Trophic cascade

Last updated

Trophic cascades are powerful indirect interactions that can control entire ecosystems, occurring when a trophic level in a food web is suppressed. For example, a top-down cascade will occur if predators are effective enough in predation to reduce the abundance, or alter the behavior of their prey, thereby releasing the next lower trophic level from predation (or herbivory if the intermediate trophic level is a herbivore).

Contents

The trophic cascade is an ecological concept which has stimulated new research in many areas of ecology. For example, it can be important for understanding the knock-on effects of removing top predators from food webs, as humans have done in many places through hunting and fishing.

A top-down cascade is a trophic cascade where the top consumer/predator controls the primary consumer population. In turn, the primary producer population thrives. The removal of the top predator can alter the food web dynamics. In this case, the primary consumers would overpopulate and exploit the primary producers. Eventually there would not be enough primary producers to sustain the consumer population. Top-down food web stability depends on competition and predation in the higher trophic levels. Invasive species can also alter this cascade by removing or becoming a top predator. This interaction may not always be negative. Studies have shown that certain invasive species have begun to shift cascades; and as a consequence, ecosystem degradation has been repaired. [1] [2]

For example, if the abundance of large piscivorous fish is increased in a lake, the abundance of their prey, smaller fish that eat zooplankton, should decrease. The resulting increase in zooplankton should, in turn, cause the biomass of its prey, phytoplankton, to decrease.

In a bottom-up cascade, the population of primary producers will always control the increase/decrease of the energy in the higher trophic levels. Primary producers are plants and phytoplankton that require photosynthesis. Although light is important, primary producer populations are altered by the amount of nutrients in the system. This food web relies on the availability and limitation of resources. All populations will experience growth if there is initially a large amount of nutrients. [3] [4]

In a subsidy cascade, species populations at one trophic level can be supplemented by external food. For example, native animals can forage on resources that don't originate in their same habitat, such as native predators eating livestock. This may increase their local abundances thereby affecting other species in the ecosystem and causing an ecological cascade. For example, Luskin et al. (2017) found that native animals living in protected primary rainforest in Malaysia found food subsidies in neighboring oil palm plantations. [5] This subsidy allowed native animal populations to increase, which then triggered powerful secondary ‘cascading’ effects on forest tree community. Specifically, crop-raiding wild boar (Sus scrofa) built thousands of nests from the forest understory vegetation and this caused a 62% decline in forest tree sapling density over a 24-year study period. Such cross-boundary subsidy cascades may be widespread in both terrestrial and marine ecosystems and present significant conservation challenges.

These trophic interactions shape patterns of biodiversity globally. Humans and climate change have affected these cascades drastically. One example can be seen with sea otters (Enhydra lutris) on the Pacific coast of the United States of America. Over time, human interactions caused a removal of sea otters. One of their main prey, the Pacific purple sea urchin ( Strongylocentrotus purpuratus ) eventually began to overpopulate. The overpopulation caused increased predation of giant kelp (Macrocystis pyrifera). As a result, there was extreme deterioration of the kelp forests along the California coast. This is why it is important for countries to regulate marine and terrestrial ecosystems. [6] [7]

Predator-induced interactions could heavily influence the flux of atmospheric carbon if managed on a global scale. For example, a study was conducted to determine the cost of potential stored carbon in living kelp biomass in sea otter (Enhydra lutris) enhanced ecosystems. The study valued the potential storage between $205 million and $408 million dollars (US) on the European Carbon Exchange (2012). [8]

Origins and theory

Aldo Leopold is generally credited with first describing the mechanism of a trophic cascade, based on his observations of overgrazing of mountain slopes by deer after human extermination of wolves. [9] Nelson Hairston, Frederick E. Smith and Lawrence B. Slobodkin are generally credited with introducing the concept into scientific discourse, although they did not use the term either. Hairston, Smith and Slobodkin argued that predators reduce the abundance of herbivores, allowing plants to flourish. [10] This is often referred to as the green world hypothesis. The green world hypothesis is credited with bringing attention to the role of top-down forces (e.g. predation) and indirect effects in shaping ecological communities. The prevailing view of communities prior to Hairston, Smith and Slobodkin was trophodynamics, which attempted to explain the structure of communities using only bottom-up forces (e.g. resource limitation). Smith may have been inspired by the experiments of a Czech ecologist, Hrbáček, whom he met on a United States State Department cultural exchange. Hrbáček had shown that fish in artificial ponds reduced the abundance of zooplankton, leading to an increase in the abundance of phytoplankton. [11]

