Miomoptera

Last updated

Miomoptera
Temporal range: 318–176  Ma
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
(unranked): Holometabola
Order: Miomoptera
Martynov, 1928 [1]
Families
  • Metropatoridae
  • Archaemiopteridae
  • Palaeomanteidae
Synonyms

Palaeomanteida

Miomoptera is an extinct order of insects. Although it is thought to be a common ancestor of all holometabolous insects, because no smooth transition between Miomoptera and other holometabolous insect orders is known, it is considered to be in a separate order unto itself.

The Miomopterans were small insects, with unspecialised chewing mandibles and short abdominal cerci. They had four wings of equal size, with a relatively simple venation, similar to that of the more primitive living holometabolous insects, such as lacewings. [2]

Adult morphology suggests the adults lived in open habitats. The morphology and gut content shows they fed on the pollen and strobili of gymnosperms. Based on the morphology of the ovipositor, larvae also fed on the pollen of strobili, moving between the scales from one microsporangium to another. [3]

Families and genera

Reference: [1] [4]

Related Research Articles

<span class="mw-page-title-main">Beetle</span> Order of insects

Beetles are insects that form the order Coleoptera, in the superorder Holometabola. Their front pair of wings are hardened into wing-cases, elytra, distinguishing them from most other insects. The Coleoptera, with about 400,000 described species, is the largest of all orders, constituting almost 40% of described insects and 25% of all known animal species; new species are discovered frequently, with estimates suggesting that there are between 0.9 and 2.1 million total species. Found in almost every habitat except the sea and the polar regions, they interact with their ecosystems in several ways: beetles often feed on plants and fungi, break down animal and plant debris, and eat other invertebrates. Some species are serious agricultural pests, such as the Colorado potato beetle, while others such as Coccinellidae eat aphids, scale insects, thrips, and other plant-sucking insects that damage crops.

<span class="mw-page-title-main">Strepsiptera</span> Order of insects

The Strepsiptera are an order of insects with eleven extant families that include about 600 described species. They are endoparasites of other insects, such as bees, wasps, leafhoppers, silverfish, and cockroaches. Females of most species never emerge from the host after entering its body, finally dying inside it. The early-stage larvae do emerge because they must find an unoccupied living host, and the short-lived males must emerge to seek a receptive female in her host. They are believed to be most closely related to beetles, from which they diverged 300–350 million years ago, but do not appear in the fossil record until the mid-Cretaceous around 100 million years ago.

<span class="mw-page-title-main">Lepidoptera</span> Order of insects including moths and butterflies

Lepidoptera is an order of insects that includes butterflies and moths. About 180,000 species of the Lepidoptera have been described, representing ten percent of the total described species of living organisms, and placed in 126 families and 46 superfamilies. It is one of the most widespread and widely recognizable insect orders in the world. The Lepidoptera show many variations of the basic body structure that have evolved to gain advantages in lifestyle and distribution. Recent estimates suggest the order may have more species than earlier thought, and is among the four most species-rich orders, along with the Hymenoptera, Diptera, and Coleoptera.

<span class="mw-page-title-main">Conifer</span> Group of cone-bearing seed plants

Conifers are a group of cone-bearing seed plants, a subset of gymnosperms. Scientifically, they make up the division Pinophyta, also known as Coniferophyta or Coniferae. The division contains a single extant class, Pinopsida. All extant conifers are perennial woody plants with secondary growth. The great majority are trees, though a few are shrubs. Examples include cedars, Douglas-firs, cypresses, firs, junipers, kauri, larches, pines, hemlocks, redwoods, spruces, and yews. The division Pinophyta contains seven families, 60 to 65 genera, and more than 600 living species.

<span class="mw-page-title-main">Thrips</span> Order of insects

Thrips are minute, slender insects with fringed wings and unique asymmetrical mouthparts. Entomologists have described approximately 7,700 species. They fly only weakly and their feathery wings are unsuitable for conventional flight; instead, thrips exploit an unusual mechanism, clap and fling, to create lift using an unsteady circulation pattern with transient vortices near the wings.

<span class="mw-page-title-main">Pentatomoidea</span> Superfamily of true bugs

The Pentatomoidea are a superfamily of insects in the Heteroptera suborder of the Hemiptera order. As Hemiptera, they share a common arrangement of sucking mouthparts. The roughly 7000 species under Pentatomoidea are divided into 21 families. Among these are the stink bugs and shield bugs, jewel bugs, giant shield bugs, and burrower bugs.

<span class="mw-page-title-main">Sawfly</span> Suborder of insects

Sawflies are the insects of the suborder Symphyta within the order Hymenoptera, alongside ants, bees, and wasps. The common name comes from the saw-like appearance of the ovipositor, which the females use to cut into the plants where they lay their eggs. The name is associated especially with the Tenthredinoidea, by far the largest superfamily in the suborder, with about 7,000 known species; in the entire suborder, there are 8,000 described species in more than 800 genera. Symphyta is paraphyletic, consisting of several basal groups within the order Hymenoptera, each one rooted inside the previous group, ending with the Apocrita which are not sawflies.

<span class="mw-page-title-main">Pterygota</span> Subclass of insects

The Pterygota are a subclass of insects that includes all winged insects and the orders that are secondarily wingless.

