Mecoptera

Last updated

Mecoptera
Temporal range: Early Permian - Recent
Skorpionsfliege Panorpa communis male full (cropped).jpg
Panorpa communis , male
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
(unranked): Antliophora
Order: Mecoptera
Packard, 1886
Comstock, 1895
Families

Mecoptera (from the Greek: mecos = "long", ptera = "wings") is an order of insects in the superorder Holometabola with about six hundred species in nine families worldwide. Mecopterans are sometimes called scorpionflies after their largest family, Panorpidae, in which the males have enlarged genitals raised over the body that look similar to the stingers of scorpions, and long beaklike rostra. The Bittacidae, or hangingflies, are another prominent family and are known for their elaborate mating rituals, in which females choose mates based on the quality of gift prey offered to them by the males. A smaller group is the snow scorpionflies, family Boreidae, adults of which are sometimes seen walking on snowfields. In contrast, the majority of species in the order inhabit moist environments in tropical locations.

Contents

The Mecoptera are closely related to the Siphonaptera (fleas), and a little more distantly to the Diptera (true flies). They are somewhat fly-like in appearance, being small to medium-sized insects with long slender bodies and narrow membranous wings. Most breed in moist environments such as leaf litter or moss, and the eggs may not hatch until the wet season arrives. The larvae are caterpillar-like and mostly feed on vegetable matter, and the non-feeding pupae may pass through a diapause until weather conditions are favorable.

Early Mecoptera may have played an important role in pollinating extinct species of gymnosperms before the evolution of other insect pollinators such as bees. Adults of modern species are overwhelmingly predators or consumers of dead organisms. In a few areas, some species are the first insects to arrive at a cadaver, making them useful in forensic entomology. [9]

Diversity

Mecopterans vary in length from 2 to 35 mm (0.1 to 1.4 in). There are about six hundred extant species known, divided into thirty-four genera in nine families. The majority of the species are contained in the families Panorpidae and Bittacidae. Besides this there are about four hundred known fossil species in about eighty-seven genera, which are more diverse than the living members of the order. [10] The group is sometimes called the scorpionflies, from the turned-up "tail" of the male's genitalia in the Panorpidae. [11]

Distribution of mecopterans is worldwide; the greatest diversity at the species level is in the Afrotropic and Palearctic realms, but there is greater diversity at the generic and family level in the Neotropic, Nearctic and Australasian realms. They are absent from Madagascar and many islands and island groups; this may demonstrate that their dispersal ability is low, with Trinidad, Taiwan and Japan, where they are found, having had recent land bridges to the nearest continental land masses. [10]

Evolution and phylogeny

Taxonomic history

The European scorpionfly was named Panorpa communis by Linnaeus in 1758. [12] The Mecoptera were named by Alpheus Hyatt and Jennie Maria Arms in 1891. [13] The name is from the Greek, mecos meaning long, and ptera meaning wings. [14] The families of Mecoptera are well accepted by taxonomists but their relationships have been debated. In 1987, R. Willman treated the Mecoptera as a clade, containing the Boreidae as sister to the Meropeidae, [15] but in 2002 Michael F. Whiting declared the Mecoptera so-defined as paraphyletic, with the Boreidae as sister to another order, the Siphonaptera (fleas). [16]

Fossil history

Among the earliest members of the Mecoptera are the Nannochoristidae of Upper Permian age. Fossil Mecoptera become abundant and diverse during the Cretaceous, for example in China, [17] where panorpids such as Jurassipanorpa, hangingflies (Bittacidae and Cimbrophlebiidae), Orthophlebiidae, and Cimbrophlebiidae have been found. [18] [19]

