Eastern carpenter bee | |
---|---|
Female Xylocopa virginica on Salvia | |
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Arthropoda |
Class: | Insecta |
Order: | Hymenoptera |
Family: | Apidae |
Genus: | Xylocopa |
Species: | X. virginica |
Binomial name | |
Xylocopa virginica Linnaeus, 1771 | |
Subspecies | |
|
Xylocopa virginica, sometimes referred to as the eastern carpenter bee, extends through the eastern United States and into Canada. They are sympatric with Xylocopa micans in much of southeastern United States. [1] They nest in various types of wood and eat pollen and nectar. [2] In X. virginica, dominant females do not focus solely on egg-laying, as in other bee species considered to have "queens". Instead, dominant X. virginica females are responsible for a full gamut of activities including reproduction, foraging, and nest construction, whereas subordinate bees may engage in little activity outside of guarding the nest. [3]
The bee is similar in size to bumblebees, but has a glossy, mostly black body with a slight metallic purple tint. [4] X. virginica males and females have generally the same mass, but can be differentiated visually by the male's longer body and the female's wider head. The males also have a white spot on their face. Additionally, the males have larger thoracic volumes for given masses. [5] Females of different social standing can also be told apart based on morphology. Primary females are larger than secondary or tertiary females, and also have more mandibular and wing wear. [2]
X. virginica have distinctive maxillae that are adapted to performing perforations on corolla tubes to reach nectaries. Their maxillae are sharp and wedge-shaped, allowing them to split the side of corolla tubes externally to access the nectar. Eastern carpenter bees also have galae on their maxillae that are shaped like large, flat blades. Bees with sharp galae can use these to further aid in penetrating the corolla tubes. [6]
X. virginica belongs to the genus Xylocopa , which consists of over 400 species worldwide, [7] in the subgenus Xylocopoides, which contains only 5 New World species, including Xylocopa californica , which also occurs in the U.S.
X. virginica is found throughout much of North America east of the Rocky Mountains and at least as far north as Nebraska, southern Ontario, and Maine. [8]
X. virginica build their nests in wood, bamboo culms, agave stalks, and other comparable materials, but they prefer to nest in milled pine or cedar lumber. The nests are built by scraping wood shavings off of the wall. These shavings are then used to create partitions between nesting cells. The entrance cuts into the wood perpendicular to the grain, but they are built parallel beyond the entrance. These nests may be either social, containing groups of two to five females, or solitary. Social nests are more common, despite the fact that brood productivity is actually lower when females choose to nest together. [3] Because X. virginica builds its nests in wood structures, it is common for it to nest in constructed furniture or buildings. [6] X. virginica is the most common large carpenter bee in eastern North America, and it nests in small groups, so nests are fairly commonly encountered. [5]
The nests are usually round and typically have one to four tunnels. [2] They have multiple branches, with each adult female living and laying eggs in a separate branch but females sharing one common entrance. Because the nests are costly to build, it is common for females to reuse old nests. [3]
In X. virginica, mating occurs only once a year, in the spring. [2] Eggs are laid in July, starting farthest from the exit hole, and by about August and mid-September, larval development has completed and all the pupae have become adults. Researchers suggest that there is a mechanism that synchronizes the emergence time of young that are laid at different times by causing the younger eggs to develop faster. This mechanism prevents bees that would emerge sooner from removing their siblings and decreasing their potential competition. [2]
Bees that have newly emerged have a soft cuticle and white wings. The wings later transition to brown, then to a bluish black. They can fly 3–4 days after emergence, but they remain in their nest for at least two weeks, consuming nectar but not pollen. [2] The juveniles begin the next mating cycle the following spring, so one generation develops in a year. [6]
Females begin to exhibit signs of senescence around July. The indicative behavior includes resting in flowers, remaining in the nest, or even just falling to the ground from flight. Older individuals also crawl, avoid taking flight, and do not struggle when handled by humans. The old bees die by early August, the same time that juveniles emerge from brood cells. Due to the simultaneous nature of expiration of old bees and emergence of new ones, there is little overlap between generations, except for some females that survive a second winter. [6]
X. virginica is not a solitary bee species, but it is not truly social either. The weak form of sociality they exhibit, with one female doing the majority of the work and caring for her sisters, may be a transitional step in the evolution of sociality. [9]
Female X. virginica can have solitary nests, but they usually nest in social groups. The social order of X. virginica is broken into three groups: primary, secondary, and tertiary. Primary females act as the dominant within a nest and are in charge of reproduction, providing food for the larvae, and laying all the eggs. This is different from many bee species in which there is a queen that focuses her energy solely on laying eggs while relying on provisions provide by subordinate bees. Secondary females may sometimes participate in oviposition, and they reinforce this potential role by helping provide for the larvae or performing nest maintenance. Tertiary females rely on the provisions provided by primary females and quietly await overwintering while remaining inactive. [3]
Studies have shown that primary females are usually the bees that have overwintered twice, while tertiary bees have only overwintered once. Tertiary bees will most likely survive a second overwintering and develop further to become primary female the following year. Secondary bees may survive a second winter, but that is unlikely if they actively forage after their first overwintering. [3]
