In ecology, a biological interaction is the effect that a pair of organisms living together in a community have on each other. They can be either of the same species (intraspecific interactions), or of different species (interspecific interactions). These effects may be short-term, or long-term, both often strongly influence the adaptation and evolution of the species involved. Biological interactions range from mutualism, beneficial to both partners, to competition, harmful to both partners. Interactions can be direct when physical contact is established or indirect, through intermediaries such as shared resources, territories, ecological services, metabolic waste, toxins or growth inhibitors. This type of relationship can be shown by net effect based on individual effects on both organisms arising out of relationship.
Several recent studies have suggested non-trophic species interactions such as habitat modification and mutualisms can be important determinants of food web structures. However, it remains unclear whether these findings generalize across ecosystems, and whether non-trophic interactions affect food webs randomly, or affect specific trophic levels or functional groups.
Although biological interactions, more or less individually, were studied earlier, Edward Haskell (1949) gave an integrative approach to the thematic, proposing a classification of "co-actions", [1] later adopted by biologists as "interactions". Close and long-term interactions are described as symbiosis; [a] symbioses that are mutually beneficial are called mutualistic. [2] [3] [4]
The term symbiosis was subject to a century-long debate about whether it should specifically denote mutualism, as in lichens or in parasites that benefit themselves. [5] This debate created two different classifications for biotic interactions, one based on the time (long-term and short-term interactions), and other based on the magnitude of interaction force (competition/mutualism) or effect of individual fitness, according the stress gradient hypothesis and Mutualism Parasitism Continuum. Evolutionary game theory such as Red Queen Hypothesis, Red King Hypothesis or Black Queen Hypothesis, have demonstrated a classification based on the force of interaction is important.[ citation needed ]
Short-term interactions, including predation and pollination, are extremely important in ecology and evolution. These are short-lived in terms of the duration of a single interaction: a predator kills and eats a prey; a pollinator transfers pollen from one flower to another; but they are extremely durable in terms of their influence on the evolution of both partners. As a result, the partners coevolve. [6] [7]
In predation, one organism, the predator, kills and eats another organism, its prey. Predators are adapted and often highly specialized for hunting, with acute senses such as vision, hearing, or smell. Many predatory animals, both vertebrate and invertebrate, have sharp claws or jaws to grip, kill, and cut up their prey. Other adaptations include stealth and aggressive mimicry that improve hunting efficiency. Predation has a powerful selective effect on prey, causing them to develop antipredator adaptations such as warning coloration, alarm calls and other signals, camouflage and defensive spines and chemicals. [8] [9] [10] Predation has been a major driver of evolution since at least the Cambrian period. [6]
In pollination, pollinators including insects (entomophily), some birds (ornithophily), and some bats, transfer pollen from a male flower part to a female flower part, enabling fertilisation, in return for a reward of pollen or nectar. [11] The partners have coevolved through geological time; in the case of insects and flowering plants, the coevolution has continued for over 100 million years. Insect-pollinated flowers are adapted with shaped structures, bright colours, patterns, scent, nectar, and sticky pollen to attract insects, guide them to pick up and deposit pollen, and reward them for the service. Pollinator insects like bees are adapted to detect flowers by colour, pattern, and scent, to collect and transport pollen (such as with bristles shaped to form pollen baskets on their hind legs), and to collect and process nectar (in the case of honey bees, making and storing honey). The adaptations on each side of the interaction match the adaptations on the other side, and have been shaped by natural selection on their effectiveness of pollination. [7] [12] [13]
Seed dispersal is the movement, spread or transport of seeds away from the parent plant. Plants have limited mobility and rely upon a variety of dispersal vectors to transport their propagules, including both abiotic vectors such as the wind and living (biotic) vectors like birds. [14] Seeds can be dispersed away from the parent plant individually or collectively, as well as dispersed in both space and time. The patterns of seed dispersal are determined in large part by the dispersal mechanism and this has important implications for the demographic and genetic structure of plant populations, as well as migration patterns and species interactions. There are five main modes of seed dispersal: gravity, wind, ballistic, water, and by animals. Some plants are serotinous and only disperse their seeds in response to an environmental stimulus. Dispersal involves the letting go or detachment of a diaspore from the main parent plant. [15]
The six possible types of symbiosis are mutualism, commensalism, parasitism, neutralism, amensalism, and competition. [16] These are distinguished by the degree of benefit or harm they cause to each partner. [17]
