In evolutionary ecology, a parasitoid is an organism that lives in close association with its host at the host's expense, eventually resulting in the death of the host. Parasitoidism is one of six major evolutionary strategies within parasitism, distinguished by the fatal prognosis for the host, which makes the strategy close to predation.
Among parasitoids, strategies range from living inside the host (endoparasitism), allowing it to continue growing before emerging as an adult, to paralysing the host and living outside it (ectoparasitism). Hosts can include other parasitoids, resulting in hyperparasitism; in the case of oak galls, up to five levels of parasitism are possible. Some parasitoids influence their host's behaviour in ways that favour the propagation of the parasitoid.
Parasitoids are found in a variety of taxa across the insect superorder Endopterygota, whose complete metamorphosis may have pre-adapted them for a split lifestyle, with parasitoid larvae and free-living adults. Most are in the Hymenoptera, where the ichneumons and many other parasitoid wasps are highly specialised for a parasitoidal way of life. There are parasitoids, too, in the Diptera, Coleoptera and other orders of endopterygote insects. Some of these, usually but not only wasps, are used in biological pest control.
The 17th-century zoological artist Maria Sibylla Merian closely observed parasitoids and their hosts in her paintings. The biology of parasitoidism influenced Charles Darwin's beliefs and has inspired science fiction authors and scriptwriters to create numerous parasitoidal aliens that kill their human hosts, such as the alien species in Ridley Scott's 1979 film Alien .
The term "parasitoid" was coined in 1913 by the Swedo-Finnish writer Odo Reuter, [3] and adopted in English by his reviewer, [4] the entomologist William Morton Wheeler. [5] Reuter used it to describe the strategy where the parasite develops in or on the body of a single host individual, eventually killing that host, while the adult is free-living. Since that time, the concept has been generalised and widely applied. [6]
A perspective on the evolutionary options can be gained by considering four questions: the effect on the reproductive fitness of a parasite's hosts; the number of hosts they have per life stage; whether the host is prevented from reproducing; and whether the effect depends on intensity (number of parasites per host). From this analysis, proposed by K. D. Lafferty and A. M. Kunis, the major evolutionary strategies of parasitism emerge, alongside predation. [7]
Host fitness | Single host, stays alive | Single host, dies | Multiple hosts |
---|---|---|---|
Able to reproduce (fitness > 0) | Conventional parasite Pathogen | Trophically transmitted parasite [b] Trophically transmitted pathogen | Micropredator Micropredator |
Unable to reproduce (fitness = 0) | — Parasitic castrator | Trophically transmitted parasitic castrator Parasitoid | Social predator [c] Solitary predator |
Parasitoidism, in the view of R. Poulin and H. S. Randhawa, is one of six main evolutionary strategies within parasitism, the others being parasitic castrator, directly transmitted parasite, trophically transmitted parasite, vector-transmitted parasite, and micropredator. These are adaptive peaks, with many possible intermediate strategies, but organisms in many different groups have consistently converged on these six. [8] [9]
Parasitoids feed on a living host which they eventually kill, typically before it can produce offspring, whereas conventional parasites usually do not kill their hosts, and predators typically kill their prey immediately. [10] [11]
Parasitoids can be classified as either endo- or ectoparasitoids with idiobiont or koinobiont developmental strategies. Endoparasitoids live within their host's body, while ectoparasitoids feed on the host from outside. Idiobiont parasitoids prevent further development of the host after initially immobilising it, whereas koinobiont parasitoids allow the host to continue its development while feeding upon it. Most ectoparasitoids are idiobiont, as the host could damage or dislodge the external parasitoid if allowed to move and moult. Most endoparasitoids are koinobionts, giving them the advantage of a host that continues to grow larger and avoid predators. [12]