<span class="mw-page-title-main">Mecoptera</span> Order of insects with markedly different larvae and adults

Mecoptera is an order of insects in the superorder Holometabola with about six hundred species in nine families worldwide. Mecopterans are sometimes called scorpionflies after their largest family, Panorpidae, in which the males have enlarged genitals raised over the body that look similar to the stingers of scorpions, and long beaklike rostra. The Bittacidae, or hangingflies, are another prominent family and are known for their elaborate mating rituals, in which females choose mates based on the quality of gift prey offered to them by the males. A smaller group is the snow scorpionflies, family Boreidae, adults of which are sometimes seen walking on snowfields. In contrast, the majority of species in the order inhabit moist environments in tropical locations.

Holometabolism, also called complete metamorphosis, is a form of insect development which includes four life stages: egg, larva, pupa, and imago. Holometabolism is a synapomorphic trait of all insects in the superorder Holometabola. Immature stages of holometabolous insects are very different from the mature stage. In some species the holometabolous life cycle prevents larvae from competing with adults because they inhabit different ecological niches. The morphology and behavior of each stage are adapted for different activities. For example, larval traits maximize feeding, growth, and development, while adult traits enable dispersal, mating, and egg laying. Some species of holometabolous insects protect and feed their offspring. Other insect developmental strategies include ametabolism and hemimetabolism.

<span class="mw-page-title-main">Snakefly</span> Order of insects

Snakeflies are a group of predatory insects comprising the order Raphidioptera with two extant families: Raphidiidae and Inocelliidae, consisting of roughly 260 species. In the past, the group had a much wider distribution than it does now; snakeflies are found in temperate regions worldwide but are absent from the tropics and the Southern Hemisphere. Recognisable representatives of the group first appeared during the Early Jurassic. They are a relict group, having reached their apex of diversity during the Cretaceous before undergoing substantial decline.

<span class="mw-page-title-main">Embioptera</span> Order of insects

The order Embioptera, commonly known as webspinners or footspinners, are a small group of mostly tropical and subtropical insects, classified under the subclass Pterygota. The order has also been called Embiodea or Embiidina. More than 400 species in 11 families have been described, the oldest known fossils of the group being from the mid-Jurassic. Species are very similar in appearance, having long, flexible bodies, short legs, and only males having wings.

<span class="mw-page-title-main">Pentatomomorpha</span> Infraorder of true bugs

The Pentatomomorpha comprise an infraorder of insects in the true bug order Hemiptera. It unites such animals as the stink bugs (Pentatomidae), flat bugs (Aradidae), seed bugs, etc. They are closely related to the Cimicomorpha.

<span class="mw-page-title-main">Hangingfly</span> Family of insects

Bittacidae is a family of scorpionflies commonly called hangingflies or hanging scorpionflies.

<span class="mw-page-title-main">Cleridae</span> Checkered beetles

Cleridae are a family of beetles of the superfamily Cleroidea. They are commonly known as checkered beetles. The family Cleridae has a worldwide distribution, and a variety of habitats and feeding preferences.

<span class="mw-page-title-main">Megalopodidae</span> Family of beetles

The Megalopodidae are a small family of leaf beetles, previously included as a subfamily within the Chrysomelidae. One of its constituent subfamilies, Zeugophorinae, has also frequently been treated as a subfamily within Chrysomelidae. The family contains approximately 30 genera worldwide, primarily in the nominate subfamily Megalopodinae, and mostly circumtropical.

Glosselytrodea is an extinct order of insects, containing about thirty species. Its fossil record dates from the Permian to the Upper Jurassic, and is distributed across Eurasia, the Americas, and Australia. Its classification is uncertain, but may be closely related to Neuropterida or Orthoptera.

<span class="mw-page-title-main">Kalotermitidae</span> Family of termites

Kalotermitidae is a family of termites, commonly known as drywood termites. Kalotermitidae includes 21 genera and 419 species. The family has a cosmopolitan circumtropical distribution, and is found in functionally arid environments.

<span class="mw-page-title-main">Polyneoptera</span> Group of insects

The cohort Polyneoptera is a proposed taxonomic ranking for the Orthoptera and all other Neopteran insects believed to be more closely related to Orthoptera than to any other insect orders. These winged insects, now in the Paraneoptera, were formerly grouped as the Hemimetabola or Exopterygota on the grounds that they have no metamorphosis, the wings gradually developing externally throughout the nymphal stages.

<span class="mw-page-title-main">Batrachideinae</span> Subfamily of grasshoppers

Batrachideinae is a subfamily of groundhoppers or pygmy grasshoppers. There are thought to be 20 genera in Batrachideinae, with genera found in the Americas, Africa, Asia and Australia.

References

  1. 1 2 Storozhenko, S. Yu.; V. G. Novokshonov (August 1999). "To the Knowledge of the Fossil Family Permosialidae (Insecta: Miomoptera)" (PDF). Far East Entomologist. 76: 1–5. ISSN   1026-051X. Archived from the original (PDF) on 2011-09-10. Retrieved 2008-06-12.
  2. Hoell, H.V.; Doyen, J.T. & Purcell, A.H. (1998). Introduction to Insect Biology and Diversity (2nd ed.). Oxford University Press. p. 322. ISBN   0-19-510033-6.
  3. Novokshonov, V. G.; L. V. Zhuzhgova (2004). "Discussion of the System and Phylogeny of the Order Palaeomanteida (= Miomoptera) (...)" (PDF). Paleontological Journal. 38 (Suppl. 2): S173–S184. Retrieved 2008-04-11.
  4. Tree of Life Web Project. 2003. Miomoptera. in The Tree of Life Web Project,