Ecological effects of biodiversity

Last updated

The diversity of species and genes in ecological communities affects the functioning of these communities. These ecological effects of biodiversity in turn are affected by both climate change through enhanced greenhouse gases, aerosols and loss of land cover[ citation needed ], and biological diversity, causing a rapid loss of biodiversity and extinctions of species and local populations. The current rate of extinction is sometimes considered a mass extinction, with current species extinction rates on the order of 100 to 1000 times as high as in the past. [1]

Contents

The two main areas where the effect of biodiversity on ecosystem function have been studied are the relationship between diversity and productivity, and the relationship between diversity and community stability. [2] More biologically diverse communities appear to be more productive (in terms of biomass production) than are less diverse communities, and they appear to be more stable in the face of perturbations.

Also animals that inhabit an area may alter the surviving conditions by factors assimilated by climate.

Definitions

In order to understand the effects that changes in biodiversity will have on ecosystem functioning, it is important to define some terms. Biodiversity is not easily defined, but may be thought of as the number and/or evenness of genes, species, and ecosystems in a region. This definition includes genetic diversity, or the diversity of genes within a species, species diversity, or the diversity of species within a habitat or region, and ecosystem diversity, or the diversity of habitats within a region.

Two things commonly measured in relation to changes in diversity are productivity and stability. Productivity is a measure of ecosystem function. It is generally measured by taking the total aboveground biomass of all plants in an area. Many assume that it can be used as a general indicator of ecosystem function and that total resource use and other indicators of ecosystem function are correlated with productivity.

Stability is much more difficult to define, but can be generally thought of in two ways. General stability of a population is a measure that assumes stability is higher if there is less of a chance of extinction. This kind of stability is generally measured by measuring the variability of aggregate community properties, like total biomass, over time. [3] The other definition of stability is a measure of resilience and resistance, where an ecosystem that returns quickly to an equilibrium after a perturbation or resists invasion is thought of as more stable than one that does not. [4]

Productivity and stability as indicators of ecosystem health

The importance of stability in community ecology is clear. An unstable ecosystem will be more likely to lose species. Thus, if there is indeed a link between diversity and stability, it is likely that losses of diversity could feedback on themselves, causing even more losses of species. Productivity, on the other hand, has a less clear importance in community ecology. In managed areas like cropland, and in areas where animals are grown or caught, increasing productivity increases the economic success of the area and implies that the area has become more efficient, leading to possible long term resource sustainability. [5] It is more difficult to find the importance of productivity in natural ecosystems.

Beyond the value biodiversity has in regulating and stabilizing ecosystem processes, there are direct economic consequences of losing diversity in certain ecosystems and in the world as a whole. Losing species means losing potential foods, medicines, industrial products, and tourism, all of which have a direct economic effect on peoples lives. [6]

Effects on community productivity

Review of data

Field experiments to test the degree to which diversity affects community productivity have had variable results, but many long-term studies in grassland ecosystems have found that diversity does indeed enhance the productivity of ecosystems. [13] [14] [15] Additionally, evidence of this relationship has also been found in grassland microcosms. The differing results between studies may partially be attributable to their reliance on samples with equal species diversities rather than species diversities that mirror those observed in the environment. [16] A 2006 experiment utilizing a realistic variation in species composition for its grassland samples found a positive correlation between increased diversity and increased production. [16]

However, these studies have come to different conclusions as to whether the cause was due more to diversity or to species composition. Specifically, a diversity in the functional roles of the species may be a more important quality for predicting productivity than the diversity in species number. [16] Recent mathematical models have highlighted the importance of ecological context in unraveling this problem. Some models have indicated the importance of disturbance rates and spatial heterogeneity of the environment, [17] others have indicated that the time since disturbance and the habitat's carrying capacity can cause differing relationships. [18] Each ecological context should yield not only a different relationship, but a different contribution to the relationship due to diversity and to composition. The current consensus holds at least that certain combinations of species provide increased community productivity. [19]

Future research

In order to correctly identify the consequences of diversity on productivity and other ecosystem processes, many things must happen. First, it is imperative that scientists stop looking for a single relationship. It is obvious now from the models, the data, and the theory that there is no one overarching effect of diversity on productivity[ citation needed ]. Scientists must try to quantify the differences between composition effect and diversity effects, as many experiments never quantify the final realized species diversity (instead only counting numbers of species of seeds planted) and confound a sampling effect for facilitators (a compositional factor) with diversity effects.