Primary parasitoids have the simplest parasitic relationship, involving two organisms, the host and the parasitoid. Hyperparasitoids are parasitoids of parasitoids; secondary parasitoids have a primary parasitoid as their host, so there are three organisms involved. Hyperparasitoids are either facultative (can be a primary parasitoid or a hyperparasitoid depending on the situation) or obligate (always develop as a hyperparasitoid). Levels of parasitoids beyond secondary also occur, especially among facultative parasitoids. In oak gall systems, there can be up to five levels of parasitism. [13] Cases in which two or more species of parasitoids simultaneously attack the same host without parasitizing each other are called multi- or multiple parasitism. In many cases, multiple parasitism still leads to the death of one or more of the parasitoids involved. If multiple parasitoids of the same species coexist in a single host, it is called superparasitism. Gregarious species lay multiple eggs or polyembryonic eggs which lead to multiple larvae in a single host. The end result of gregarious superparasitism can be a single surviving parasitoid individual or multiple surviving individuals, depending on the species. If superparasitism occurs accidentally in normally solitary species the larvae often fight among themselves until only one is left. [14] [15]
In another strategy, some parasitoids influence the host's behaviour in ways that favour the propagation of the parasitoid, often at the cost of the host's life. A spectacular example is the lancet liver fluke, which causes host ants to die clinging to grass stalks, where grazers or birds may be expected to eat them and complete the parasitoidal fluke's life cycle in its definitive host. Similarly, as strepsipteran parasitoids of ants mature, they cause the hosts to climb high on grass stalks, positions that are risky, but favour the emergence of the strepsipterans. [16] Among pathogens of mammals, the rabies virus affects the host's central nervous system, eventually killing it, but perhaps helping to disseminate the virus by modifying the host's behaviour. [17] Among the parasitic wasps, Glyptapanteles modifies the behaviour of its host caterpillar to defend the pupae of the wasps after they emerge from the caterpillar's body. [18] The phorid fly Apocephalus borealis oviposits into the abdomen of its hosts, including honey bees, causing them to abandon their nest, flying from it at night and soon dying, allowing the next generation of flies to emerge outside the hive. [19]
About 10% of described insects are parasitoids, in the orders Hymenoptera, Diptera, Coleoptera, Neuroptera, Lepidoptera, Strepsiptera, and Trichoptera. The majority are wasps within the Hymenoptera; most of the others are Dipteran flies. [6] [20] [21] Parasitoidism has evolved independently many times: once each in Hymenoptera, Strepsiptera, Neuroptera, and Trichoptera, twice in the Lepidoptera, 10 times or more in Coleoptera, and no less than 21 times among the Diptera. These are all holometabolous insects (Endopterygota, which form a single clade), and it is always the larvae that are parasitoidal. [22] The metamorphosis from active larva to an adult with a different body structure permits the dual lifestyle of parasitic larva, freeliving adult in this group. [23] These relationships are shown on the phylogenetic tree; [24] [25] groups containing parasitoids are shown in boldface, e.g. Coleoptera, with the number of times parasitoidism evolved in the group in parentheses, e.g. (10 clades). The approximate number (estimates can vary widely) of parasitoid species [26] out of the total is shown in square brackets, e.g. [2,500 of 400,000].
Endopterygota |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Within the Hymenoptera, parasitoidism evolved just once, and the many described [d] species of parasitoid wasps [27] represent the great majority of species in the order, barring those like the ants, bees, and Vespidae wasps that have secondarily lost the parasitoid habit. The parasitoid wasps include some 25,000 Ichneumonoidea, 22,000 Chalcidoidea, 5,500 Vespoidea, 4,000 Platygastroidea, 3,000 Chrysidoidea, 2,300 Cynipoidea, and many smaller families. [26] These often have remarkable life cycles. [28] They can be classified as either endoparasitic or ectoparasitic according to where they lay their eggs. [29] Endoparasitic wasps insert their eggs inside their host, usually as koinobionts, allowing the host to continue to grow (thus providing more food to the wasp larvae), moult, and evade predators. Ectoparasitic wasps deposit theirs outside the host's body, usually as idiobionts, immediately paralysing the host to prevent it from escaping or throwing off the parasite. They often carry the host to a nest where it will remain undisturbed for the wasp larva to feed on. [6] Most species of wasps attack the eggs or larvae of their host, but some attack adults. Oviposition depends on finding the host and on evading host defences; the ovipositor is a tube-like organ used to inject eggs into hosts, sometimes much longer than the wasp's body. [30] [31] [32] Hosts such as ants often behave as if aware of the wasps' presence, making violent movements to prevent oviposition. Wasps may wait for the host to stop moving, and then attack suddenly. [33]