Mutualism is an interaction between two or more species, where species derive a mutual benefit, for example an increased carrying capacity. Similar interactions within a species are known as co-operation. Mutualism may be classified in terms of the closeness of association, the closest being symbiosis, which is often confused with mutualism. One or both species involved in the interaction may be obligate, meaning they cannot survive in the short or long term without the other species. Though mutualism has historically received less attention than other interactions such as predation, [18] it is an important subject in ecology. Examples include cleaning symbiosis, gut flora, Müllerian mimicry, and nitrogen fixation by bacteria in the root nodules of legumes.[ citation needed ]
Commensalism benefits one organism and the other organism is neither benefited nor harmed. It occurs when one organism takes benefits by interacting with another organism by which the host organism is not affected. A good example is a remora living with a manatee. Remoras feed on the manatee's faeces. The manatee is not affected by this interaction, as the remora does not deplete the manatee's resources. [19]
Parasitism is a relationship between species, where one organism, the parasite, lives on or in another organism, the host, causing it some harm, and is adapted structurally to this way of life. [20] The parasite either feeds on the host, or, in the case of intestinal parasites, consumes some of its food. [21]
Neutralism (a term introduced by Eugene Odum) [22] describes the relationship between two species that interact but do not affect each other. Examples of true neutralism are virtually impossible to prove; the term is in practice used to describe situations where interactions are negligible or insignificant. [23] [24]
Amensalism (a term introduced by Edward Haskell) [25] is an interaction where an organism inflicts harm to another organism without any costs or benefits received by itself. [26] Amensalism describes the adverse effect that one organism has on another organism (figure 32.1). This is a unidirectional process based on the release of a specific compound by one organism that has a negative effect on another. A classic example of amensalism is the microbial production of antibiotics that can inhibit or kill other, susceptible microorganisms.
A clear case of amensalism is where sheep or cattle trample grass. Whilst the presence of the grass causes negligible detrimental effects to the animal's hoof, the grass suffers from being crushed. Amensalism is often used to describe strongly asymmetrical competitive interactions, such as has been observed between the Spanish ibex and weevils of the genus Timarcha which feed upon the same type of shrub. Whilst the presence of the weevil has almost no influence on food availability, the presence of ibex has an enormous detrimental effect on weevil numbers, as they consume significant quantities of plant matter and incidentally ingest the weevils upon it. [27]
Competition can be defined as an interaction between organisms or species, in which the fitness of one is lowered by the presence of another. Competition is often for a resource such as food, water, or territory in limited supply, or for access to females for reproduction. [18] Competition among members of the same species is known as intraspecific competition, while competition between individuals of different species is known as interspecific competition. According to the competitive exclusion principle, species less suited to compete for resources should either adapt or die out. [28] [29] This competition within and between species for resources plays a critical role in natural selection. [30]
Biotic interactions can vary in intensity (strength of interaction), and frequency (number of interactions in a given time). [31] [32] There are direct interactions when there is a physical contact between individuals or indirect interactions when there is no physical contact, that is, the interaction occurs with a resource, ecological service, toxine or growth inhibitor. [33] The interactions can be directly determined by individuals (incidentally) or by stochastic processes (accidentally), for instance side effects that one individual have on other. [34] They are divided into six major types: Competition, Antagonism, Amensalism, Neutralism, Commensalism and Mutualism. [35]
Some examples of non-trophic interactions are habitat modification, mutualism and competition for space. It has been suggested recently that non-trophic interactions can indirectly affect food web topology and trophic dynamics by affecting the species in the network and the strength of trophic links. [36] [37] [38] It is necessary to integrate trophic and non-trophic interactions in ecological network analyses. [38] [39] [40] The few empirical studies that address this suggest food web structures (network topologies) can be strongly influenced by species interactions outside the trophic network. [36] [37] [41] However these studies include only a limited number of coastal systems, and it remains unclear to what extent these findings can be generalized. Whether non-trophic interactions typically affect specific species, trophic levels, or functional groups within the food web, or, alternatively, indiscriminately mediate species and their trophic interactions throughout the network has yet to be resolved. sessile species with generally low trophic levels seem to benefit more than others from non-trophic facilitation, [42] though facilitation benefits higher trophic and more mobile species as well. [41] [43] [44] [45]
Ecology is the natural science of the relationships among living organisms and their environment. Ecology considers organisms at the individual, population, community, ecosystem, and biosphere levels. Ecology overlaps with the closely related sciences of biogeography, evolutionary biology, genetics, ethology, and natural history.