Extinct Mecoptera species may have been important pollinators of early gymnosperm seed plants during the late Middle Jurassic to mid–Early Cretaceous periods before other pollinating groups such as the bees evolved. These were mainly wind-pollinated plants, but fossil mecopterans had siphon-feeding apparatus that could have fertilized these early gymnosperms by feeding on their nectar and pollen. The lack of iron enrichment in their fossilized probosces rules out their use for drinking blood. Eleven species have been identified from three families, Mesopsychidae, Aneuretopsychidae, and Pseudopolycentropodidae within the clade Aneuretopsychina. Their lengths range from 3 mm (0.12 in) in Parapolycentropus burmiticus to 28 mm (1.1 in) in Lichnomesopsyche gloriae. The proboscis could be as long as 10 mm (0.39 in). It has been suggested that these mecopterans transferred pollen on their mouthparts and head surfaces, as do bee flies and hoverflies today, but no such associated pollen has been found, even when the insects were finely preserved in Eocene Baltic amber. They likely pollinated plants such as Caytoniaceae, Cheirolepidiaceae, and Gnetales, which have ovulate organs that are either poorly suited for wind pollination or have structures that could support long-proboscid fluid feeding. [20] [21] The Aneuretopsychina were the most diverse group of mecopterans in the Latest Permian, taking the place of the Permochoristidae, to the Middle Triassic. During the Late Triassic through the Middle Jurassic, Aneuretopsychina species were gradually replaced by species from the Parachoristidae and Orthophlebiidae. Modern mecopteran families are derived from the Orthophlebiidae. [22]

External relationships

Mecoptera have special importance in the evolution of the insects. Two of the most important insect orders, Lepidoptera (butterflies and moths) and Diptera (true flies), along with Trichoptera (caddisflies), probably evolved from ancestors belonging to, or strictly related to, the Mecoptera. Evidence includes anatomical and biochemical similarities as well as transitional fossils, such as Permotanyderus and Choristotanyderus , which lie between the Mecoptera and Diptera. The group was once much more widespread and diverse than it is now, with four suborders during the Mesozoic. [23]

It is unclear as of 2020 whether the Mecoptera form a single clade, or whether the Siphonaptera (fleas) are inside that clade, so that the traditional "Mecoptera" taxon is paraphyletic. However the earlier suggestion that the Siphonaptera are sister to the Boreidae [24] [16] [25] is not supported; instead, there is the possibility that they are sister to another Mecopteran family, the Nannochoristidae. The two possible trees are shown below: [26]

(a) Mecoptera (clades in boldface) is paraphyletic, containing Siphonaptera: [26] [27]

Antliophora

Diptera (true flies) Common house fly, Musca domestica.jpg

Pistillifera (scorpionflies, hangingflies, 400 spp.) Gunzesrieder Tal Insekt 3.jpg

Boreidae (snow scorpionflies, 30 spp.) Boreus hiemalis2 detail.jpg

Nannochoristidae (southern scorpionflies, 8 spp.) Nannochorista philpotti (cropped).jpg  

Siphonaptera (fleas, 2500 spp.) British Entomologycutted Plate114.png

Mecoptera

(b) Mecoptera is monophyletic, sister to Siphonaptera: [26]

Antliophora

Diptera (true flies) Common house fly, Musca domestica.jpg

Mecoptera

Pistillifera (scorpionflies, hangingflies, 400 spp.) Gunzesrieder Tal Insekt 3.jpg

Boreidae (snow scorpionflies, 30 spp.) Boreus hiemalis2 detail.jpg

Nannochoristidae (southern scorpionflies, 8 spp.) Nannochorista philpotti (cropped).jpg

Siphonaptera

(fleas, 2500 spp.) Pulex irritans female ZSM.jpg

Internal relationships

All the families were formerly treated as part of a single order, Mecoptera. The relationships between the families are, however, a matter of debate. The cladogram, from Cracraft and Donoghue 2004, places the Nannochoristidae as a separate order, with the Boreidae, as the sister group to the Siphonaptera, also as its own order. The Eomeropidae is suggested to be the sister group to the rest of the Mecoptera, with the position of the Bittacidae unclear. Of those other families, the Meropeidae is the most basal, and the relationships of the rest are not completely clear. [28]

Nannomecoptera
Neomecoptera

Boreidae (snow scorpionflies) Boreus hyemalis male.jpg

Siphonaptera (fleas) Pulex irritans female ZSM.jpg

Mecoptera

Eomeropidae (mainly fossil (Triassic to present), 1 extant sp.) Notiothauma reedi.jpg

(?) Bittacidae [lower-alpha 2] (hangingflies)

Meropeidae (earwigflies) Merope tuber dorsal view - ZooKeys-269-051-g007A.jpeg

Choristidae (Australian scorpionflies) Chorista australis Gundaroo NSW Australia.jpg

