategy, with its preferred method of mating changing as the season progresses from early spring to mid summer. Like most bees in its genus, the southern carpenter bee is considered a solitary bee because it does not live in colonies.

<span class="mw-page-title-main">Scent rubbing</span> Behaviour where a mammal rubs its body against an object in their environment

Scent rubbing is a behavior where a mammal rubs its body against an object in their environment, sometimes in ones covered with strongly odored substances. It is typically shown in carnivores, although many mammals exhibit this behavior. Lowering shoulders, collapsing the forelegs, pushing forward and rubbing the chin, temples, neck, or back is how this act is performed. A variety of different odors can elicit this behavior including feces, vomit, fresh or decaying meat, insecticide, urine, repellent, ashes, human food and so on. Scent rubbing can be produced by an animal smelling novel odors, which include manufactured smells such as perfume or motor oil and carnivore smells including feces and food smells.

<span class="mw-page-title-main">Ritualized aggression</span>

Ritualized aggression is when animals use a range of behaviours as posture or warning but without engaging in actual aggression, which is expensive in terms of energy and the risk of injury. Ritualized aggression involves a graded series of behaviours or displays that include threatening gestures and occasionally posturing physical actions such as inhibited (non-injurious) bites.

<span class="mw-page-title-main">Wolf communication</span> Overview about the communication of wolves

Wolves communicate using vocalizations, body postures, scent, touch, and taste. The lunar phases have no effect on wolf vocalisation. Despite popular belief, wolves do not howl at the Moon. Gray wolves howl to assemble the pack, usually before and after hunts, to pass on an alarm particularly at a den site, to locate each other during a storm or while crossing unfamiliar territory, and to communicate across great distances. Other vocalisations include growls, barks and whines. Wolves do not bark as loudly or continuously as dogs do but they bark a few times and then retreat from a perceived danger. Aggressive or self-assertive wolves are characterized by their slow and deliberate movements, high body posture and raised hackles, while submissive ones carry their bodies low, sleeken their fur, and lower their ears and tail. Raised leg urination is considered to be one of the most important forms of scent communication in the wolf, making up 60–80% of all scent marks observed.