Symbiosis is any type of a close and long-term biological interaction, between two organisms of different species. The two organisms, termed symbionts, can be either in a mutualistic, a commensalistic, or a parasitic relationship. In 1879, Heinrich Anton de Bary defined symbiosis as "the living together of unlike organisms".
Mutualism describes the ecological interaction between two or more species where each species has a net benefit. Mutualism is a common type of ecological interaction. Prominent examples are:
In ecology, a niche is the match of a species to a specific environmental condition. It describes how an organism or population responds to the distribution of resources and competitors and how it in turn alters those same factors. "The type and number of variables comprising the dimensions of an environmental niche vary from one species to another [and] the relative importance of particular environmental variables for a species may vary according to the geographic and biotic contexts".
Pollination is the transfer of pollen from an anther of a plant to the stigma of a plant, later enabling fertilisation and the production of seeds. Pollinating agents can be animals such as insects, for example beetles or butterflies; birds, and bats; water; wind; and even plants themselves. Pollinating animals travel from plant to plant carrying pollen on their bodies in a vital interaction that allows the transfer of genetic material critical to the reproductive system of most flowering plants. When self-pollination occurs within a closed flower. Pollination often occurs within a species. When pollination occurs between species, it can produce hybrid offspring in nature and in plant breeding work.
This glossary of ecology is a list of definitions of terms and concepts in ecology and related fields. For more specific definitions from other glossaries related to ecology, see Glossary of biology, Glossary of evolutionary biology, and Glossary of environmental science.
The Prodoxidae are a family of moths, generally small in size and nondescript in appearance. They include species of moderate pest status, such as the currant shoot borer, and others of considerable ecological and evolutionary interest, such as various species of "yucca moths".
Myrmecophytes are plants that live in a mutualistic association with a colony of ants. There are over 100 different genera of myrmecophytes. These plants possess structural adaptations in the form of domatia where ants can shelter, and food bodies and extrafloral nectaries that provide ants with food. In exchange for these resources, ants aid the myrmecophyte in pollination, seed dispersal, gathering of essential nutrients, and defense. Domatia adapted specifically to ants may be called myrmecodomatia.
The rhizosphere is the narrow region of soil or substrate that is directly influenced by root secretions and associated soil microorganisms known as the root microbiome. Soil pores in the rhizosphere can contain many bacteria and other microorganisms that feed on sloughed-off plant cells, termed rhizodeposition, and the proteins and sugars released by roots, termed root exudates. This symbiosis leads to more complex interactions, influencing plant growth and competition for resources. Much of the nutrient cycling and disease suppression by antibiotics required by plants occurs immediately adjacent to roots due to root exudates and metabolic products of symbiotic and pathogenic communities of microorganisms. The rhizosphere also provides space to produce allelochemicals to control neighbours and relatives.
Ecological facilitation or probiosis describes species interactions that benefit at least one of the participants and cause harm to neither. Facilitations can be categorized as mutualisms, in which both species benefit, or commensalisms, in which one species benefits and the other is unaffected. This article addresses both the mechanisms of facilitation and the increasing information available concerning the impacts of facilitation on community ecology.
Myrmecophily consists of positive, mutualistic, interspecies associations between ants and a variety of other organisms, such as plants, other arthropods, and fungi. It may also include commensal or even parasitic interactions.
In ecology, a community is a group or association of populations of two or more different species occupying the same geographical area at the same time, also known as a biocoenosis, biotic community, biological community, ecological community, or life assemblage. The term community has a variety of uses. In its simplest form it refers to groups of organisms in a specific place or time, for example, "the fish community of Lake Ontario before industrialization".