Apteropanorpidae (Tasmanian snow scorpionflies)

(?)Bittacidae [lower-alpha 2] (hangingflies) Hylobittacus apicalis Michigan.jpg

Panorpodidae (short-faced scorpionflies)

Panorpidae (Jurassic to present, common scorpionflies) Panorpa communis V.jpg

sensu stricto
  1. Some studies find Nannomecoptera as sister to the Boreidae+Siphonaptera clade. [16]
  2. 1 2 The position of the Bittacidae is unclear. Two alternative positions, either basal within Mecoptera sensu stricto or sister to Panorpodidae, are shown.
Male Panorpa dubia.
A, Body in lateral view; B-D. male genital bulb and gonostyli. B, dorsal view; C, ventral view; D, lateral view. ep, epandrium; gcx, gonocoxite; gs, gonostylus; hv, hypovalva; hyp, hypandrium. Scale bars represent 3 mm in A, 1 mm in B-D Panorpa dubia (Mecoptera) anatomy.tiff
Male Panorpa dubia .
A, Body in lateral view; B–D. male genital bulb and gonostyli. B, dorsal view; C, ventral view; D, lateral view. ep, epandrium; gcx, gonocoxite; gs, gonostylus; hv, hypovalva; hyp, hypandrium. Scale bars represent 3 mm in A, 1 mm in B–D

Biology

Morphology

Mecoptera are small to medium-sized insects with long beaklike rostra, membranous wings and slender, elongated bodies. They have relatively simple mouthparts, with a long labium, long mandibles and fleshy palps, which resemble those of the more primitive true flies. Like many other insects, they possess compound eyes on the sides of their heads, and three ocelli on the top. The antennae are filiform (thread-shaped) and contain multiple segments. [23] [29]

The fore and hind wings are similar in shape, being long and narrow, with numerous cross-veins, and somewhat resembling those of primitive insects such as mayflies. A few genera, however, have reduced wings, or have lost them altogether. The abdomen is cylindrical with eleven segments, the first of which is fused to the metathorax. The cerci consist of one or two segments. The abdomen typically curves upwards in the male, superficially resembling the tail of a scorpion, the tip containing an enlarged structure called the genital bulb. [23] [29]

The caterpillar-like larvae have hard sclerotised heads with mandibles (jaws), short true legs on the thorax, prolegs on the first eight abdominal segments, and a suction disc or pair of hooks on the terminal tenth segment. The pupae have free appendages rather than being secured within a cocoon (they are exarate). [29]

Ecology

A Panorpid scorpionfly feeding on a dead insect Panorpa communis with prey Diogma glabrata glabrata.jpg
A Panorpid scorpionfly feeding on a dead insect

Mecopterans mostly inhabit moist environments although a few species are found in semi-desert habitats. Scorpionflies, family Panorpidae, generally live in broad-leaf woodlands with plentiful damp leaf litter. Snow scorpionflies, family Boreidae, appear in winter and are to be seen on snowfields and on moss; the larvae being able to jump like fleas. Hangingflies, family Bittacidae, occur in forests, grassland and caves with high moisture levels. They mostly breed among mosses, in leaf litter and other moist places, but their reproductive habits have been little studied, and at least one species, Nannochorista philpotti , has aquatic larvae. [10]

Adult mecopterans are mostly scavengers, feeding on decaying vegetation and the soft bodies of dead invertebrates. Panorpa raid spider webs to feed on trapped insects and even the spiders themselves, and hangingflies capture flies and moths with their specially modified legs. Some groups consume pollen, nectar, midge larvae, carrion and moss fragments. [10] Most mecopterans live in moist environments; in hotter climates, the adults may therefore be active and visible only for short periods of the year. [23]

Mating behaviour

Panorpa communis mating Panorpa communis copula.jpg
Panorpa communis mating

Various courtship behaviours have been observed among mecopterans, with males often emitting pheromones to attract mates. The male may provide an edible gift such as a dead insect or a brown salivary secretion to the female. Some boreids have hook-like wings which the male uses to pick up and place the female on his back while copulating. Male panorpids vibrate their wings or even stridulate while approaching a female. [10]

Hangingflies have distinct mating behaviour. Bittacidae fg1.jpg
Hangingflies have distinct mating behaviour.

