Microecosystem

Last updated

Microecosystems can exist in locations which are precisely defined by critical environmental factors within small or tiny spaces.

Contents

Such factors may include temperature, pH, chemical milieu, nutrient supply, presence of symbionts or solid substrates, gaseous atmosphere (aerobic or anaerobic) etc.

Some examples

Pond microecosystems

These microecosystems with limited water volume are often only of temporary duration and hence colonized by organisms which possess a drought-resistant spore stage in the lifecycle, or by organisms which do not need to live in water continuously. The ecosystem conditions applying at a typical pond edge can be quite different from those further from shore. Extremely space-limited water ecosystems can be found in, for example, the water collected in bromeliad leaf bases and the "pitchers" of Nepenthes .

Animal gut microecosystems

These include the buccal region (especially cavities in the gingiva), rumen, caecum etc. of mammalian herbivores or even invertebrate digestive tracts. In the case of mammalian gastrointestinal microecology, microorganisms such as protozoa, bacteria, as well as curious incompletely defined organisms (such as certain large structurally complex Selenomonads, Quinella ovalis "Quin's Oval", Magnoovum eadii "Eadie's Oval", Oscillospira etc.) can exist in the rumen as incredibly complex, highly enriched mixed populations, (see Moir and Masson images [1] ). This type of microecosystem can adjust rapidly to changes in the nutrition or health of the host animal (usually a ruminant such as cow, sheep, goat etc.); see Hungate's "The Rumen and its microbes 1966). Even within a small closed system such as the rumen there may exist a range of ecological conditions: Many organisms live freely in the rumen fluid whereas others require the substrate and metabolic products supplied by the stomach wall tissue with its folds and interstices. Interesting questions are also posed concerning the transfer of the strict anaerobe organisms in the gut microflora/microfauna to the next host generation. Here, mutual licking and coprophagia certainly play important roles.

Soil microecosystems

A typical soil microecosystem may be restricted to less than a millimeter in its total depth range owing to steep variation in humidity and/or atmospheric gas composition. The soil grain size and physical and chemical properties of the substrate may also play important roles. Because of the predominant solid phase in these systems they are notoriously difficult to study microscopically without simultaneously disrupting the fine spatial distribution of their components.

Terrestrial hot-spring microecosystems

These are defined by gradients of water temperature, nutrients, dissolved gases, salt concentrations etc. Along the path of terrestrial water flow the resulting temperature gradient continuum alone may provide many different minute microecosystems, starting with thermophilic bacteria such as Archaea "Archaebacteria" (100 °C (212 °F) or more), followed by conventional thermophiles (60–100 °C (140–212 °F)), cyanobacteria (blue-green algae) such as the motile filaments of Oscillatoria (30–60 °C (86–140 °F)), protozoa such as Amoeba, rotifers, then green algae (0–30 °C (32–86 °F)) etc. Of course other factors than temperature also play important roles. Hot springs can provide classic and straightforward ecosystems for microecology studies as well as providing a haven for hitherto undescribed organisms.

Deep-sea microecosystems

The best known contain rare specialized organisms, found only in the immediate vicinity (sometimes within centimeters) of underwater volcanic vents (or "smokers"). These ecosystems require extremely advanced diving and collection techniques for their scientific exploration.

Closed microecosystem

One that is sealed and completely independent of outside factors, except for temperature and light. A good example would be a plant contained in a sealed jar and submerged under water. No new factors would be able to enter this ecosystem.

Related Research Articles

Plankton Organisms that are in the water column and are incapable of swimming against a current

Plankton are the diverse collection of organisms found in water that are unable to propel themselves against a current. The individual organisms constituting plankton are called plankters. In the ocean, they provide a crucial source of food to many small and large aquatic organisms, such as bivalves, fish and whales.

Bacterial growth Growth of bacterial colonies

Bacterial growth is proliferation of bacterium into two daughter cells, in a process called binary fission. Providing no event occurs, the resulting daughter cells are genetically identical to the original cell. Hence, bacterial growth occurs. Both daughter cells from the division do not necessarily survive. However, if the number surviving exceeds unity on average, the bacterial population undergoes exponential growth. The measurement of an exponential bacterial growth curve in batch culture was traditionally a part of the training of all microbiologists; the basic means requires bacterial enumeration by direct and individual, direct and bulk (biomass), indirect and individual, or indirect and bulk methods. Models reconcile theory with the measurements.