Not all females do the same work in a social nest. This is evident based on the varying levels of wear on the wings and mandibles of females of various social standing. Although many nests have more than one female, there is a division of labor between the older and younger females. During nesting time, only the older females are responsible for nesting duties such as digging, excavating the cells, lining the cells, collecting food, and ovipositing. Evidence of this activity can be found in their worn mandibles. Young females rarely leave the nest and guard the entrance while the older females work, resulting in unworn wings and mandibles in the younger females. [2] Additionally, X. virginica is the only known species in which one-year-old females cohabit the nest with two-year-old females that do all the labor. [10]
Males often spend long periods of time hovering, flying, or in fast pursuit of intruders, while female flight activity is usually very directed, such as flights to flowers and food sites. Larger females have an advantage because they can carry larger amounts of pollen or nectar back to the nest and can fly longer distances. [5]
X. virginica survive mostly on nectar and pollen. Newly emerged bees do not have food stored in their nest, but they are occasionally brought nectar. [2] X. virginica use their maxillae to penetrate the corolla of plants and reach the nectar stores, a behavior known as nectar robbing. This happens when the bee pierces the corollas of long-tubed flowers, thus accessing nectar without making contact with the anthers and bypassing pollination. In some plants this reduces fruit production and seed number. In other plants, defensive mechanisms allow pollination to occur despite perforation of the corolla. [11]
Each nest usually has one mated individual. [2] Mating occurs in April and is often accompanied by a bobbing dance that involves about a dozen males and only a few females. [6]
Males require female activity, specifically flight, in mating. Occasionally before mating, the couple will face each other and hover for a few minutes. When the male contacts the female, he mounts her back and attempts to push his abdomen under hers. Copulation then occurs, and it is almost always followed by more mating attempts. If, during copulation, the female lands, the couple will disengage and the male will hover waiting for the female to take flight again; [2] however, although the males almost always disengage and pause copulation when the female lands, there have been instances recorded in which the males will hold on to the female with all six legs and flap his wings in an attempt to lift her back into the air. [2]
Larger males are usually more successful in mating. Because of their competitive advantage due to their size, males will likely claim a territory near female nest sites. Smaller males will stay at foraging sites or other areas they think females may pass so they can mate with reduced competition. [5]
Research has shown that, regardless of sex, X. virginica show more aggression toward non-nestmates than nestmates, indicating that they can recognize each other. By living in social groups with inclusive fitness, the bees can raise offspring with the help of the nest community rather than as a solitary effort. [12]
The ability of X. virginica to recognize nestmates allows primaries and secondaries to exclude tertiary bees from their nests. Tertiary bees are a burden on resources because they do not perform any useful activities, but they benefit from the food and shelter provided by the primary females. [3]
Males will establish territories near an active nest entrance to protect the colony and seek mating opportunities. For males that are near the nest entrance, their boundaries are usually linear and several meters long. For males that are farther from the exit, their boundaries are usually in the shape of a square and shorter in length. Males can stay in one territory for as long as two weeks. Although they do most of their foraging and resting during the night, they take small breaks throughout the day as well. After these breaks, they often have to fight off intruders that have taken advantage of their absence. [2]
Flights near the nest are usually uniform and involve much hovering. [2] Flights protecting a bee's territory can be as short as a few minutes, but may extend beyond an hour. Males will not react to another bee unless the other is flying at high speed. When other individuals hover near the nest, it is unlikely that the male will pursue, whereas if another male comes into a territory at a high speed, the territorial male will give chase. When males patrolling the entrance of a nest are confronted with either dead or living Eastern carpenter bees suspended from a thread and dangled within the male's territory, the male does not respond when the bee is suspended and motionless, whether it is living or dead—even though X. virginica are capable of recognizing other individuals of their species. However, when the suspended bee is released and allowed to fly in the male's territory or is swung through the territory on the thread, the territorial male pursues it. [2]
There is one common species of bombyliid flies known to parasitize the larvae of Xylocopa virginica: Xenox tigrinus .
Eastern carpenter bees have mandibular glands that are known to produce a marking chemical in X. hirsutissima that functions as a nest marker or for female attraction. The glands are present in both males and females, but they produce no marking substance. [2] However, X. virginica does have a Dufour's gland that is used to deposit a scent on a flower immediately following nectar collection. The scent, composed of hydrocarbons and esters, discourages X. virginica, as well as other bee species, from returning to that same flower. [10]
The male bee is unable to sting because the stinger is simply a modified ovipositor (which males lack by definition), though they will commonly approach human beings and buzz loudly around them or fly close to them. The female, on the other hand, is capable of stinging; while the pain level of these stings is not well-documented, researchers have testified that X. virginica will sting if roughly handled. [6] [13] As the stinger is not barbed, a female can sting multiple times.