Hairston, Smith and Slobodkin feuded that the ecological communities acted as food chains with three trophic levels. Subsequent models expanded the argument to food chains with more than or fewer than three trophic levels. [12] Lauri Oksanen argued that the top trophic level in a food chain increases the abundance of producers in food chains with an odd number of trophic levels (such as in Hairston, Smith and Slobodkin's three trophic level model), but decreases the abundance of the producers in food chains with an even number of trophic levels. Additionally, he argued that the number of trophic levels in a food chain increases as the productivity of the ecosystem increases.

Criticisms

Although the existence of trophic cascades is not controversial, ecologists have long debated how ubiquitous they are. Hairston, Smith and Slobodkin argued that terrestrial ecosystems, as a rule, behave as a three trophic level trophic cascade, which provoked immediate controversy. Some of the criticisms, both of Hairston, Smith and Slobodkin's model and of Oksanen's later model, were:

Antagonistically, this principle is sometimes called the "trophic trickle". [15] [16]

Classic examples

Healthy Pacific kelp forests, like this one at San Clemente Island of California's Channel Islands, have been shown to flourish when sea otters are present. When otters are absent, sea urchin populations can irrupt and severely degrade the kelp forest ecosystem. Kelp forest and sardines, San Clemente Island, Channel Islands, California.jpg
Healthy Pacific kelp forests, like this one at San Clemente Island of California's Channel Islands, have been shown to flourish when sea otters are present. When otters are absent, sea urchin populations can irrupt and severely degrade the kelp forest ecosystem.

Although Hairston, Smith and Slobodkin formulated their argument in terms of terrestrial food chains, the earliest empirical demonstrations of trophic cascades came from marine and, especially, aquatic ecosystems. Some of the most famous examples are:

Terrestrial trophic cascades

The fact that the earliest documented trophic cascades all occurred in lakes and streams led a scientist to speculate that fundamental differences between aquatic and terrestrial food webs made trophic cascades primarily an aquatic phenomenon. Trophic cascades were restricted to communities with relatively low species diversity, in which a small number of species could have overwhelming influence and the food web could operate as a linear food chain. Additionally, well documented trophic cascades at that point in time all occurred in food chains with algae as the primary producer. Trophic cascades, Strong argued, may only occur in communities with fast-growing producers which lack defenses against herbivory. [22]

Subsequent research has documented trophic cascades in terrestrial ecosystems, including:

Critics pointed out that published terrestrial trophic cascades generally involved smaller subsets of the food web (often only a single plant species). This was quite different from aquatic trophic cascades, in which the biomass of producers as a whole were reduced when predators were removed. Additionally, most terrestrial trophic cascades did not demonstrate reduced plant biomass when predators were removed, but only increased plant damage from herbivores. [26] It was unclear if such damage would actually result in reduced plant biomass or abundance. In 2002 a meta-analysis found trophic cascades to be generally weaker in terrestrial ecosystems, meaning that changes in predator biomass resulted in smaller changes in plant biomass. [27] In contrast, a study published in 2009 demonstrated that multiple species of trees with highly varying autecologies are in fact heavily impacted by the loss of an apex predator. [28] Another study, published in 2011, demonstrated that the loss of large terrestrial predators also significantly degrades the integrity of river and stream systems, impacting their morphology, hydrology, and associated biological communities. [29]