  1. Anon. "Ornithology: territoriality and coloniality" . Retrieved June 22, 2013.
  2. Turpin, K. "Squirrel behaviour and territory". Archived from the original on June 15, 2013. Retrieved June 22, 2013.
  3. Anon. "Territories". www.badgerland.co.uk. Retrieved June 23, 2013.
  4. Kruuk, H., (1972). The Spotted Hyena: A Study of Predation and Social Behaviour. University of California Press, ISBN   0226455084
  5. 1 2 Ehrlich, P.R.; Dobkin, D.S.; Wheye, D. (1998). "Territoriality" . Retrieved June 24, 2013.
  6. Myers, J.P.; Connors, P.G.; Pitelka, F.A. (1979). "Territory size in wintering Sanderlings: the effects of prey abundance and intruder density" (PDF). Auk. 96: 551–561.
  7. Partecke, J.; von Haeseler, A.; Wikelski, M. (2002). "Territory establishment in lekking marine iguanas, Amblyrhynchus cristatus: support for the hotshot mechanism". Behavioral Ecology and Sociobiology. 51 (6): 579–587. doi:10.1007/s00265-002-0469-z. S2CID   2132629.
  8. Gosling, L. M. "A reassessment of the function of scent marking in territories." Ethology 60.2 (1982): 89-118.
  9. Ralls, Katherine. "Mammalian scent marking." Science 171.3970 (1971): 443-449.
  10. "Territorial Marking Behavior in Dogs and Cats". www.sspca.org. Archived from the original on 27 August 2002. Retrieved 12 January 2022.
  11. Hurst, J.L., Robertson, D.H.L., Tolladay, U. and Beynon, R.J. (May 1998). "Proteins in urine scent marks of male house mice extend the longevity of olfactory signals". Animal Behaviour. 55 (5): 1289–97. doi:10.1006/anbe.1997.0650. PMID   9632512. S2CID   9879771.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  12. "V133.CHP:Corel VENTURA" (PDF). Retrieved 2012-11-20.[ dead link ]
  13. Ryon, Jenny; Fentress, J. C.; Harrington, F. H.; Bragdon, Susan (1986-03-01). "Scent rubbing in wolves (Canis lupus): the effect of novelty". Canadian Journal of Zoology. 64 (3): 573–577. doi:10.1139/z86-084. ISSN   0008-4301.
  14. John L. Gittleman (9 March 2013). Carnivore Behavior, Ecology, and Evolution. Springer Science & Business Media. ISBN   978-1-4757-4716-4.
  15. G.A. Doyle (2 December 2012). The Study of Prosimian Behavior. Elsevier. ISBN   978-0-323-14306-6.
  16. Richard Estes (1991). The Behavior Guide to African Mammals: Including Hoofed Mammals, Carnivores, Primates . University of California Press. pp.  464–. ISBN   978-0-520-08085-0 . Retrieved 25 December 2012. urine marking.
  17. Mittermeier, R. A.; Rylands, A. B.; Konstant, W. R. (1999). "Primates of the world: An introduction". In Nowak, R. M. (ed.). Walker's Mammals of the World (6th ed.). Johns Hopkins University Press. pp.  1–52. ISBN   978-0-8018-6251-9.
  18. L. David Mech; Luigi Boitani (1 October 2010). Wolves: Behavior, Ecology, and Conservation. University of Chicago Press. ISBN   978-0-226-51698-1.
  19. "The Territory". wolfbehavior: All you need to know about Wolves. 2005. Archived from the original on June 29, 2013. Retrieved June 28, 2013.
  20. 1 2 Cawthon Lang, K.A. (2005). "Primate Factsheets: Ring-tailed lemur (Lemur catta) Behavior". Wisconsin Primate Research Center (WPRC). Retrieved June 29, 2013.
  21. Gerling, Dan; Hermann, Henry R (1978). "Biology and mating behavior of Xylocopa virginica L. (Hymenoptera, Anthophoridae)". Behavioral Ecology and Sociobiology. 3 (2): 99–111. doi:10.1007/BF00294984. S2CID   33309938.
  22. "Scientist figures out how wombats poop cubes | CBC Radio". CBC. Retrieved 2018-11-20.
  23. "The RSPB-Robin:Territory". RSPB website. Retrieved 2008-05-17.
  24. Palagi, E.; Dapporto, L. (2006). "Urine marking and urination in Lemur catta: a comparison of design features" (PDF). Ann. Zool. Fennici. 43: 280–284.
  25. Richard Estes (1991). The Behavior Guide to African Mammals: Including Hoofed Mammals, Carnivores, Primates . University of California Press. pp.  323–. ISBN   978-0-520-08085-0. urine OR urination OR scent marking.
  26. von Houwald, F. "Factfile:Greater one horned rhino" . Retrieved June 25, 2013.
  27. "chemical communication". NatureWorks. Retrieved June 28, 2013.
  28. Cabrera, K.A. (2013). "Black Bear Marking Trees" . Retrieved June 28, 2013.