Relative amounts of overyielding (or how much more a species grows when grown with other species than it does in monoculture) should be used rather than absolute amounts as relative overyielding can give clues as to the mechanism by which diversity is influencing productivity, however if experimental protocols are incomplete, one may be able to indicate the existence of a complementary or facilitative effect in the experiment, but not be able to recognize its cause. Experimenters should know what the goal of their experiment is, that is, whether it is meant to inform natural or managed ecosystems, as the sampling effect may only be a real effect of diversity in natural ecosystems (managed ecosystems are composed to maximize complementarity and facilitation regardless of species number). By knowing this, they should be able to choose spatial and temporal scales that are appropriate for their experiment. Lastly, to resolve the diversity-function debate, it is advisable that experiments be done with large amounts of spatial and resource heterogeneity and environmental fluctuation over time, as these types of experiments should be able to demonstrate the diversity-function relationship more easily. [5]

Effects on community stability

Review of temporal stability data

Models have predicted that empirical relationships between temporal variation of community productivity and species diversity are indeed real, and that they almost have to be. Some temporal stability data can be almost completely explained by the averaging effect by constructing null models to test the data against. [3] [13] Competition, which causes negative covariances, only serves to strengthen these relationships.

Review of resistance and resilience stability data

This area is more contentious than the area of temporal stability, mostly because some have tried generalizing the findings of the temporal stability models and theory to stability in general. While the relationship between temporal variations in productivity and diversity has a mathematical cause, which will allow the relationship to be seen much more often than not, it is not the case with resistance/resilience stability. Some experimenters have seen a correlation between diversity and reduced invasibility, though many have also seen the opposite. [25] The correlation between diversity and disease is also tenuous, though theory and data do seem to support it. [24]

Future research

In order to more fully understand the effects of diversity on the temporal stability of ecosystems it is necessary to recognize that they are bound to occur. By constructing null models to test the data against (as in Doak et al. 1998 [3] ) it becomes possible to find situations and ecological contexts where ecosystems become more or less stable than they should be. Finding these contexts would allow for mechanistic studies into why these ecosystems are more stable, which may allow for applications in conservation management.

More importantly more complete experiments into whether diverse ecosystems actually resist invasion and disease better than their less diverse equivalents as invasion and disease are two important factors that lead to species extinctions in the present day. In order to address these problems specifically, future work should focus on practical methods to increase the successful establishment of the poor performing but desirable species. [26]

Theory and preliminary effects from examining food webs

One major problem with both the diversity-productivity and diversity-stability debates discussed up to this point is that both focus on interactions at just a single trophic level. That is, they are concerned with only one level of the food web, namely plants. Other research, unconcerned with the effects of diversity, has demonstrated strong top-down forcing of ecosystems (see keystone species). There is very little actual data available regarding the effects of different food webs, but theory helps us in this area. First, if a food web in an ecosystem has a lot of weak interactions between different species, then it should have more stable populations and the community as a whole should be more stable. [4] If upper levels of the web are more diverse, then there will be less biomass in the lower levels and if lower levels are more diverse they will better be able to resist consumption and be more stable in the face of consumption. Also, top-down forcing should be reduced in less diverse ecosystems because of the bias for species in higher trophic levels to go extinct first. [27] Lastly, it has recently been shown that consumers can dramatically change the biodiversity-productivity-stability relationships that are implied by plants alone. [28] Thus, it will be important in the future to incorporate food web theory into the future study of the effects of biodiversity. In addition this complexity will need to be addressed when designing biodiversity management plans.

See also

Related Research Articles

<span class="mw-page-title-main">Ecology</span> Study of organisms and their environment

Ecology is the natural science of the relationships among living organisms, including humans, and their physical environment. Ecology considers organisms at the individual, population, community, ecosystem, and biosphere levels. Ecology overlaps with the closely related sciences of biogeography, evolutionary biology, genetics, ethology, and natural history.