The critics' model is challenged by studies accumulating since the reintroduction of gray wolves (Canis lupus) to Yellowstone National Park. The gray wolf, after being extirpated in the 1920s and absent for 70 years, was reintroduced to the park in 1995 and 1996. Since then a three-tiered trophic cascade has been reestablished involving wolves, elk (Cervus elaphus), and woody browse species such as aspen (Populus tremuloides), cottonwoods (Populus spp.), and willows (Salix spp.). Mechanisms likely include actual wolf predation of elk, which reduces their numbers, and the threat of predation, which alters elk behavior and feeding habits, resulting in these plant species being released from intensive browsing pressure. Subsequently, their survival and recruitment rates have significantly increased in some places within Yellowstone's northern range. This effect is particularly noted among the range's riparian plant communities, with upland communities only recently beginning to show similar signs of recovery. [30]

Examples of this phenomenon include:

Trophic cascades also impact the biodiversity of ecosystems, and when examined from that perspective wolves appear to be having multiple, positive cascading impacts on the biodiversity of Yellowstone National Park. These impacts include:

This diagram illustrates trophic cascade caused by removal of the top predator. When the top predator is removed the population of deer is able to grow unchecked and this causes over-consumption of the primary producers. Trophic Cascade 1.svg
This diagram illustrates trophic cascade caused by removal of the top predator. When the top predator is removed the population of deer is able to grow unchecked and this causes over-consumption of the primary producers.

There are a number of other examples of trophic cascades involving large terrestrial mammals, including:

Marine trophic cascades

In addition to the classic examples listed above, more recent examples of trophic cascades in marine ecosystems have been identified:

See also

Related Research Articles

<span class="mw-page-title-main">Herbivore</span> Organism that eats mostly or exclusively plant material

A herbivore is an animal anatomically and physiologically evolved to feed on plants, especially upon vascular tissues such as foliage, fruits or seeds, as the main component of its diet. These more broadly also encompass animals that eat non-vascular autotrophs such as mosses, algae and lichens, but do not include those feeding on decomposed plant matters or macrofungi.

<span class="mw-page-title-main">Biomass (ecology)</span> Total mass of living organisms in a given area (all species or selected species)

Biomass is the mass of living biological organisms in a given area or ecosystem at a given time. Biomass can refer to species biomass, which is the mass of one or more species, or to community biomass, which is the mass of all species in the community. It can include microorganisms, plants or animals. The mass can be expressed as the average mass per unit area, or as the total mass in the community.

<span class="mw-page-title-main">Predation</span> Biological interaction

Predation is a biological interaction where one organism, the predator, kills and eats another organism, its prey. It is one of a family of common feeding behaviours that includes parasitism and micropredation and parasitoidism. It is distinct from scavenging on dead prey, though many predators also scavenge; it overlaps with herbivory, as seed predators and destructive frugivores are predators.

<span class="mw-page-title-main">Food web</span> Natural interconnection of food chains

A food web is the natural interconnection of food chains and a graphical representation of what-eats-what in an ecological community. Position in the food web, or trophic level, is used in ecology to broadly classify organisms as autotrophs or heterotrophs. This is a non-binary classification; some organisms occupy the role of mixotrophs, or autotrophs that additionally obtain organic matter from non-atmospheric sources.

<span class="mw-page-title-main">Keystone species</span> Species with a large effect on its environment

A keystone species is a species that has a disproportionately large effect on its natural environment relative to its abundance. The concept was introduced in 1969 by the zoologist Robert T. Paine. Keystone species play a critical role in maintaining the structure of an ecological community, affecting many other organisms in an ecosystem and helping to determine the types and numbers of various other species in the community. Without keystone species, the ecosystem would be dramatically different or cease to exist altogether. Some keystone species, such as the wolf and lion, are also apex predators.

<span class="mw-page-title-main">Energy flow (ecology)</span> Flow of energy through food chains in ecological energetics

Energy flow is the flow of energy through living things within an ecosystem. All living organisms can be organized into producers and consumers, and those producers and consumers can further be organized into a food chain. Each of the levels within the food chain is a trophic level. In order to more efficiently show the quantity of organisms at each trophic level, these food chains are then organized into trophic pyramids. The arrows in the food chain show that the energy flow is unidirectional, with the head of an arrow indicating the direction of energy flow; energy is lost as heat at each step along the way.