Hangingflies (Bittacidae) provide a nuptial meal in the form of a captured insect prey, such as a caterpillar, bug, or fly. The male attracts a female with a pheromone from vesicles on his abdomen; he retracts these once a female is nearby, and presents her with the prey. While she evaluates the gift, he locates her genitalia with his. If she stays to eat the prey, his genitalia attach to hers, and the female lowers herself into an upside-down hanging position, and eats the prey while mating. Larger prey result in longer mating times. In Hylobittacus apicalis, prey 3 to 14 millimetres (0.12 to 0.55 in) long give between 1 and 17 minutes of mating. Larger males of that species give prey as big as houseflies, earning up to 29 minutes of mating, maximal sperm transfer, more oviposition, and a refractory period during which the female does not mate with other males: all of these increase the number of offspring the male is likely to have. [30]

Life-cycle

The female lays the eggs in close contact with moisture, and the eggs typically absorb water and increase in size after deposition. In species that live in hot conditions, the eggs may not hatch for several months, the larvae only emerging when the dry season has finished. More typically, however, they hatch after a relatively short period of time. The larvae are usually quite caterpillar-like, with short, clawed, true legs, and a number of abdominal prolegs. They have sclerotised heads with mandibulate mouthparts. Larvae possess compound eyes, which is unique among holometabolous insects. [31] The tenth abdominal segment bears either a suction disc, or, less commonly, a pair of hooks. They generally eat vegetation or scavenge for dead insects, although some predatory larvae are known. The larva crawls into the soil or decaying wood to pupate, and does not spin a cocoon. The pupae are exarate, meaning the limbs are free of the body, and are able to move their mandibles, but are otherwise entirely nonmotile. In drier environments, they may spend several months in diapause, before emerging as adults once the conditions are more suitable. [23]

The raised scorpion-like tail of the male has earned the scorpionflies a sinister reputation, but they do not sting. Skorpionsfliege Panorpa communis male genital.jpg
The raised scorpion-like tail of the male has earned the scorpionflies a sinister reputation, but they do not sting.

Interaction with humans

Forensic entomology makes use of scorpionflies' habit of feeding on human corpses. In areas where the family Panorpidae occurs, such as the eastern United States, these scorpionflies can be the first insects to arrive at a donated human cadaver, and remain on a corpse for one or two days. The presence of scorpionflies thus indicates that a body must be fresh. [32] [9]

Scorpionflies are sometimes described as looking "sinister", particularly from the male's raised "tail" resembling a scorpion's sting. [33] A popular but incorrect belief is that they can sting with their tails. [34]

Related Research Articles

<span class="mw-page-title-main">Flea</span> Insects of the order Siphonaptera

Flea, the common name for the order Siphonaptera, includes 2,500 species of small flightless insects that live as external parasites of mammals and birds. Fleas live by ingesting the blood of their hosts. Adult fleas grow to about 3 millimetres long, are usually brown, and have bodies that are "flattened" sideways or narrow, enabling them to move through their hosts' fur or feathers. They lack wings; their hind legs are extremely well adapted for jumping. Their claws keep them from being dislodged, and their mouthparts are adapted for piercing skin and sucking blood. They can leap 50 times their body length, a feat second only to jumps made by another group of insects, the superfamily of froghoppers. Flea larvae are worm-like, with no limbs; they have chewing mouthparts and feed on organic debris left on their hosts' skin.

<span class="mw-page-title-main">Meropeidae</span> Family of insects

Meropeidae is a family of tiny scorpionflies within the order Mecoptera with only three living species, commonly referred to as "earwigflies". These include the North American Merope tuber, the Western Australian Austromerope poultoni, and the recently discovered South American A. brasiliensis. The biology of these species is essentially unknown, and their larvae have never been seen. The disjunct distribution suggests a common origin before the breakup of the ancient supercontinent of Pangaea. There are two undisputed extinct genera, Boreomerope antiqua known from an isolated wing found in the Middle Jurassic Itat Formation of Siberia and Burmomerope with three species from the mid Cretaceous (Cenomanian) aged Burmese amber. As such, the extant members of this family can be considered living fossils. These insects are also of interest due to their presumed basal position in the order Mecoptera. Thaumatomerope with four described species all from the Madygen Formation in Kyrgyzstan has historically sometimes been included within the family, it was placed into its own monotypic family, "Thaumatomeropidae." in 2002.