<span class="mw-page-title-main">Biodiversity</span> Variety and variability of life forms

Biodiversity is the variety and variability of life on Earth. It can be measured on various levels. There is for example genetic variability, species diversity, ecosystem diversity and phylogenetic diversity. Diversity is not distributed evenly on Earth. It is greater in the tropics as a result of the warm climate and high primary productivity in the region near the equator. Tropical forest ecosystems cover less than one-fifth of Earth's terrestrial area and contain about 50% of the world's species. There are latitudinal gradients in species diversity for both marine and terrestrial taxa.

<span class="mw-page-title-main">Urban ecology</span> Scientific study of living organisms

Urban ecology is the scientific study of the relation of living organisms with each other and their surroundings in an urban environment. An urban environment refers to environments dominated by high-density residential and commercial buildings, paved surfaces, and other urban-related factors that create a unique landscape. The goal of urban ecology is to achieve a balance between human culture and the natural environment.

<span class="mw-page-title-main">Ecosystem engineer</span> Ecological niche

An ecosystem engineer is any species that creates, significantly modifies, maintains or destroys a habitat. These organisms can have a large impact on species richness and landscape-level heterogeneity of an area. As a result, ecosystem engineers are important for maintaining the health and stability of the environment they are living in. Since all organisms impact the environment they live in one way or another, it has been proposed that the term "ecosystem engineers" be used only for keystone species whose behavior very strongly affects other organisms.

<span class="mw-page-title-main">Habitat fragmentation</span> Discontinuities in an organisms environment causing population fragmentation.

Habitat fragmentation describes the emergence of discontinuities (fragmentation) in an organism's preferred environment (habitat), causing population fragmentation and ecosystem decay. Causes of habitat fragmentation include geological processes that slowly alter the layout of the physical environment, and human activity such as land conversion, which can alter the environment much faster and causes the extinction of many species. More specifically, habitat fragmentation is a process by which large and contiguous habitats get divided into smaller, isolated patches of habitats.

<span class="mw-page-title-main">Ecological restoration</span> Scientific study of renewing and restoring ecosystems

Ecological restoration, or ecosystem restoration, is the process of assisting the recovery of an ecosystem that has been degraded, damaged, or destroyed. It is distinct from conservation in that it attempts to retroactively repair already damaged ecosystems rather than take preventative measures. Ecological restoration can reverse biodiversity loss, combat climate change, and support local economies. Habitat restoration involves the deliberate rehabilitation of a specific area to reestablish a functional ecosystem. To achieve successful habitat restoration, it's essential to understand the life cycles and interactions of species, as well as the essential elements such as food, water, nutrients, space, and shelter needed to support species populations. When it's not feasible to restore habitats to their original size or state, designated areas known as wildlife corridors can be established. These corridors connect different habitats and open spaces, facilitating the survival of species within human-dominated landscapes. For instance, marshes serve as critical stopover sites for migratory birds, wildlife overpasses enable animals to safely cross over highways, and protected riparian zones within urban settings provide necessary refuges for flora and fauna. The United Nations named 2021-2030 the Decade on Ecosystem Restoration.

In ecology, an ecosystem is said to possess ecological stability if it is capable of returning to its equilibrium state after a perturbation or does not experience unexpected large changes in its characteristics across time. Although the terms community stability and ecological stability are sometimes used interchangeably, community stability refers only to the characteristics of communities. It is possible for an ecosystem or a community to be stable in some of their properties and unstable in others. For example, a vegetation community in response to a drought might conserve biomass but lose biodiversity.

A functional group is merely a set of species, or collection of organisms, that share alike characteristics within a community. Ideally, the lifeforms would perform equivalent tasks based on domain forces, rather than a common ancestor or evolutionary relationship. This could potentially lead to analogous structures that overrule the possibility of homology. More specifically, these beings produce resembling effects to external factors of an inhabiting system. Due to the fact that a majority of these creatures share an ecological niche, it is practical to assume they require similar structures in order to achieve the greatest amount of fitness. This refers to such as the ability to successfully reproduce to create offspring, and furthermore sustain life by avoiding alike predators and sharing meals.