<span class="mw-page-title-main">Soil food web</span> Complex living system in the soil

The soil food web is the community of organisms living all or part of their lives in the soil. It describes a complex living system in the soil and how it interacts with the environment, plants, and animals.

<span class="mw-page-title-main">Apex predator</span> Predator at the top of a food chain

An apex predator, also known as a top predator or superpredator, is a predator at the top of a food chain, without natural predators of its own.

<span class="mw-page-title-main">Lake ecosystem</span> Type of ecosystem

A lake ecosystem or lacustrine ecosystem includes biotic (living) plants, animals and micro-organisms, as well as abiotic (non-living) physical and chemical interactions. Lake ecosystems are a prime example of lentic ecosystems, which include ponds, lakes and wetlands, and much of this article applies to lentic ecosystems in general. Lentic ecosystems can be compared with lotic ecosystems, which involve flowing terrestrial waters such as rivers and streams. Together, these two ecosystems are examples of freshwater ecosystems.

<span class="mw-page-title-main">Community (ecology)</span> Associated populations of species in a given area

In ecology, a community is a group or association of populations of two or more different species occupying the same geographical area at the same time, also known as a biocoenosis, biotic community, biological community, ecological community, or life assemblage. The term community has a variety of uses. In its simplest form it refers to groups of organisms in a specific place or time, for example, "the fish community of Lake Ontario before industrialization".

<span class="mw-page-title-main">Cross-boundary subsidy</span>

Cross-boundary subsidies are caused by organisms or materials that cross or traverse habitat patch boundaries, subsidizing the resident populations. The transferred organisms and materials may provide additional predators, prey, or nutrients to resident species, which can affect community and food web structure. Cross-boundary subsidies of materials and organisms occur in landscapes composed of different habitat patch types, and so depend on characteristics of those patches and on the boundaries in between them. Human alteration of the landscape, primarily through fragmentation, has the potential to alter important cross-boundary subsidies to increasingly isolated habitat patches. Understanding how processes that occur outside of habitat patches can affect populations within them may be important to habitat management.

An ecological cascade effect is a series of secondary extinctions that are triggered by the primary extinction of a key species in an ecosystem. Secondary extinctions are likely to occur when the threatened species are: dependent on a few specific food sources, mutualistic, or forced to coexist with an invasive species that is introduced to the ecosystem. Species introductions to a foreign ecosystem can often devastate entire communities, and even entire ecosystems. These exotic species monopolize the ecosystem's resources, and since they have no natural predators to decrease their growth, they are able to increase indefinitely. Olsen et al. showed that exotic species have caused lake and estuary ecosystems to go through cascade effects due to loss of algae, crayfish, mollusks, fish, amphibians, and birds. However, the principal cause of cascade effects is the loss of top predators as the key species. As a result of this loss, a dramatic increase of prey species occurs. The prey is then able to overexploit its own food resources, until the population numbers decrease in abundance, which can lead to extinction. When the prey's food resources disappear, they starve and may go extinct as well. If the prey species is herbivorous, then their initial release and exploitation of the plants may result in a loss of plant biodiversity in the area. If other organisms in the ecosystem also depend upon these plants as food resources, then these species may go extinct as well. An example of the cascade effect caused by the loss of a top predator is apparent in tropical forests. When hunters cause local extinctions of top predators, the predators' prey's population numbers increase, causing an overexploitation of a food resource and a cascade effect of species loss. Recent studies have been performed on approaches to mitigate extinction cascades in food-web networks.

<span class="mw-page-title-main">Mesopredator release hypothesis</span> Ecological theory

The mesopredator release hypothesis is an ecological theory used to describe the interrelated population dynamics between apex predators and mesopredators within an ecosystem, such that a collapsing population of the former results in dramatically increased populations of the latter. This hypothesis describes the phenomenon of trophic cascade in specific terrestrial communities.