<span class="mw-page-title-main">Nannochoristidae</span> Family of insects

Nannochoristidae is a family of scorpionflies with many unusual traits. It is a tiny, relict family with a single extant genus, Nannochorista, with eight species occurring in New Zealand, southeastern Australia, Tasmania, Argentina and Chile. Due to the group's distinctiveness from other scorpionflies, it is sometimes placed in its own order, the Nannomecoptera. Some studies have placed them as the closest living relatives of fleas. Most mecopteran larvae are eruciform, or shaped like caterpillars. Nannochoristid larvae, however, are elateriform, and have elongated and slender bodies. The larvae are aquatic, which is unique among mecopterans. The larvae are predatory, hunting on the beds of shallow streams, primarily on the larvae of aquatic Diptera like chironomids.

<span class="mw-page-title-main">Hangingfly</span> Family of insects

Bittacidae is a family of scorpionflies commonly called hangingflies or hanging scorpionflies.

<span class="mw-page-title-main">Snow scorpionfly</span> Family of insects

Boreidae, commonly called snow scorpionflies, or in the British Isles, snow fleas are a very small family of scorpionflies, containing only around 30 species, all of which are boreal or high-altitude species in the Northern Hemisphere.

<span class="mw-page-title-main">Panorpidae</span> Family of insects

The Panorpidae are a family of scorpionflies containing more than 480 species. The family is the largest family in Mecoptera, covering approximately 70% species of the order. Species range between 9–25 mm long.

<span class="mw-page-title-main">Eomeropidae</span> Family of insects

Eomeropidae is a family of aberrant, flattened scorpionflies represented today by only a single living species, Notiothauma reedi, known from the Nothofagus forests in southern Chile, while all other recognized genera in the family are known only as fossils, with the earliest definitive fossil known from Liassic-aged strata, and the youngest from Paleogene-aged strata.

<span class="mw-page-title-main">Amphiesmenoptera</span> Superorder of insects

Amphiesmenoptera is an insect superorder, established by S. G. Kiriakoff, but often credited to Willi Hennig in his revision of insect taxonomy for two sister orders: Lepidoptera and Trichoptera (caddisflies). In 2017, a third fossil order was added to the group, the Tarachoptera.

<span class="mw-page-title-main">Dinopanorpidae</span> Extinct family of insects

Dinopanorpidae is a small family of extinct insects in the order Mecoptera (scorpionflies) that contains two genera and seven species.

Mongolbittacus is an extinct genus of hangingfly in the family Bittacidae and containing a single species Mongolbittacus daohugoensis. The species is known only from the Middle Jurassic Jiulongshan Formation, part of the Daohugou Beds, near the village of Daohugou in Ningcheng County, northeastern China.

Formosibittacus is an extinct genus of hangingfly in the family Bittacidae and containing a single species Formosibittacus macularis. The species is known only from the Middle Jurassic Jiulongshan Formation, part of the Daohugou Beds, near the village of Daohugou in Ningcheng County, northeastern China.

<i>Hylobittacus apicalis</i> Species of insect

Hylobittacus apicalis is a species of hangingfly in the order Mecoptera, and the only species within the genus Hylobittacus.

<span class="mw-page-title-main">Panorpida</span> Superorder of insects

Panorpida or Mecopterida is a proposed superorder of Holometabola. The conjectured monophyly of the Panorpida is historically based on morphological evidence, namely the reduction or loss of the ovipositor and several internal characteristics, including a muscle connecting a pleuron and the first axillary sclerite at the base of the wing, various features of the larval maxilla and labium, and basal fusion of CuP and A1 veins in the hind wings. The monophyly of the Panorpida is supported by recent molecular data.

<i>Fortiholcorpa</i> Extinct genus of insects

Fortiholcorpa paradoxa is an extinct species of scorpionfly (Mecoptera) from the Middle Jurassic of China. It is the only known species of its genus.

<i>Jurassipanorpa</i> Extinct genus of scorpionflies

Jurassipanorpa is a genus of fossil scorpionfly containing two species described in 2014 from the Jiulongshan Formation of Inner Mongolia, China. The two species, J. impuctata and J. sticta, lived in the late Middle Jurassic period. Upon description, they were claimed to represent the oldest known representatives of the scorpionfly family Panorpidae, but this was later questioned.