<span class="mw-page-title-main">Functional ecology</span>

Functional ecology is a branch of ecology that focuses on the roles, or functions, that species play in the community or ecosystem in which they occur. In this approach, physiological, anatomical, and life history characteristics of the species are emphasized. The term "function" is used to emphasize certain physiological processes rather than discrete properties, describe an organism's role in a trophic system, or illustrate the effects of natural selective processes on an organism. This sub-discipline of ecology represents the crossroads between ecological patterns and the processes and mechanisms that underlie them.

Soil ecology is the study of the interactions among soil organisms, and between biotic and abiotic aspects of the soil environment. It is particularly concerned with the cycling of nutrients, formation and stabilization of the pore structure, the spread and vitality of pathogens, and the biodiversity of this rich biological community.

<span class="mw-page-title-main">G. David Tilman</span> American ecologist (born 1949)

George David Tilman, ForMemRS, is an American ecologist. He is Regents Professor and McKnight Presidential Chair in Ecology at the University of Minnesota, as well as an instructor in Conservation Biology; Ecology, Evolution, and Behavior; and Microbial Ecology. He is director of the Cedar Creek Ecosystem Science Reserve long-term ecological research station. Tilman is also a professor at University of California, Santa Barbara's Bren School of Environmental Science & Management.

<span class="mw-page-title-main">Community (ecology)</span> Associated populations of species in a given area

In ecology, a community is a group or association of populations of two or more different species occupying the same geographical area at the same time, also known as a biocoenosis, biotic community, biological community, ecological community, or life assemblage. The term community has a variety of uses. In its simplest form it refers to groups of organisms in a specific place or time, for example, "the fish community of Lake Ontario before industrialization".

Functional diversity, composition, and species richness affect the biogeochemical processes of ecosystems. However, the degree to which these factors influence ecosystems and whether that influence is significant is debated.

<span class="mw-page-title-main">Dominance (ecology)</span> Measure of species ecological influence

Ecological dominance is the degree to which one or several species have a major influence controlling the other species in their ecological community or make up more of the biomass. Both the composition and abundance of species within an ecosystem can be affected by the dominant species present.

In ecology, the theory of alternative stable states predicts that ecosystems can exist under multiple "states". These alternative states are non-transitory and therefore considered stable over ecologically-relevant timescales. Ecosystems may transition from one stable state to another, in what is known as a state shift, when perturbed. Due to ecological feedbacks, ecosystems display resistance to state shifts and therefore tend to remain in one state unless perturbations are large enough. Multiple states may persist under equal environmental conditions, a phenomenon known as hysteresis. Alternative stable state theory suggests that discrete states are separated by ecological thresholds, in contrast to ecosystems which change smoothly and continuously along an environmental gradient.

In ecology, the term productivity refers to the rate of generation of biomass in an ecosystem, usually expressed in units of mass per volume per unit of time, such as grams per square metre per day. The unit of mass can relate to dry matter or to the mass of generated carbon. The productivity of autotrophs, such as plants, is called primary productivity, while the productivity of heterotrophs, such as animals, is called secondary productivity.

<span class="mw-page-title-main">Elevational diversity gradient</span> Ecological pattern in which biodiversity changes with elevation

Elevational diversity gradient (EDG) is an ecological pattern where biodiversity changes with elevation. The EDG states that species richness tends to decrease as elevation increases, up to a certain point, creating a "diversity bulge" at middle elevations. There have been multiple hypotheses proposed for explaining the EDG, none of which accurately describe the phenomenon in full.

Elizabeth T. Borer is an American ecologist and a professor of ecology, Evolution and Behavior in the College of Biological Sciences at the University of Minnesota.

<span class="mw-page-title-main">Bradley Cardinale</span> American ecologist and conservation biologist

Bradley Cardinale is an American ecologist, conservation biologist, academic and researcher. He is Head of the Department of Ecosystem Science and Management and Penn State University.

<span class="mw-page-title-main">Facilitation cascade</span> Beneficial ecological chain reaction

A facilitation cascade is a sequence of ecological interactions that occur when a species benefits a second species that in turn has a positive effect on a third species. These facilitative interactions can take the form of amelioration of environmental stress and/or provision of refuge from predation. Autogenic ecosystem engineering species, structural species, habitat-forming species, and foundation species are associated with the most commonly recognized examples of facilitation cascades, sometimes referred to as a habitat cascades. Facilitation generally is a much broader concept that includes all forms of positive interactions including pollination, seed dispersal, and co-evolved commensalism and mutualistic relationships, such as between cnidarian hosts and symbiodinium in corals, and between algae and fungi in lichens. As such, facilitation cascades are widespread through all of the earth's major biomes with consistently positive effects on the abundance and biodiversity of associated organisms.