Zooplankton Heterotrophic protistan or metazoan members of the plankton ecosystem

Zooplankton are heterotrophic plankton. Plankton are organisms drifting in oceans, seas, and bodies of fresh water. The word zooplankton is derived from the Greek zoon (ζῴον), meaning "animal", and planktos (πλαγκτός), meaning "wanderer" or "drifter". Individual zooplankton are usually microscopic, but some are larger and visible to the naked eye.

Epiphyte Non-parasitic surface organism that grows upon another plant but is not nourished by it

An epiphyte is an organism that grows on the surface of a plant and derives its moisture and nutrients from the air, rain, water or from debris accumulating around it. Epiphytes take part in nutrient cycles and add to both the diversity and biomass of the ecosystem in which they occur, like any other organism. They are an important source of food for many species. Typically, the older parts of a plant will have more epiphytes growing on them. Epiphytes differ from parasites in that they grow on other plants for physical support and do not necessarily affect the host negatively. An organism that grows on another organism that is not a plant may be called an epibiont. Epiphytes are usually found in the temperate zone or in the tropics. Epiphyte species make good houseplants due to their minimal water and soil requirements. Epiphytes provide a rich and diverse habitat for other organisms including animals, fungi, bacteria, and myxomycetes.

Aquatic ecosystem Ecosystem in a body of water

An aquatic ecosystem is an ecosystem in and surrounding a body of water. They are contrasted with terrestrial ecosystems which are those found on land. Communities of organisms that are dependent on each other and on their environment live in aquatic ecosystems. The two main types of aquatic ecosystems are marine ecosystems and freshwater ecosystems. Freshwater ecosystems may be Lentic ; lotic ; and wetlands.

Industrial fermentation is the intentional use of fermentation by microorganisms such as bacteria and fungi as well as eukaryotic cells like CHO cells and insect cells, to make products useful to humans. Fermented products have applications as food as well as in general industry. Some commodity chemicals, such as acetic acid, citric acid, and ethanol are made by fermentation. The rate of fermentation depends on the concentration of microorganisms, cells, cellular components, and enzymes as well as temperature, pH and for aerobic fermentation oxygen. Product recovery frequently involves the concentration of the dilute solution. Nearly all commercially produced enzymes, such as lipase, invertase and rennet, are made by fermentation with genetically modified microbes. In some cases, production of biomass itself is the objective, like Single-cell protein and as in the case of baker's yeast and lactic acid bacteria starter cultures for cheesemaking. In general, fermentations can be divided into four types:

Aquatic biomonitoring

Aquatic biomonitoring is the science of inferring the ecological condition of rivers, lakes, streams, and wetlands by examining the organisms that live there. While aquatic biomonitoring is the most common form of biomonitoring, any ecosystem can be studied in this manner.

The genus Selenomonas constitutes a group of motile crescent-shaped bacteria within the Veillonellaceae family and includes species living in the gastrointestinal tracts of animals, in particular the ruminants. A number of smaller forms discovered with the light microscope are now in culture but many, especially the large selenomonads are not, owing to their fastidious and incompletely known growth requirements.

River ecosystem Type of aquatic ecosystem with flowing freshwater

River ecosystems are flowing waters that drain the landscape, and include the biotic (living) interactions amongst plants, animals and micro-organisms, as well as abiotic (nonliving) physical and chemical interactions of its many parts. River ecosystems are part of larger watershed networks or catchments, where smaller headwater streams drain into mid-size streams, which progressively drain into larger river networks. The major zones in river ecosystems are determined by the river bed's gradient or by the velocity of the current. Faster moving turbulent water typically contains greater concentrations of dissolved oxygen, which supports greater biodiversity than the slow-moving water of pools. These distinctions form the basis for the division of rivers into upland and lowland rivers.

Lake ecosystem

A lake ecosystem or lacustrine ecosystem includes biotic (living) plants, animals and micro-organisms, as well as abiotic (non-living) physical and chemical interactions. Lake ecosystems are a prime example of lentic ecosystems, which include ponds, lakes and wetlands, and much of this article applies to lentic ecosystems in general. Lentic ecosystems can be compared with lotic ecosystems, which involve flowing terrestrial waters such as rivers and streams. Together, these two ecosystems are examples of freshwater ecosystems.