Parasitoid wasps face a range of obstacles to oviposition, [6] including behavioural, morphological, physiological and immunological defences of their hosts. [29] [34] To thwart this, some wasps inundate their host with their eggs so as to overload its immune system's ability to encapsulate foreign bodies; [35] others introduce a virus which interferes with the host's immune system. [36] Some parasitoid wasps locate hosts by detecting the chemicals that plants release to defend against insect herbivores. [37]
The true flies (Diptera) include several families of parasitoids, the largest of which is the Tachinidae (some 9,200 species [26] ), followed by the Bombyliidae (some 4,500 species [26] ), along with the Pipunculidae and the Conopidae, which includes parasitoidal genera such as Stylogaster . Other families of flies include some protelean species. [38] Some Phoridae are parasitoids of ants. [39] [40] Some flesh flies are parasitoids: for instance Emblemasoma auditrix is parasitoidal on cicadas, locating its host by sound. [41]
The Strepsiptera (twisted-wing parasites) consist entirely of parasitoids; they usually sterilise their hosts. [42]
Two beetle families, Ripiphoridae (450 species [26] ) [43] [44] and Rhipiceridae, are largely parasitoids, as are Aleochara Staphylinidae; in all, some 400 staphylinids are parasitoidal. [26] [38] [45] Some 1,600 species of the large and mainly freeliving family Carabidae are parasitoids. [26]
A few Neuroptera are parasitoidal; they have larvae that actively search for hosts. [46] The larvae of some Mantispidae, subfamily Symphrasinae, are parasitoids of other arthropods including bees and wasps. [26]
Although nearly all Lepidoptera (butterflies and moths) are herbivorous, a few species are parasitic. The larvae of Epipyropidae feed on Homoptera such as leafhoppers and cicadas, and sometimes on other Lepidoptera. The larvae of Cyclotornidae parasitise first Homoptera and later ant brood. [47] The pyralid moth Chalcoela has been used in biological control of the wasp Polistes in the Galapagos Islands. [22]
Parasitism is rare in the Trichoptera (caddisflies), but it is found among the Hydroptilidae (purse-case caddisflies), probably including all 10 species in the Orthotrichia aberrans group; they parasitise the pupae of other trichopterans. [48]
Mites of the family Acarophenacidae are ectoparasitoids of insect eggs. Unlike the insect parasitoids, it is the adult stage in Acarophenacidae that acts as a parasitoid. Specifically, adult female mites feed on insect eggs and their body swells up with offspring, which eventually emerge as adults. [49]
All known fungi in the genera Cordyceps and Ophiocordyceps are endoparasitic. [50] One of the most notable fungal parasitoids is O. unilateralis which infects carpenter ants by breaching the ant's exoskeletons via their spores and growing in the ant's hemocoel as free living yeast cells. Eventually the yeast cells progress to producing nerve toxins to alter the behaviour of the ant causing it to climb and bite onto vegetation, known as the 'death bite'. [51] This approach is so fine-tuned it causes the ant to bite down on the adaxial leaf midrib, which is the part of the leaf most optimal for the fungus to fruit. In fact, it has been found that in specific circumstances, the time of the death bite is synchronised to solar noon. [52] As much as 40% of the ant's biomass is fungal hyphae at the moment of the death bite. [53] After the ant dies, the fungus produces a large stalk, growing from the back of the ant's head [54] which subsequently releases ascospores. These spores are too large to be wind dispersed and instead fall directly to the ground where they produce secondary spores that infect ants as they walk over them. [55] O. sinesis , is a parasitoid as well, parasitising ghost moth larvae, killing them within 15-25 days, a similar process to that of O. unilateralis. [56]
Host location has been studied in Ormia ochracea, a parasitoid tachinid fly that locates their field cricket host acoustically (phonotaxis). [57] Preference for the dominant local host species was not explained by DNA analysis. In fact, populations across the southern U.S. were inexplicably closely related, considering rate of range expansion from a presumed Central American origin. [58] A captive population of lab-reared flies were raised on two different host songs (Gryllus integer or G. lineaticeps). Responsive adult females overwhelmingly chose their familiar song, indicating the use of a learned, auditory search image. This phenotypic plasticity allows such a highly specialized parasitoid to avoid overspecialization disasters. Interestingly, when receptive females only heard silence the night before testing for preference, they chose the host songs equally, 50/50. [59] This capacity for learning and use of search images paired with a highly specialized morphology and lifestyle (eg. tympana tuned to host sound cues, larviparous) supports the extraordinarily fast range expansion of O. ochracea, as well as the presence and power of learning in parasitoids.