<span class="mw-page-title-main">Trophic level</span> Position of an organism in a food chain

The trophic level of an organism is the position it occupies in a food web. Within a food web, a food chain is a succession of organisms that eat other organisms and may, in turn, be eaten themselves. The trophic level of an organism is the number of steps it is from the start of the chain. A food web starts at trophic level 1 with primary producers such as plants, can move to herbivores at level 2, carnivores at level 3 or higher, and typically finish with apex predators at level 4 or 5. The path along the chain can form either a one-way flow or a part of a wider food "web". Ecological communities with higher biodiversity form more complex trophic paths.

<span class="mw-page-title-main">Lawrence B. Slobodkin</span>

Lawrence Basil Slobodkin was an American ecologist and Professor Emeritus at the Department of Ecology and Evolution, Stony Brook University, State University of New York. He was one of the leading pioneers of modern ecology. His innovative thinking and research, provocative teaching, and visionary leadership helped transform ecology into a modern science, with deep links to evolution.

<span class="mw-page-title-main">Intraguild predation</span> Killing and sometimes eating of potential competitors

Intraguild predation, or IGP, is the killing and sometimes eating of a potential competitor of a different species. This interaction represents a combination of predation and competition, because both species rely on the same prey resources and also benefit from preying upon one another. Intraguild predation is common in nature and can be asymmetrical, in which one species feeds upon the other, or symmetrical, in which both species prey upon each other. Because the dominant intraguild predator gains the dual benefits of feeding and eliminating a potential competitor, IGP interactions can have considerable effects on the structure of ecological communities.

<span class="mw-page-title-main">Planktivore</span> Aquatic organism that feeds on planktonic food

A planktivore is an aquatic organism that feeds on planktonic food, including zooplankton and phytoplankton. Planktivorous organisms encompass a range of some of the planet's smallest to largest multicellular animals in both the present day and in the past billion years; basking sharks and copepods are just two examples of giant and microscopic organisms that feed upon plankton.

<span class="mw-page-title-main">Marine food web</span> Marine consumer-resource system

A marine food web is a food web of marine life. At the base of the ocean food web are single-celled algae and other plant-like organisms known as phytoplankton. The second trophic level is occupied by zooplankton which feed off the phytoplankton. Higher order consumers complete the web. There has been increasing recognition in recent years that marine microorganisms.

<span class="mw-page-title-main">Jellyfish bloom</span> Large growth of a jellyfish population

Jellyfish blooms are substantial growths in population of species under the phyla Cnidaria and Ctenophora.

The green world hypothesis proposes that predators are the primary regulators of ecosystems: they are the reason the world is 'green', by regulating the herbivores that would otherwise consume all the greenery. It is also known as the HSS hypothesis, after Hairston, Smith and Slobodkin, the authors of the seminal paper on the subject.