<i>Holcorpa</i> Extinct genus of insects

Holcorpa is a genus of extinct insects in the scorpionfly order Mecoptera. Two Eocene age species found in Western North America were placed into the genus, H. dillhoffi and H. maculosa.

<i>Harpobittacus</i> Genus of insects

Harpobittacus is a genus of hangingfly of the family Bittacidae found in Australia.

<span class="mw-page-title-main">Pseudopolycentropodidae</span> Extinct family of insects

Pseudopolycentropodidae is an extinct family of scorpionflies known from the Mesozoic. Fossils are known from the Middle Triassic (Anisian) to the early Late Cretaceous (Cenomanian). It is part of Mesopsychoidea, a group of scorpionflies with siphonate proboscis. They are suggested to have been nectarivores, feeding off the liquid pollination drops and acting as pollinators for now extinct insect pollinated gymnosperms such as Bennettitales.

<span class="mw-page-title-main">Aneuretopsychidae</span> Extinct family of insects

Aneuretopsychidae is an extinct family of scorpionflies known from the Mesozoic. Fossils are known from the Jurassic (Callovian-Oxfordian) to the early Late Cretaceous (Cenomanian). It is part of Mesopsychoidea, a group of scorpionflies with siphonate proboscis. They are suggested to have been nectarivores, feeding off the liquid pollination drops of and acting as pollinators for now extinct insect pollinated gymnosperms such as Bennettitales.

Austropanorpa is an extinct genus of scorpionfly. It is the only member of the family Austropanorpidae. The type species, A. australis was described by Edgar Riek in 1952 based on two incomplete forewings from the Redbank Plains Formation of Queensland, of probable Eocene age, and was assigned to Panorpidae. Later, it was recognised as distinctive enough to be assigned to its own monotypic family by Rainer Willman in 1977. In 2018 the species "Orthophlebia" martynovae from the Early Jurassic (Toarcian) aged Cheremkhovo Formation near Lake Baikal in Siberia, described by Irina Sukacheva in 1985, was recognised as belonging to the genus. The genus is distinguished from other mecopterans by having nine branched radial sectors and four veins in the medial sector of both wings, as opposed to living panorpoids which are typically 5 and rarely 6 branched.