Parasitoids are among the most widely used biological control agents. Classic biological pest control using natural enemies of pests (parasitoids or predators) is extremely cost effective, the cost/benefit ratio for classic control being 1:250, but the technique is more variable in its effects than pesticides; it reduces rather than eliminates pests. The cost/benefit ratio for screening natural enemies is similarly far higher than for screening chemicals: 1:30 against 1:5 respectively, since the search for suitable natural enemies can be guided accurately with ecological knowledge. Natural enemies are more difficult to produce and to distribute than chemicals, as they have a shelf life of weeks at most; and they face a commercial obstacle, namely that they cannot be patented. [60] [61]
From the point of view of the farmer or horticulturalist, the most important groups are the ichneumonid wasps, which prey mainly on caterpillars of butterflies and moths; braconid wasps, which attack caterpillars and a wide range of other insects including greenfly; chalcidoid wasps, which parasitise eggs and larvae of greenfly, whitefly, cabbage caterpillars, and scale insects; and tachinid flies, which parasitise a wide range of insects including caterpillars, adult and larval beetles, and true bugs. [62] Commercially, there are two types of rearing systems: short-term seasonal daily output with high production of parasitoids per day, and long-term year-round low daily output with a range in production of 4–1000 million female parasitoids per week, to meet demand for suitable biological control agents for different crops. [63] [64]
Maria Sibylla Merian (1647–1717) was one of the first naturalists to study and depict parasitoids and their insect hosts in her closely-observed paintings. [65]
Parasitoids influenced the religious thinking of Charles Darwin, [e] who wrote in an 1860 letter to the American naturalist Asa Gray: "I cannot persuade myself that a beneficent and omnipotent God would have designedly created parasitic wasps with the express intention of their feeding within the living bodies of Caterpillars." [67] The palaeontologist Donald Prothero notes that religiously minded people of the Victorian era, including Darwin, were horrified by this instance of evident cruelty in nature, particularly noticeable in the ichneumonid wasps. [68]
Parasitoids have inspired science fiction authors and screenwriters to create terrifying parasitic alien species that kill their human hosts. [71] One of the best-known is the Xenomorph in Ridley Scott's 1979 film Alien , which runs rapidly through its lifecycle from violently entering a human host's mouth to bursting fatally from the host's chest. [72] [73] [74] The molecular biologist Alex Sercel, writing in Signal to Noise Magazine, compares "the biology of the [Alien] Xenomorphs to parasitoid wasps and nematomorph worms from Earth to illustrate how close to reality the biology of these aliens is and to discuss this exceptional instance of science inspiring artists". [75] Sercel notes that the way the Xenomorph grasps a human's face to implant its embryo is comparable to the way a parasitoid wasp lays its eggs in a living host. He further compares the Xenomorph life cycle to that of the nematomorph Paragordius tricuspidatus which grows to fill its host's body cavity before bursting out and killing it. [75] Alistair Dove, on the science website Deep Sea News, writes that there are multiple parallels with parasitoids, although in his view, there are more disturbing life cycles in real biology. Dove stated that the parallels include the placing of an embryo in the host; its growth in the host; the resulting death of the host; and alternating generations, as in the Digenea (trematodes). [76] The social anthropologist Marika Moisseeff argues that "The parasitical and swarming aspects of insect reproduction make these animals favoured villains in Hollywood science fiction. The battle of culture against nature is depicted as an unending combat between humanity and insect-like extraterrestrial species that tend to parasitise human beings in order to reproduce." [71] The Encyclopedia of Science Fiction lists many instances of "parasitism", often causing the host's death. [77]
Hymenoptera is a large order of insects, comprising the sawflies, wasps, bees, and ants. Over 150,000 living species of Hymenoptera have been described, in addition to over 2,000 extinct ones. Many of the species are parasitic. Females typically have a special ovipositor for inserting eggs into hosts or places that are otherwise inaccessible. This ovipositor is often modified into a stinger. The young develop through holometabolism —that is, they have a wormlike larval stage and an inactive pupal stage before they reach adulthood.
Parasitism is a close relationship between species, where one organism, the parasite, lives on or inside another organism, the host, causing it some harm, and is adapted structurally to this way of life. The entomologist E. O. Wilson characterised parasites as "predators that eat prey in units of less than one". Parasites include single-celled protozoans such as the agents of malaria, sleeping sickness, and amoebic dysentery; animals such as hookworms, lice, mosquitoes, and vampire bats; fungi such as honey fungus and the agents of ringworm; and plants such as mistletoe, dodder, and the broomrapes.