References

  1. Kotta, J.; Wernberg, T.; Jänes, H.; Kotta, I.; Nurkse, K.; Pärnoja, M.; Orav-Kotta, H. (2018). "Novel crab predator causes marine ecosystem regime shift". Scientific Reports. 8 (1): 4956. Bibcode:2018NatSR...8.4956K. doi:10.1038/s41598-018-23282-w. PMC   5897427 . PMID   29651152.
  2. Megrey, Bernard and Werner, Francisco. "Evaluating the Role of Topdown vs. Bottom-up Ecosystem Regulation from a Modeling Perspective" (PDF).{{cite web}}: CS1 maint: multiple names: authors list (link)
  3. Matsuzaki, Shin-Ichiro S.; Suzuki, Kenta; Kadoya, Taku; Nakagawa, Megumi; Takamura, Noriko (2018). "Bottom-up linkages between primary production, zooplankton, and fish in a shallow, hypereutrophic lake". Ecology. 99 (9): 2025–2036. Bibcode:2018Ecol...99.2025M. doi: 10.1002/ecy.2414 . PMID   29884987. S2CID   46996957.
  4. Lynam, Christopher Philip; Llope, Marcos; Möllmann, Christian; Helaouët, Pierre; Bayliss-Brown, Georgia Anne; Stenseth, Nils C. (Feb 2017). "Trophic and environmental control in the North Sea". Proceedings of the National Academy of Sciences. 114 (8): 1952–1957. doi: 10.1073/pnas.1621037114 . PMC   5338359 . PMID   28167770.
  5. Luskin, M. (2017). "Cross-boundary subsidy cascades from oil palm degrade distant tropical forests". Nature Communications. 8 (8): 2231. Bibcode:2017NatCo...8.2231L. doi:10.1038/s41467-017-01920-7. PMC   5738359 . PMID   29263381.
  6. Zhang, J.; Qian, H.; Girardello, M.; Pellissier, V.; Nielsen, S. E.; Svenning, J.-C. (2018). "Trophic interactions among vertebrate guilds and plants shape global patterns in species diversity". Proceedings of the Royal Society B: Biological Sciences. 285 (1883): 20180949. doi:10.1098/rspb.2018.0949. PMC   6083253 . PMID   30051871.
  7. "University of Kentucky Lecture Notes".
  8. Wilmers, C. C.; Estes, J. A.; Edwards, M.; Laidre, K. L.; Konar, B. (2012). "Do trophic cascades affect the storage and flux of atmospheric carbon? An analysis of sea otters and kelp forests". Frontiers in Ecology and the Environment. 10 (8): 409–415. Bibcode:2012FrEE...10..409W. doi: 10.1890/110176 . ISSN   1540-9309. S2CID   51684842.
  9. Leopold, A. (1949) "Thinking like a mountain" in "Sand county almanac"
  10. Hairston, NG; Smith, FE; Slobodkin, LB (1960). "Community structure, population control and competition". American Naturalist. 94 (879): 421–425. doi:10.1086/282146. S2CID   84548124.
  11. Hrbáček, J; Dvořakova, M; Kořínek, V; Procházkóva, L (1961). "Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton association". Verh. Internat. Verein. Limnol. 14 (1): 192–195. Bibcode:1961SILP...14..192H. doi:10.1080/03680770.1959.11899269.
  12. Oksanen, L; Fretwell, SD; Arruda, J; Niemala, P (1981). "Exploitation ecosystems in gradients of primary productivity". American Naturalist. 118 (2): 240–261. doi:10.1086/283817. S2CID   84215344.
  13. 1 2 Murdoch, WM (1966). "Community structure, population control, and competition – a critique". American Naturalist. 100 (912): 219–226. doi:10.1086/282415. S2CID   84354616.
  14. Polis, GA; Strong, DR (1996). "Food web complexity and community dynamics". American Naturalist. 147 (5): 813–846. doi:10.1086/285880. S2CID   85155900.
  15. Eisenberg, Cristina (2011) "The Wolf's Tooth: Keystone Predators, Trophic Cascades, and Biodiversity pp. 15. Island Press. ISBN   978-1-59726-398-6.
  16. Barbosa P and Castellanos I (Eds) (2005) Ecology of Predator-Prey Interactions pp. 306, Oxford University Press. ISBN   9780199883677.
  17. Carpenter, SR; Kitchell, JF; Hodgson, JR (1985). "Cascading trophic interactions and lake productivity". BioScience. 35 (10): 634–639. doi:10.2307/1309989. JSTOR   1309989.