X. virginica visits many different kinds of flowers in order to gather pollen and nectar to bring back to the nest for larvae. Most of the plants they visit are wild grown or grown for decorative value; [6] however, they can be good pollinators of blueberry crops. [14] Their active seasons are quite long, and they forage on a wide variety of plant species. Also, because the start of their activity season is dependent on temperature, it is easy for greenhouse workers to manipulate the beginning of foraging activity. [11] However, in comparison to species such as the honey bee, their smaller nest makes them less powerful as pollinators. [15]
Because X. virginica builds its nests in various types of wood, it presents the disadvantage of weakening wood in manmade structures. They are also able to produce an excrement upon exiting their tunnels that may splash on the sides of buildings and negatively affect the aesthetic appeal of that structure. However, when weighed against the benefits X. virginica have as pollinators, the costs of its destructive behavior are insignificant. X. virginica offer benefits in the form of pollination for fruits, vegetables, legumes, and flower crops. Although the pollination strengths of X. virginica are secondary to that of the bumblebees and honey bees, the contribution is great enough to overlook destructive tendencies. [6] X. virginica avoid entrances that are stained white, which is a possible solution to keeping them out of unwanted areas. [10]
Carpenter bees are species in the genus Xylocopa of the subfamily Xylocopinae. The genus includes some 500 bees in 31 subgenera. The common name "carpenter bee" derives from their nesting behavior; nearly all species burrow into hard plant material such as dead wood or bamboo. The main exceptions are species in the subgenus Proxylocopa, which dig nesting tunnels in suitable soil.
Bombus terrestris, the buff-tailed bumblebee or large earth bumblebee, is one of the most numerous bumblebee species in Europe. It is one of the main species used in greenhouse pollination, and so can be found in many countries and areas where it is not native, such as Tasmania. Moreover, it is a eusocial insect with an overlap of generations, a division of labour, and cooperative brood care. The queen is monandrous which means she mates with only one male. B. terrestris workers learn flower colours and forage efficiently.
Habropoda laboriosa, the southeastern blueberry bee, is a bee in the family Apidae. It is native to the eastern United States. It is regarded as the most efficient pollinator of southern rabbiteye blueberries, because the flowers require buzz pollination, and H. laboriosa is one of the few bees that exhibit this behavior. It is active for only a few weeks of the year, while the blueberries are in flower during early spring, when the temperature is warm and humid. H. laboriosa are solitary bees that live alone but nest in close proximity with other nests of their species. They have similar features to bumble bees, but they are smaller in size compared to them. H. laboriosa are arthropods so they have segmented bodies that are composed of the head, thorax, and abdomen.
Bombus lapidarius is a species of bumblebee in the subgenus Melanobombus. Commonly known as the red-tailed bumblebee, B. lapidarius can be found throughout much of Central Europe. Known for its distinctive black and red body, this social bee is important in pollination.
Xylocopa sonorina, the valley carpenter bee or Hawaiian carpenter bee, is a species of carpenter bee found from western Texas to northern California, and the eastern Pacific islands. Females are black while males are golden-brown with green eyes.
The two-spotted bumble bee is a species of social bumble bee found in the eastern half of the United States and the adjacent south-eastern part of Canada. In older literature this bee is often referred to as Bremus bimaculatus, Bremus being a synonym for Bombus. The bee's common name comes from the two yellow spots on its abdomen. Unlike many of the other species of bee in the genus Bombus,B. bimaculatus is not on the decline, but instead is very stable. They are abundant pollinators that forage at a variety of plants.
Bombus vosnesenskii, the yellow-faced bumblebee, is a species of bumblebee native to the west coast of North America, where it is distributed from British Columbia to Baja California. It is the most abundant species of bee in this range, and can be found in both urban and agricultural areas. Additionally, B. vosnesenskii is utilized as an important pollinator in commercial agriculture, especially for greenhouse tomatoes. Though the species is not currently experiencing population decline, urbanization has affected its nesting densities, and early emergence of the B. vosnesenskii has been implicated in the increasing lack of bee diversity on the West coast.
The California carpenter bee, Xylocopa californica, is a species of carpenter bee in the order Hymenoptera, and it is native to western North America.
Anthidium maculosum is a species of bee in the family Megachilidae, the leaf-cutter, carder, or mason bees. It is a solitary bee where the males are territorial and the females take part in polyandry. The males of A. maculosum differ from most other males of bee species because the males are significantly larger than females. In addition, subordinate males that act as satellites are smaller than territory-owning males. This species can be found predominately in Mexico and the United States.