References

  1. Vitousek, P. M.; Mooney, H. A.; Lubchenco, J.; et al. (1997). "Human domination of Earth's ecosystems". Science . 277 (5325): 494–499. CiteSeerX   10.1.1.318.6529 . doi:10.1126/science.277.5325.494. S2CID   8610995.
  2. Hines, J.; van der Putten, W. H.; De Deyn, G. B.; Wagg, C.; Voigt, W.; Mulder, C.; Weisser, W.; Engel, J.; Melian, C.; Scheu, S.; Birkhofer, K.; Ebeling, A.; Scherber, C.; Eisenhauer, N. (2015). "Towards an integration of biodiversity-ecosystem functioning and food-web theory to evaluate connections between multiple ecosystem services". In Woodward, Guy; Bohan, David A. (eds.). Ecosystem Services: From Biodiversity to Society, Part 1. Advances in Ecological Research. Vol. 53. UK: Academic Press. pp. 161–199. ISBN   978-0-12-803885-7.
  3. 1 2 3 4 Doak, D. F.; Bigger, D.; Harding, E. K.; et al. (1998). "The statistical inevitability of stability-diversity relationships in community ecology". Am. Nat. 151 (3): 264–276. doi:10.2307/2463348. JSTOR   2463348. PMID   18811357.
  4. 1 2 McCann, K. S. (2000). "The diversity-stability debating". Nature . 405 (6783): 228–233. doi:10.1038/35012234. PMID   10821283. S2CID   4319289.
  5. 1 2 3 Fridley, J. D. (2001). "The influence of species diversity on ecosystem productivity: how, where, why?". Oikos . 93 (3): 514–526. Bibcode:2001Oikos..93..514F. doi:10.1034/j.1600-0706.2001.930318.x.
  6. Wilson, E. O. (1992). The Diversity of Life . Cambridge, Mass.: Harvard Univ. Press. ISBN   978-0-674-21298-5.
  7. Tilman, D.; Knops, J.; Wedin, D.; et al. (1997a). "The influence of functional diversity and composition on ecosystem processes". Science. 277 (5330): 1300–1302. CiteSeerX   10.1.1.654.3026 . doi:10.1126/science.277.5330.1300.
  8. Tilman, D.; Lehman, C.L.; Thomson, K.T. (1997b). "Plant diversity and ecosystem productivity: theoretical considerations". Proc. Natl. Acad. Sci. USA. 94 (5): 1857–1861. Bibcode:1997PNAS...94.1857T. doi: 10.1073/pnas.94.5.1857 . PMC   20007 . PMID   11038606.
  9. 1 2 Tilman, D (1999). "The ecological consequences of changes in biodiversity: a search for general principles". Ecology. 80 (5): 1455–1474. Bibcode:1999Ecol...80.1455T. doi:10.2307/176540. JSTOR   176540.
  10. Vandermeer, J. H. 1989. The ecology of intercropping. Cambridge Univ. Press., Cambridge, England.
  11. Turner, R.M., Alcorn, S.M., Olin, G. and Booth, J.A. 1966. The influence of shade, soil, and water on saguaro seedling establishment.Bot. Gaz. 127: 95-102.
  12. Norris-Tull, Delena (July 2020). "Sampling Effect".
  13. 1 2 Tilman, D.; Wedin, D; Knops, J. (1996). "Productivity and sustainability influenced by biodiversity in grassland ecosystems". Nature. 379 (6567): 718–720. Bibcode:1996Natur.379..718T. doi:10.1038/379718a0. S2CID   4347014.
  14. Naeem, S.; Thompson, L.J.; Lawler, S.P; et al. (1994). "Declining biodiversity can alter the performance of ecosystems". Nature. 368 (6473): 734–737. Bibcode:1994Natur.368..734N. doi:10.1038/368734a0. S2CID   4305254.
  15. Hooper, D.; Vitousek, P. (1997). "The effect of plant composition and diversity on ecosystem processes". Science. 277 (5330): 1302–1305. doi:10.1126/science.277.5330.1302.