  18. Power, ME (1990). "Effects of fish in river food webs". Science. 250 (4982): 811–814. Bibcode:1990Sci...250..811P. doi:10.1126/science.250.4982.811. PMID   17759974. S2CID   24780727.
  19. Szpak, Paul; Orchard, Trevor J.; Salomon, Anne K.; Gröcke, Darren R. (2013). "Regional ecological variability and impact of the maritime fur trade on nearshore ecosystems in southern Haida Gwaii (British Columbia, Canada): evidence from stable isotope analysis of rockfish (Sebastes spp.) bone collagen". Archaeological and Anthropological Sciences . 5 (X): XX. Bibcode:2013ArAnS...5..159S. doi:10.1007/s12520-013-0122-y. S2CID   84866250.
  20. Estes, JA; Palmisano, JF (1974). "Sea otters: their role in structuring nearshore communities". Science. 185 (4156): 1058–1060. Bibcode:1974Sci...185.1058E. doi:10.1126/science.185.4156.1058. PMID   17738247. S2CID   35892592.
  21. Weston, Phoebe (2022-06-23). "'People may be overselling the myth': should we bring back the wolf?". The Guardian. Retrieved 2022-06-24.
  22. Strong, D. R. (1992). "Are trophic cascades all wet? Differentiation and donor-control in speciose ecosystems". Ecology. 73 (3): 747–754. Bibcode:1992Ecol...73..747S. doi:10.2307/1940154. JSTOR   1940154.
  23. Strong, D. R.; Whipple, A. V.; Child, A. L.; Dennis, B. (1999). "Model selection for a subterranean trophic cascade: Root-feeding caterpillars and entomopathogenic nematodes". Ecology. 80 (8): 2750–2761. doi:10.2307/177255. JSTOR   177255.
  24. Preisser, E. L. (2003). "Field evidence for a rapidly cascading underground food web". Ecology. 84 (4): 869–874. doi:10.1890/0012-9658(2003)084[0869:fefarc]2.0.co;2.
  25. Letourneau, D. K.; Dyer, L. A. (1998). "Experimental test in lowland tropical forest shows top-down effects through four trophic levels". Ecology. 79 (5): 1678–1687. doi:10.2307/176787. JSTOR   176787.
  26. Polis, G. A.; Sears, A. L, W; Huxel, G. R.; et al. (2000). "When is a trophic cascade a trophic cascade?". Trends in Ecology & Evolution. 15 (11): 473–475. Bibcode:2000TEcoE..15..473P. doi: 10.1016/s0169-5347(00)01971-6 . PMID   11050351.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  27. Shurin, J. B.; Borer, E. T.; Seabloom, E. W.; Anderson, K.; Blanchette, C. A.; Broitman, B; Cooper, S. D.; Halpern, B. S. (2002). "A cross-ecosystem comparison of the strength of trophic cascades". Ecology Letters. 5 (6): 785–791. Bibcode:2002EcolL...5..785S. doi:10.1046/j.1461-0248.2002.00381.x.
  28. Beschta, R.L., and W.J. Ripple. 2009. Large predators and trophic cascades in terrestrial ecosystems of the western United States Biological Conservation. 142, 2009: 2401–2414.
  29. Beschta, R. L.; Ripple, W. J. (2011). "The role of large predators in maintaining riparian plant communities and river morphology". Geomorphology. 157–158: 88–98. doi:10.1016/j.geomorph.2011.04.042.
  30. 1 2 3 Ripple, W. J.; Beschta, R. L. (2012). "Trophic cascades in Yellowstone: The first 15 years after wolf reintroduction". Biological Conservation. 145 (1): 205–213. Bibcode:2012BCons.145..205R. doi:10.1016/j.biocon.2011.11.005. S2CID   9750513.
  31. Groshong, L. C. (2004). Mapping Riparian Vegetation Change in Yellowstone's Northern Range using High Spatial Resolution Imagery (MA Thesis). Eugene, Oregon, USA: University of Oregon.
  32. Ripple, W.J.; Beschta, R.L. (2004). "Wolves, elk, willows, and trophic cascades in the upper Gallatin Range of Southwestern Montana, USA". Forest Ecology and Management. 200 (1–3): 161–181. Bibcode:2004ForEM.200..161R. doi:10.1016/j.foreco.2004.06.017.