The Tachinidae are a large and variable family of true flies within the insect order Diptera, with more than 8,200 known species and many more to be discovered. Over 1,300 species have been described in North America alone. Insects in this family commonly are called tachinid flies or simply tachinids. As far as is known, they all are protelean parasitoids, or occasionally parasites, of arthropods, usually other insects. The family is known from many habitats in all zoogeographical regions and is especially diverse in South America.
Kleptoparasitism is a form of feeding in which one animal deliberately takes food from another. The strategy is evolutionarily stable when stealing is less costly than direct feeding, such as when food is scarce or when victims are abundant. Many kleptoparasites are arthropods, especially bees and wasps, but including some true flies, dung beetles, bugs, and spiders. Cuckoo bees are specialized kleptoparasites which lay their eggs either on the pollen masses made by other bees, or on the insect hosts of parasitoid wasps. They are an instance of Emery's rule, which states that insect social parasites tend to be closely related to their hosts. The behavior occurs, too, in vertebrates including birds such as skuas, which persistently chase other seabirds until they disgorge their food, and carnivorous mammals such as spotted hyenas and lions. Other species opportunistically indulge in kleptoparasitism.
Sawflies are wasp-like insects that are in the suborder Symphyta within the order Hymenoptera, alongside ants, bees, and wasps. The common name comes from the saw-like appearance of the ovipositor, which the females use to cut into the plants where they lay their eggs. The name is associated especially with the Tenthredinoidea, by far the largest superfamily in the suborder, with about 7,000 known species; in the entire suborder, there are 8,000 described species in more than 800 genera. Symphyta is paraphyletic, consisting of several basal groups within the order Hymenoptera, each one rooted inside the previous group, ending with the Apocrita which are not sawflies.
The superfamily Ichneumonoidea contains one extinct and three extant families, including the two largest families within Hymenoptera: Ichneumonidae and Braconidae. The group is thought to contain as many as 100,000 species, many of which have not yet been described. Like other parasitoid wasps, they were long placed in the "Parasitica", variously considered as an infraorder or an unranked clade, now known to be paraphyletic.
The Ichneumonidae, also known as ichneumon wasps, ichneumonid wasps, ichneumonids, or Darwin wasps, are a family of parasitoid wasps of the insect order Hymenoptera. They are one of the most diverse groups within the Hymenoptera with roughly 25,000 species described as of 2016. However, this likely represents less than a quarter of their true richness as reliable estimates are lacking, along with much of the most basic knowledge about their ecology, distribution, and evolution. It is estimated that there are more species in this family than there are species of birds and mammals combined. Ichneumonid wasps, with very few exceptions, attack the immature stages of holometabolous insects and spiders, eventually killing their hosts. They play an important role as regulators of insect populations, both in natural and semi-natural systems, making them promising agents for biological control.
Brood parasitism is a subclass of parasitism and phenomenon and behavioural pattern of animals that rely on others to raise their young. The strategy appears among birds, insects and fish. The brood parasite manipulates a host, either of the same or of another species, to raise its young as if it were its own, usually using egg mimicry, with eggs that resemble the host's. The strategy involves a form of aggressive mimicry called Kirbyan mimicry.
A hyperparasite, also known as a metaparasite, is a parasite whose host, often an insect, is also a parasite, often specifically a parasitoid. Hyperparasites are found mainly among the wasp-waisted Apocrita within the Hymenoptera, and in two other insect orders, the Diptera and Coleoptera (beetles). Seventeen families in Hymenoptera and a few species of Diptera and Coleoptera are hyperparasitic. Hyperparasitism developed from primary parasitism, which evolved in the Jurassic period in the Hymenoptera. Hyperparasitism intrigues entomologists because of its multidisciplinary relationship to evolution, ecology, behavior, biological control, taxonomy, and mathematical models.
Parasitoid wasps are a large group of hymenopteran superfamilies, with all but the wood wasps (Orussoidea) being in the wasp-waisted Apocrita. As parasitoids, they lay their eggs on or in the bodies of other arthropods, sooner or later causing the death of these hosts. Different species specialise in hosts from different insect orders, most often Lepidoptera, though some select beetles, flies, or bugs; the spider wasps (Pompilidae) exclusively attack spiders.