  16. 1 2 3 Zavaleta, E. S.; Hulvey, K. B. (2006). "Realistic variation in species composition affects grassland production, resource use and invasion resistance" (PDF). Plant Ecology. 188 (1): 39–51. Bibcode:2006PlEco.188...39Z. doi:10.1007/s11258-006-9146-z. S2CID   15454703 . Retrieved 18 January 2014.
  17. Cardinale, B.J.; Nelson, K.; Palmer, M.A. (2000). "Linking species diversity to the functioning of ecosystems: on the importance of environmental context". Oikos. 91 (1): 175–183. Bibcode:2000Oikos..91..175C. doi:10.1034/j.1600-0706.2000.910117.x.
  18. Aarssen, L.W.; Laird, R.A.; Pither, J. (2003). "Is the productivity of vegetation plots higher or lower when there are more species? Variable predictions from interaction of the "sampling effect" and "competitive dominance effect" on the habitat templet". Oikos. 102 (2): 427–432. Bibcode:2003Oikos.102..427.. doi:10.1034/j.1600-0579.2003.12560.x.
  19. Hooper, D. U.; Chapin, F. S.; Ewel, J. J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J. H.; Lodge, D. M.; Loreau, M.; Naeem, S.; Schmid, B.; Setälä, H.; Symstad, A. J.; Vandermeer, J.; Wardle, D. A. (2005). "Effects of Biodiversity on Ecosystem Functioning: A Consensus of Current Knowledge" (PDF). Ecological Monographs. 75 (1): 3–35. Bibcode:2005EcoM...75....3H. doi:10.1890/04-0922. S2CID   2117723. Archived from the original (PDF) on 2017-09-23. Retrieved 2019-07-10.
  20. Tilman, D.; Lehman, C. L.; Bristow, C. E. (1998). "Diversity-stability relationships: statistical inevitability or ecological consequence". Am. Nat. 151 (3): 264–276. doi:10.1086/286118. PMID   18811358. S2CID   15490902.
  21. Naeem, S.; Li, S. (1997). "Biodiversity enhances ecosystem reliability". Nature. 390 (6659): 507–509. Bibcode:1997Natur.390..507N. doi:10.1038/37348. S2CID   4420940.
  22. 1 2 Elton, C. S. (1958). The ecology of invasions by animals and plants. New York: John Wiley.
  23. 1 2 Chapin, F. S. III; Walker, B. H.; Hobbs, R. J.; et al. (1997). "Biotic control over the functioning of ecosystems". Science . 277 (5325): 500–504. CiteSeerX   10.1.1.468.3153 . doi:10.1126/science.277.5325.500.
  24. 1 2 Mitchell, C. E.; Tilman, D.; Groth, J. V. (2002). "Effects of grassland plant species diversity, abundance, and composition on foliar fungal disease". Ecology . 83 (6): 1713–1726. doi:10.1890/0012-9658(2002)083[1713:EOGPSD]2.0.CO;2.
  25. Dukes, J. S. (2001). "Biodiversity and invisibility in grassland microcosms". Oecologia . 126 (4): 563–568. Bibcode:2001Oecol.126..563D. doi:10.1007/s004420000549. PMID   28547241. S2CID   19143230.
  26. Pywell, Richard F.; Bullock, James M.; Roy, David B.; Warman, Liz; Walker, Kevin J.; Rothery, Peter (February 2003). "Plant traits as predictors of performance in ecological restoration: Plant traits as predictors of performance". Journal of Applied Ecology. 40 (1): 65–77. doi:10.1046/j.1365-2664.2003.00762.x.
  27. Duffy, J. E. (2002). "Biodiversity and ecosystem function: the consumer connection". Oikos . 99 (2): 201–219. Bibcode:2002Oikos..99..201D. doi: 10.1034/j.1600-0706.2002.990201.x .
  28. Worm, B.; Duffy, J. E. (2003). "Biodiversity, productivity and stability in real food webs". Trends in Ecology and Evolution. 18 (12): 628–632. CiteSeerX   10.1.1.322.7255 . doi:10.1016/j.tree.2003.09.003.