References

  1. Qiao, X.; Shih, C. K.; Petrulevičius, J. F.; Dong, R. (2013). "Fossils from the Middle Jurassic of China shed light on morphology of Choristopsychidae (Insecta, Mecoptera)". ZooKeys (318): 91–111. Bibcode:2013ZooK..318...91Q. doi: 10.3897/zookeys.318.5226 . PMC   3744206 . PMID   23950679.
  2. Novokshonov, V. G.; Ross, A. J.; Cook, E.; Krzemiński, W.; Soszyńska-Maj, A. (2016). "A new family of scorpionflies (Insecta; Mecoptera) from the Lower Cretaceous of England". Cretaceous Research. 62: 44–51. Bibcode:2016CrRes..62...44N. doi:10.1016/j.cretres.2016.01.013.
  3. 1 2 3 Bashkuev, A.S. (2011). "Nedubroviidae, a new family of Mecoptera: the first Paleozoic long-proboscid scorpionflies". Zootaxa. 2895 (1): 47–57. doi:10.11646/zootaxa.2895.1.3. S2CID   83075922.
  4. Lin, X.; Shih, M. J.; Labandeira, C. C.; Ren, D. (2016). "New data from the Middle Jurassic of China shed light on the phylogeny and origin of the proboscis in the Mesopsychidae (Insecta: Mecoptera)". BMC Evolutionary Biology. 16 (1): 1–22. Bibcode:2016BMCEE..16....1L. doi: 10.1186/s12862-015-0575-y . PMC   4700641 . PMID   26727998.
  5. Grimaldi, D.; Johnston, M. A. (2014). "The long-tongued Cretaceous scorpionfly Parapolycentropus Grimaldi and Rasnitsyn (Mecoptera: Pseudopolycentropodidae): new data and interpretations". American Museum Novitates (3793): 1–24. doi:10.1206/3793.1. hdl:2246/6466. S2CID   54799375.
  6. Krzemiński, W.; Soszyńska-Maj, A.; Bashkuev, A. S.; Kopeć, K (2015). "Revision of the unique Early Cretaceous Mecoptera from Koonwarra (Australia) with description of a new genus and family". Cretaceous Research. 52: 501–506. Bibcode:2015CrRes..52..501K. doi:10.1016/j.cretres.2014.04.004.
  7. Archibald, S.B. (2005). "New Dinopanorpida (Insecta: Mecoptera) from the Eocene Okanogan Highlands (British Columbia, Canada and Washington State, USA)". Canadian Journal of Earth Sciences . 42 (2): 119–136. Bibcode:2005CaJES..42..119A. doi:10.1139/e04-073. S2CID   55513480.
  8. Wang, C.; Shih, C.; Ren, D (2014). "A new fossil hangingfly (Mecoptera: Cimbrophlebiidae) from the Early Cretaceous of China". Acta Geologica Sinica (English Edition). 88 (1): 29–34. Bibcode:2014AcGlS..88...29W. doi:10.1111/1755-6724.12180. S2CID   129796533.
  9. 1 2 "Southeast Texas Applied Forensic Science Facility". STAFS.
  10. 1 2 3 4 5 Dunford, James C.; Somma, Louis A. (2008). Capinera, John L. (ed.). Encyclopedia of Entomology: Scorpionflies (Mecoptera). Springer Science & Business Media. pp. 3304–3309. ISBN   978-1-4020-6242-1.
  11. "Scorpionflies (Order: Mecoptera)". Amateur Entomologists' Society. Retrieved 5 July 2020.
  12. Linnæus, Carolus. 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Laurentii Salvii, Holmiae [= Stockholm]. Vol. Tomus I, Editio decima, reformata: i–ii, 1–824.
  13. Hyatt, Alpheus; Arms, Jennie Maria (1891). "A novel diagrammatic representation of the orders of insects". Psyche: A Journal of Entomology. 6 (177): 11–13. doi: 10.1155/1891/39454 .
  14. A Dictionary of Entomology. Vol. 91. 2011. p. 858. Bibcode:1913Natur..91S.134.. doi:10.1038/091134c0. ISBN   978-1-84593-542-9. S2CID   3947767.{{cite book}}: |journal= ignored (help)
  15. Willman, R. (1987). "The phylogenetic system of the Mecoptera". Systematic Entomology. 12 (4): 519–524. Bibcode:1987SysEn..12..519W. doi:10.1111/j.1365-3113.1987.tb00222.x. S2CID   86349146.
  16. 1 2 3 Whiting, Michael F. (2002). "Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera". Zoologica Scripta. 31 (1): 93–104. doi:10.1046/j.0300-3256.2001.00095.x. S2CID   56100681. Archived from the original on 2013-01-05.
  17. Martill, David M.; Bechly, Günter; Loveridge, Robert F. (2007). The Crato Fossil Beds of Brazil: Window into an Ancient World. Cambridge University Press. pp. 367–369. ISBN   978-1-139-46776-6.