  33. Beschta, R.L.; Ripple, W.J. (2007). "Increased Willow Heights along northern Yellowstone's Blacktail Deer Creek following wolf reintroduction". Western North American Naturalist. 67 (4): 613–617. doi:10.3398/1527-0904(2007)67[613:iwhany]2.0.co;2. S2CID   85023589.
  34. 1 2 Baril, L. M. (2009). Change in Deciduous Woody Vegetation, Implications of Increased Willow (Salix spp.) Growth for Bird Species Diversity and Willow Species Composition in and around Yellowstone National Park's Northern Range (MS). Bozeman, USA: Montana State University.
  35. Wilmers, C.C.; Crabtree, R. L.; Smith, D. W.; Murphy, K. M.; Getz, W. M. (2003). "Trophic facilitation by introduced top predators: grey wolf subsidies to scavengers in Yellowstone National Park". Journal of Animal Ecology. 72 (6): 909–916. Bibcode:2003JAnEc..72..909W. doi: 10.1046/j.1365-2656.2003.00766.x .
  36. Painter, L. E.; Ripple, W. J. (2012). "Effects of bison on willow and cottonwood in northern Yellowstone National Park". Forest Ecology and Management. 264: 150–158. Bibcode:2012ForEM.264..150P. doi:10.1016/j.foreco.2011.10.010.
  37. Ripple, W.J.; Beschta, R.L. (2006). "Linking a cougar decline, trophic cascade, and catastrophic regime shift in Zion National Park". Biological Conservation. 133 (4): 397–408. Bibcode:2006BCons.133..397R. doi:10.1016/j.biocon.2006.07.002.
  38. Ripple, W.J.; Beschta, R.L. (2008). "Trophic cascades involving cougar, mule deer, and black oaks in Yosemite National Park". Biological Conservation. 141 (5): 1249–1256. Bibcode:2008BCons.141.1249R. doi:10.1016/j.biocon.2008.02.028.
  39. Estes, James A.; et al. (2011). "2011. Trophic Downgrading of Planet Earth". Science. 333 (6040): 301–306. Bibcode:2011Sci...333..301E. CiteSeerX   10.1.1.701.8043 . doi:10.1126/science.1205106. PMID   21764740. S2CID   7752940.
  40. Prugh, Laura R.; et al. (2009). "2009. The Rise of the Mesopredator". BioScience. 59 (9): 779–791. doi:10.1525/bio.2009.59.9.9. S2CID   40484905.
  41. Letnic, M.; Dworjanyn, S.A. (2011). "Does a top predator reduce the predatory impact of an invasive mesopredator on an endangered rodent?". Ecography. 34 (5): 827–835. Bibcode:2011Ecogr..34..827L. doi:10.1111/j.1600-0587.2010.06516.x.
  42. Frank, K. T.; Petrie, B.; Choi, J. S.; Leggett, W. C. (2005). "Trophic Cascades in a Formerly Cod-Dominated Ecosystem". Science. 308 (5728): 1621–1623. Bibcode:2005Sci...308.1621F. doi:10.1126/science.1113075. ISSN   0036-8075. PMID   15947186. S2CID   45088691.
  43. Alheit, J; Möllmann, C; Dutz, J; Kornilovs, G; Loewe, P; Mohrholz, V; Wasmund, N (2005). "Synchronous ecological regime shifts in the central Baltic and the North Sea in the late 1980s". ICES Journal of Marine Science. 62 (7): 1205–1215. Bibcode:2005ICJMS..62.1205A. doi: 10.1016/j.icesjms.2005.04.024 .
  44. Mollmann, C.; Muller-Karulis, B.; Kornilovs, G.; St John, M. A. (2008). "Effects of climate and overfishing on zooplankton dynamics and ecosystem structure: regime shifts, trophic cascade, and feedback loops in a simple ecosystem". ICES Journal of Marine Science. 65 (3): 302–310. doi: 10.1093/icesjms/fsm197 .
  45. Loh, T.-L.; Pawlik, J. R. (2014). "Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs". Proceedings of the National Academy of Sciences. 111 (11): 4151–4156. Bibcode:2014PNAS..111.4151L. doi: 10.1073/pnas.1321626111 . ISSN   0027-8424. PMC   3964098 . PMID   24567392.
  46. Loh, T.-L.; et al. (2015). "Indirect effects of overfishing on Caribbean reefs: sponges overgrow reef-building corals". PeerJ. 3: e901. doi: 10.7717/peerj.901 . PMC   4419544 . PMID   25945305.