Soil ecology is the study of the interactions among soil organisms, and between biotic and abiotic aspects of the soil environment. It is particularly concerned with the cycling of nutrients, formation and stabilization of the pore structure, the spread and vitality of pathogens, and the biodiversity of this rich biological community.

Microbial population biology is the application of the principles of population biology to microorganisms.

Phototrophic biofilm Microbial communities including microorganisms which use light as their energy source


Phototrophic biofilms are microbial communities generally comprising both phototrophic microorganisms, which use light as their energy source, and chemoheterotrophs. Thick laminated multilayered phototrophic biofilms are usually referred to as microbial mats or phototrophic mats. These organisms, which can be prokaryotic or eukaryotic organisms like bacteria, cyanobacteria, fungi, and microalgae, make up diverse microbial communities that are affixed in a mucous matrix, or film. These biofilms occur on contact surfaces in a range of terrestrial and aquatic environments. The formation of biofilms is a complex process and is dependent upon the availability of light as well as the relationships between the microorganisms. Biofilms serve a variety of roles in aquatic, terrestrial, and extreme environments; these roles include functions which are both beneficial and detrimental to the environment. In addition to these natural roles, phototrophic biofilms have also been adapted for applications such as crop production and protection, bioremediation, and wastewater treatment.

Organisms involved in water purification

Most organisms involved in water purification originate from the waste, wastewater or water stream itself or arrive as resting spore of some form from the atmosphere. In a very few cases, mostly associated with constructed wetlands, specific organisms are planted to maximise the efficiency of the process.

Quinella is a genus of bacteria in the Veillonellaceae family. Its only species, Quinella ovalis, is an extremely large motile rumen anaerobic prokaryote previously known as "Quin's Oval".

Protozoa Single-celled eukaryotic organisms that feed on organic matter

Protozoa is an informal term for a group of single-celled eukaryotes, either free-living or parasitic, that feed on organic matter such as other microorganisms or organic tissues and debris. Historically, protozoans were regarded as "one-celled animals", because they often possess animal-like behaviours, such as motility and predation, and lack a cell wall, as found in plants and many algae.

Bacterioplankton bacterial component of the plankton that drifts in the water column

Bacterioplankton refers to the bacterial component of the plankton that drifts in the water column. The name comes from the Ancient Greek word πλανκτος, meaning "wanderer" or "drifter", and bacterium, a Latin term coined in the 19th century by Christian Gottfried Ehrenberg. They are found in both seawater and freshwater.

Antarctica is one of the most physically and chemically extreme terrestrial environments to be inhabited by lifeforms. The largest plants are mosses, and the largest animals that do not leave the continent are a few species of insects.

Marine microorganisms Any life form too small for the naked human eye to see that lives in a marine environment

Marine microorganisms are defined by their habitat as microorganisms living in a marine environment, that is, in the saltwater of a sea or ocean or the brackish water of a coastal estuary. A microorganism is any microscopic living organism or virus, that is too small to see with the unaided human eye without magnification. Microorganisms are very diverse. They can be single-celled or multicellular and include bacteria, archaea, viruses and most protozoa, as well as some fungi, algae, and animals, such as rotifers and copepods. Many macroscopic animals and plants have microscopic juvenile stages. Some microbiologists also classify biologically active entities such as viruses and viroids as microorganisms, but others consider these as non-living.

Soil microbiology is the study of microorganisms in soil, their functions, and how they affect soil properties. It is believed that between two and four billion years ago, the first ancient bacteria and microorganisms came about on Earth's oceans. These bacteria could fix nitrogen, in time multiplied, and as a result released oxygen into the atmosphere. This led to more advanced microorganisms, which are important because they affect soil structure and fertility. Soil microorganisms can be classified as bacteria, actinomycetes, fungi, algae and protozoa. Each of these groups has characteristics that define them and their functions in soil.

References

  1. Moir, R.J. & Masson, M.J. (1952). "An illustrated scheme for the microscopic identification of the rumen micro-organisms of sheep". J. Path. Bact. 64 (2): 343–350. doi:10.1002/path.1700640210. PMID   14946656.CS1 maint: multiple names: authors list (link)