Insect ecology is the interaction of insects, individually or as a community, with the surrounding environment or ecosystem. This interaction is mostly mediated by the secretion and detection of chemicals (semiochemical) in the environment by insects. Semiochemicals are secreted by the organisms in the environment and they are detected by other organism such as insects. Semiochemicals used by organisms, including (insects) to interact with other organism either of the same species or different species can generally grouped into four. These are pheromone, synomones, allomone and kairomone. Pheromones are semiochemicals that facilitates interaction between organisms of same species. Synomones benefit both the producer and receiver, allomone is advantageous to only the producer whiles kairomones is beneficial to the receiver. Insect interact with other species within their community and these interaction include mutualism, commensalism, ammensalism, parasitism and neutralisms.
An ecological network is a representation of the biotic interactions in an ecosystem, in which species (nodes) are connected by pairwise interactions (links). These interactions can be trophic or symbiotic. Ecological networks are used to describe and compare the structures of real ecosystems, while network models are used to investigate the effects of network structure on properties such as ecosystem stability.
Plant ecology is a subdiscipline of ecology that studies the distribution and abundance of plants, the effects of environmental factors upon the abundance of plants, and the interactions among plants and between plants and other organisms. Examples of these are the distribution of temperate deciduous forests in North America, the effects of drought or flooding upon plant survival, and competition among desert plants for water, or effects of herds of grazing animals upon the composition of grasslands.
Evolving digital ecological networks are webs of interacting, self-replicating, and evolving computer programs that experience the same major ecological interactions as biological organisms. Despite being computational, these programs evolve quickly in an open-ended way, and starting from only one or two ancestral organisms, the formation of ecological networks can be observed in real-time by tracking interactions between the constantly evolving organism phenotypes. These phenotypes may be defined by combinations of logical computations that digital organisms perform and by expressed behaviors that have evolved. The types and outcomes of interactions between phenotypes are determined by task overlap for logic-defined phenotypes and by responses to encounters in the case of behavioral phenotypes. Biologists use these evolving networks to study active and fundamental topics within evolutionary ecology.
Tritrophic interactions in plant defense against herbivory describe the ecological impacts of three trophic levels on each other: the plant, the herbivore, and its natural enemies. They may also be called multitrophic interactions when further trophic levels, such as soil microbes, endophytes, or hyperparasitoids are considered. Tritrophic interactions join pollination and seed dispersal as vital biological functions which plants perform via cooperation with animals.
Flowering synchrony is the amount of overlap between flowering periods of plants in their mating season compared to what would be expected to occur randomly under given environmental conditions. A population which is flowering synchronously has more plants flowering at the same time than would be expected to occur randomly. A population which is flowering asynchronously has fewer plants flowering at the same time than would be expected randomly. Flowering synchrony can describe synchrony of flowering periods within a year, across years, and across species in a community. There are fitness benefits and disadvantages to synchronized flowering, and it is a widespread phenomenon across pollination syndromes.
Plant-animal interactions are important pathways for the transfer of energy within ecosystems, where both advantageous and unfavorable interactions support ecosystem health. Plant-animal interactions can take on important ecological functions and manifest in a variety of combinations of favorable and unfavorable associations, for example predation, frugivory and herbivory, parasitism, and mutualism. Without mutualistic relationships, some plants may not be able to complete their life cycles, and the animals may starve due to resource deficiency.
Obligate mutualism is a special case of mutualism where an ecological interaction between species mutually benefits each other, and one or all species are unable to survive without the other. In some obligate relationships, only one species is dependent on the relationship. For example, a parasite may require a host in order to reproduce and survive, while the host does not depend at all on the parasite. Fig and fig wasps are an example of a co-obligate relationship, where both species are totally dependent on the relationship. The fig plant is entirely dependent on the fig wasp for pollination, and the fig wasp requires the fig plant for reproductive purposes. Many insect-fungi relationships are also co-obligate: the insect disperses, and in some cases protects, the fungi while the fungi provide nutrients for the insects. This interaction allows insects and fungi to, as a group, inhabit previously inhospitable or unreachable environments. Though obligate relationships need not be limited to two species, they are often discussed as such, with the relationship being made up of a host and a symbiont, though the terms are often attributed arbitrarily.
{{cite journal}}
: CS1 maint: multiple names: authors list (link)