Tetragonisca angustula is a small eusocial stingless bee found in México, Central and South America. It is known by a variety of names in different regions. A subspecies, Tetragonisca angustula fiebrigi, occupies different areas in South America and has a slightly different coloration.
Eulaema meriana is a large-bodied bee species in the tribe Euglossini, otherwise known as the orchid bees. The species is a solitary bee and is native to tropical Central and South America. The male collects fragrances from orchid flowers, which it stores in hollows in its hind legs. Orchids can be deceptive by mimicking the form of a female and her sex pheromone, thus luring male bees or wasps. Pollination will take place as the males attempt to mate with the labellum, or the tip petal of the flower. Male E. meriana are territorial and have a particular perch on a tree trunk where it displays to attract a female. After mating, the female builds a nest with urn-shaped cells made with mud, feces, and plant resin, and provisions these with nectar and pollen before laying an egg in each. These bees also have complex foraging and wing buzzing behaviors and are part of a mimicry complex.
The Oriental carpenter bee, Xylocopa nasalis, or Xylocopa (Biluna) nasalis, is a species of carpenter bee. It is widely distributed in Southeast Asian countries. It is a major pollinator within its ecosystem, and is often mistaken for a bumblebee. The species leads a solitary lifestyle with a highly female-biased colony in the nest.
Euglossa cordata is a primitively eusocial orchid bee of the American tropics. The species is known for its green body color and ability to fly distances of over 50 km. Males mostly disperse and leave their home nests, while females have been observed to possess philopatric behavior. Because of this, sightings are rare and little is known about the species. However, it has been observed that adults who pollinate certain species of orchids will become intoxicated during the pollination.
Lasioglossum cressonii is a species in the sweat bee genus Lasioglossum, family Halictidae. Halictidae exhibit eusocial hierarchy behavior which is interesting given that eusociality in this group is hard to evolve and easy to lose. L. cressonii is found throughout North America. L. cressonii have been shown to be important pollinators for apple trees and many other North American native plants.
Xylocopa sulcatipes is a large Arabian carpenter bee. These multivoltine bees take part in social nesting and cooperative nesting. They are metasocial carpenter bees that nest in thin dead branches. One or more cooperating females build many brood cells. They have been extensively studied in Saudi Arabia and Israel.
Xylocopa pubescens is a species of large carpenter bee. Females form nests by excavation with their mandibles, often in dead or soft wood. X. pubescens is commonly found in areas extending from India to Northeast and West Africa. It must reside in these warm climates because it requires a minimum ambient temperature of 18 °C (64 °F) in order to forage.
Xylocopa micans, also known as the southern carpenter bee, is a species of bee within Xylocopa, the genus of carpenter bees. The southern carpenter bee can be found mainly in the coastal and gulf regions of the southeastern United States, as well as Mexico and Guatemala. Like all Xylocopa bees, X. micans bees excavate nests in woody plant material. However, unlike its sympatric species Xylocopa virginica, X. micans has not been found to construct nest galleries in structural timbers of building, making it less of an economic nuisance to humans. Carpenter bees have a wide range of mating strategies between different species. The southern carpenter bee exhibits a polymorphic mating strategy, with its preferred method of mating changing as the season progresses from early spring to mid summer. Like most bees in its genus, the southern carpenter bee is considered a solitary bee because it does not live in colonies.
The tiger bee fly, Xenox tigrinus, is an insect of the family Bombyliidae found in the eastern United States and southern Ontario. It formerly went by the name Anthrax tigrinus. The distinctive wing pattern may resemble tiger stripes, giving the tiger bee fly its name. Like other members of the bee fly family, the tiger bee fly parasitizes the larvae of other insects.
Ceratina calcarata, the spurred ceratina, is a species of small carpenter bee in the family Apidae. It is found in eastern North America. This species ranges from Georgia, USA north to Ontario, Canada and east to Nova Scotia, Canada. This bee is a common generalist, native pollinator, it pollinates plants like watermelon and cucumber very effectively. C. calcarata adds to the productivity of a wide range of ecological and agricultural systems due to its wide range and abundance. This small bee is becoming a model organism in the scientific research of social evolution. C. calcarata is the first subsocial bee species to have its genome published, allowing researchers to investigate the evolutionary origins of social behaviour.
Bombus vancouverensis is a common species of eusocial bumblebee of the subgenus Pyrobombus. B. vancouverensis inhabits mountainous regions of western North America, where it has long been considered as a synonym of Bombus bifarius, and essentially all of the literature on bifarius refers instead to vancouverensis. B. vancouverensis has been identified as one of the two species of bumblebee observed to use pheromones in kin recognition. The other is the frigid bumblebee, Bombus frigidus.