The Eucharitidae are a family of parasitic wasps. Eucharitid wasps are members of the superfamily Chalcidoidea and consist of four subfamilies: Akapalinae, Eucharitinae, Gollumiellinae, and Oraseminae. Most of the 42 genera and >400 species of Eucharitidae are members of the subfamilies Oraseminae and Eucharitinae, and are found in tropical regions of the world.
Cotesia congregata is a parasitoid wasp of the genus Cotesia. The genus is particularly noted for its use of polydnaviruses. Parasitoids are distinct from true parasites in that a parasitoid will ultimately kill its host or otherwise sterilize it.
Nasonia vitripennis is one of four known species under the genus Nasonia - small parasitoid wasps that afflict the larvae of parasitic carrion flies such as blowflies and flesh flies, which themselves are parasitic toward nestling birds. It is the best known and most widely studied of the parasitoid wasps, and their study forms a vital part of the information used to describe the order Hymenoptera, along with information from bees and ants. This parasitoid behaviour makes the wasps an interest for the development of biopesticide and biological systems for controlling unwanted insects.
Insect ecology is the interaction of insects, individually or as a community, with the surrounding environment or ecosystem. This interaction is mostly mediated by the secretion and detection of chemicals (semiochemical) in the environment by insects. Semiochemicals are secreted by the organisms in the environment and they are detected by other organism such as insects. Semiochemicals used by organisms, including (insects) to interact with other organism either of the same species or different species can generally grouped into four. These are pheromone, synomones, allomone and kairomone. Pheromones are semiochemicals that facilitates interaction between organisms of same species. Synomones benefit both the producer and receiver, allomone is advantageous to only the producer whiles kairomones is beneficial to the receiver. Insect interact with other species within their community and these interaction include mutualism, commensalism, ammensalism, parasitism and neutralisms.
A wasp is any insect of the narrow-waisted suborder Apocrita of the order Hymenoptera which is neither a bee nor an ant; this excludes the broad-waisted sawflies (Symphyta), which look somewhat like wasps, but are in a separate suborder. The wasps do not constitute a clade, a complete natural group with a single ancestor, as bees and ants are deeply nested within the wasps, having evolved from wasp ancestors. Wasps that are members of the clade Aculeata can sting their prey.
Dinocampus coccinellae is a braconid wasp parasite of coccinellid beetles, including the spotted lady beetle, Coleomegilla maculata. D. coccinellae has been described as turning its ladybird host into a temporary "zombie" guarding the wasp cocoon. About 25% of Coleomegilla maculata recover after the cocoon they are guarding matures, although the proportion of other ladybird species which recover is much lower.
Ammophila sabulosa, the red-banded sand wasp, is a species of the subfamily Ammophilinae of the solitary hunting wasp family Sphecidae, also called digger wasps. Found across Eurasia, the parasitoid wasp is notable for the mass provisioning behaviour of the females, hunting caterpillars mainly on sunny days, paralysing them with a sting, and burying them in a burrow with a single egg. The species is also remarkable for the extent to which females parasitise their own species, either stealing prey from nests of other females to provision their own nests, or in brood parasitism, removing the other female's egg and laying one of her own instead.
Cotesia glomerata, the white butterfly parasite, is a small parasitoid wasp belonging to family Braconidae. It was described by Carl Linnaeus in his 1758 publication 10th edition of Systema Naturae.
Tamarixia radiata, the Asian citrus psyllid parasitoid, is a parasitoid wasp from the family Eulophidae which was discovered in the 1920s in the area of northwestern India (Punjab), now Pakistan. It is a parasitoid of the Asian citrus psyllid, an economically important pest of citrus crops around the world and a vector for Citrus greening disease.
Zatypota percontatoria is a species of parasitoid wasps that is part of the order Hymenoptera and the family Ichneumonidae responsible for parasitizing arachnids, specifically those of the family Theridiidae.
{{cite book}}
: |journal=
ignored (help)Predation, herbivory, and parasitism exist along a continuum of severity in terms of the extent to which they negatively affect an organism's fitness. ... In most situations, parasites do not kill their hosts. An exception, however, occurs with parasitoids, which blur the line between parasitism and predation.
The length of the ovipositor compared with the body of the parasitic wasp varies enormously between taxa, from being a fraction of the length of the metasoma to more than 14 times longer than the head and body. (Townes 1975; Achterberg 1986; Compton & Nefdt 1988).
{{cite book}}
: CS1 maint: DOI inactive as of November 2024 (link){{cite book}}
: |website=
ignored (help)