  29. Burst, T.L. and Pelton, M.R., ( ). Black bear mark trees in the Smoky Mountains. Int. Conf. Bear Res. and Manage., 5: 45-53
  30. Piñeiro, A.; Barja, I. (2002). "The plant physical features selected by wildcats as signal posts: an economic approach to fecal marking". Naturwissenschaften. 99 (10): 801–809. doi:10.1007/s00114-012-0962-9. PMID   22926138. S2CID   2309455.
  31. Feldhamer, G.A., Thompson, B.C. and Chapman, J.A., (2003). Wild Mammals of North America: Biology, Management, and Conservation. JHU Press. p.496. ISBN   0801874165
  32. Lopez, B.H., (1978). Of Wolves and Men. J.M. Dent and Sons Limited. p.38 ISBN   0-7432-4936-4
  33. Zimen, E., (1981). The Wolf: His Place in the Natural World. Souvenir Press. p.73. ISBN   0-285-62411-3
  34. Macdonald 1987 , p. 117[ citation needed ]
  35. Fisher, J., {1954}. Evolution and bird sociality. In: Evolution As a Process (Huxley, J., Hardy, A. and Ford, E., eds). London, Allen and Unwin. pp. 71-83
  36. Müller, C.A.; Manser, M.B. (2007). "'Nasty neighbours' rather than 'dear enemies' in a social carnivore". Proc. R. Soc. B. 274 (1612): 959–965. doi:10.1098/rspb.2006.0222. PMC   2141673 . PMID   17251103.
  37. Nursall, J.R. (1977). "Territoriality in Redlip blennies (Ophioblennius atlanticus-Pisces: Blenniidae)". Journal of Zoology. 2. 182 (2): 205–223. doi:10.1111/j.1469-7998.1977.tb04156.x.
  38. Stimson J (1969). "Territoriality of the owl limpet Lottia gigantea". Ecology . 51 (1): 113–118. doi:10.2307/1933604. JSTOR   1933604.
  39. Branch, G.M., Griffiths, C., Beckley, L.E., Branch, M.L.; Two Oceans. Pub. Struik, 2010. ISBN   978-1-77007-772-0
  40. Riechert, Susan E.; Hedrick, Ann V. (October 1993). "A test for correlations among fitness-linked behavioural traits in the spider Agelenopsis aperta (Araneae, Agelenidae)". Animal Behaviour. 46 (4): 669–675. doi:10.1006/anbe.1993.1243. ISSN   0003-3472. S2CID   53201859.
  41. Schradin, C.; Schneider, C.; Lindholm, A.K. (2010). "The nasty neighbour in the striped mouse (Rhabdomys pumilio) steals paternity and elicits aggression". Frontiers in Zoology. 7: 19. doi:10.1186/1742-9994-7-19. PMC   2908079 . PMID   20573184.
  42. Alcock, John; Gwynne Daryl (1988). "The mating system of Vanessa kershawi: Males defend landmark territories as mate encounter sites". Journal of Research on the Lepidoptera. 26 (1–4): 116–124. doi:10.5962/p.266708. S2CID   127040681.
  43. Davies, N.B. (1978). "Territorial defense in the speckled wood butterfly (Pararge aegeria): The resident always wins". Animal Behaviour. 26: 138–147. CiteSeerX . doi:10.1016/0003-3472(78)90013-1. S2CID   7445027.
  44. Leiser, J.K. (2003). "When are neighbours 'dear enemies' and when are they not? The responses of territorial male variegated pupfish, Cyprinodon variegatus, to neighbours, strangers and heterospecifics". Animal Behaviour. 65 (3): 453–462. doi:10.1006/anbe.2003.2087. S2CID   53166315.
  45. Briefer, E.; Rybak, F.; Aubin, T. (2008). "When to be a dear enemy: flexible acoustic relationships of neighbouring skylarks, Alauda arvensis". Animal Behaviour. 76 (4): 1319–1325. doi:10.1016/j.anbehav.2008.06.017. S2CID   21703019.
  46. Kimsey, Lynn Siri (1980). "The behaviour of male orchid bees (Apidae, Hymenoptera, Insecta) and the question of leks". Animal Behaviour. 28 (4): 996–1004. doi:10.1016/s0003-3472(80)80088-1. S2CID   53161684.
  47. Stern, David L. (1991-10-01). "Male Territoriality and Alternative Male Behaviors in the Euglossine Bee, Eulaema meriana (Hymenoptera: Apidae)". Journal of the Kansas Entomological Society. 64 (4): 421–437. JSTOR   25085309.
  48. Alatalo, Rauno V.; Carlson, Allan; Lundberg, Arne; Ulfstrand, Staffan (1981). "The Conflict Between Male Polygamy and Female Monogamy: The Case of the Pied Flycatcher Ficedula hypoleuca". The American Naturalist. 117 (5): 738–753. doi:10.1086/283756. S2CID   85184225.

Further reading

Listen to this article (21 minutes)
This audio file was created from a revision of this article dated 5 September 2019 (2019-09-05), and does not reflect subsequent edits.