  18. Wang, Chen; Shih, Chungkun; Ren, Dong (2014). "A New Fossil Hangingfly (Mecoptera: Cimbrophlebiidae) from the Early Cretaceous of China". Acta Geologica Sinica - English Edition. 88 (1): 29–34. Bibcode:2014AcGlS..88...29W. doi:10.1111/1755-6724.12180. S2CID   129796533.
  19. Ding, He; Shih, Chungkun; Bashkuev, Alexei; Zhao, Yunyun; Ren, Dong (2014). "The earliest fossil record of Panorpidae (Mecoptera) from the Middle Jurassic of China". ZooKeys (431): 79–92. Bibcode:2014ZooK..431...79D. doi: 10.3897/zookeys.431.7561 . PMC   4141175 . PMID   25152669.
  20. Ollerton, J.; Coulthard, E. (2009). "Evolution of Animal Pollination". Science. 326 (5954): 808–809. Bibcode:2009Sci...326..808O. doi:10.1126/science.1181154. PMID   19892970. S2CID   856038.
  21. Ren, D.; Labandeira, C.C.; Santiago-Blay, J.A.; Rasnitsyn, A.; Shih, C.K.; Bashkuev, A.; Logan, M.A.; Hotton, C.L.; Dilcher, D. (2009). "Probable Pollination Mode Before Angiosperms: Eurasian, Long-Proboscid Scorpionflies". Science. 326 (5954): 840–847. Bibcode:2009Sci...326..840R. doi:10.1126/science.1178338. PMC   2944650 . PMID   19892981.
  22. Bashkuev, A. S. (2011). The earliest Mesopsychidae and revision of the family Mesopanorpodidae (Mecoptera) Advances in the Systematics of Fossil and Modern Insects: Honouring Alexandr Rasnitsyn. pp. 263–279. doi: 10.3897/zookeys.130.1611 . ISBN   978-954-642-609-3. PMC   3260765 . PMID   22259282.{{cite book}}: |journal= ignored (help)
  23. 1 2 3 4 5 Hoell, H.V.; Doyen, J.T.; Purcell, A.H. (1998). Introduction to Insect Biology and Diversity, 2nd ed. Oxford University Press. pp. 488–491. ISBN   978-0-19-510033-4.
  24. Whiting, Michael F.; Whiting, Alison S.; Hastriter, Michael W.; Dittmar, Katharina (2008). "A molecular phylogeny of fleas (Insecta: Siphonaptera): origins and host associations". Cladistics. 24 (5): 677–707. CiteSeerX   10.1.1.731.5211 . doi:10.1111/j.1096-0031.2008.00211.x. S2CID   33808144.
  25. Wiegmann, Brian; Yeates, David K. (2012). The Evolutionary Biology of Flies. Columbia University Press. p. 5. ISBN   978-0-231-50170-5. Recently, a close affinity between Siphonaptera and Mecoptera has been convincingly demonstrated via morphology (Bilinski et al. 1998) and molecular data (Whiting 2002), rendering Mecoptera paraphyletic, but making the clade including Mecoptera and Siphonaptera monophyletic
  26. 1 2 3 Meusemann, Karen; Trautwein, Michelle; Friedrich, Frank; Beutel, Rolf G.; Wiegmann, Brian M.; et al. (2020). "Are Fleas Highly Modified Mecoptera? Phylogenomic Resolution of Antliophora (Insecta: Holometabola)". bioRxiv   10.1101/2020.11.19.390666 .
  27. Tihelka, Erik; Giacomelli, Mattia; Huang, Di-Ying; Pisani, Davide; Donoghue, Philip C. J.; Cai, Chen-Yang (2020). "Fleas are parasitic scorpionflies". Palaeoentomology. 3 (6): 641–653. doi: 10.11646/palaeoentomology.3.6.16 . hdl: 1983/8d3c12c6-529c-4754-b59d-3abf88a32fc9 . ISSN   2624-2834.
  28. Whiting, Michael F. (2004). "Phylogeny of the Holometabolous Insects". In Cracraft, Joel; Donoghue, Michael J. (eds.). Assembling the Tree of Life. Oxford University Press. p. 355. ISBN   978-0-19-972960-9.
  29. 1 2 3 Gullan, P.J.; Cranston, P.S. (2014). The Insects: An Outline of Entomology. Wiley. pp. 1345–1347. ISBN   978-1-118-84616-2.
  30. Gullan, P. J.; Cranston, P. S. (2010). The Insects: An Outline of Entomology (4th ed.). Wiley. p. 129. ISBN   978-1-118-84615-5.
  31. Chen, Qing-Xiao; Hua, Bao-Zhen (2016-06-03). "Ultrastructure and Morphology of Compound Eyes of the Scorpionfly Panorpa dubia (Insecta: Mecoptera: Panorpidae)". PLOS ONE. 11 (6): e0156970. Bibcode:2016PLoSO..1156970C. doi: 10.1371/journal.pone.0156970 . ISSN   1932-6203. PMC   4892548 . PMID   27258365.
  32. Rutsch, Poncie (22 January 2015). "Finding Crime Clues In What Insects Had For Dinner". NPR. Retrieved 22 June 2015.
  33. "Weirdest Looking Bugs". EnkiVillage. 2015-05-13. Retrieved 22 June 2015.
  34. Newton, Blake. "Scorpionflies & Hangingflies". University of Kentucky. Retrieved 25 February 2017.