Mule deer

Last updated

Mule deer
Mule buck elk creek m myatt (5489214303).jpg
Male (buck) near Elk Creek, Oregon
Mule deer doe backlit.jpg
Female (doe) near Swall Meadows, California
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Artiodactyla
Family: Cervidae
Subfamily: Capreolinae
Genus: Odocoileus
Species:
O. hemionus
Binomial name
Odocoileus hemionus
Rafinesque, 1817 [2]
Subspecies

10, but some disputed (see text)

Odocoileus hemionus map.svg
Distribution map of subspecies:
  Sitka black-tailed deer (O. h. sitkensis)
  Columbian black-tailed deer (O. h. columbianus)
  California mule deer (O. h. californicus)
  southern mule deer (O. h. fuliginatus)
  peninsular mule deer (O. h. peninsulae)
  desert mule deer (O. h. eremicus)
  Rocky Mountain mule deer (O. h. hemionus)
Synonyms [3] [4]
  • Cervus hemionusRafinesque, 1817
  • Cervus auritusWarden, 1820
  • Cervus macrotisSay, 1823
  • Cervus lewisiiPeale, 1848
  • Cariacus punctulatusGray, 1852
  • Cervus richardsoniAudubon & Bahman, 1848
  • Eucervus pusillaGray, 1873
  • Dorcelaphus crookiMearns, 1897
  • Cariacus virgultusHallock, 1899

The mule deer (Odocoileus hemionus) is a deer indigenous to western North America; it is named for its ears, which are large like those of the mule. Two subspecies of mule deer are grouped into the black-tailed deer. [1] [5] [6] [7] [8] [9]

Contents

Unlike the related white-tailed deer (Odocoileus virginianus), which is found throughout most of North America east of the Rocky Mountains and in the valleys of the Rocky Mountains from Idaho and Wyoming northward, mule deer are found only on the western Great Plains, in the Rocky Mountains, in the southwest United States, and on the west coast of North America. Mule deer have also been introduced to Argentina and Kauai, Hawaii. [5]

Taxonomy

Mule deer can be divided into two main groups: the mule deer ( sensu stricto ) and the black-tailed deer. The first group includes all subspecies, except O. h. columbianus and O. h. sitkensis , which are in the black-tailed deer group. [5] The two main groups have been treated as separate species, but they hybridize, and virtually all recent authorities treat the mule deer and black-tailed deer as conspecific. [1] [5] [6] [7] [9] [10] Mule deer apparently evolved from the black-tailed deer. [9] Despite this, the mtDNA of the white-tailed deer and mule deer is similar, but differs from that of the black-tailed deer. [9] This may be the result of introgression, although hybrids between the mule deer and white-tailed deer are rare in the wild (apparently more common locally in West Texas), and the hybrid survival rate is low even in captivity. [8] [9] Many claims of observations of wild hybrids are not legitimate, as identification based on external features is complicated. [8]

Subspecies

Some authorities have recognized O. h. crooki as a senior synonym of O. h. eremicus, but the type specimen of the former is a hybrid between the mule deer and white-tailed deer, so the name O. h. crooki is invalid. [5] [11] Additionally, the validity of O. h. inyoensis has been questioned, and the two insular O. h. cerrosensis and O. h. sheldoni may be synonyms of O. h. eremicus or O. h. peninsulae. [10]

The 10 valid subspecies, based on the third edition of Mammal Species of the World , are: [5]

Description

Small herd of mule deer in the Sulphur Springs Valley of southern Arizona Mule Deer Sulphur Springs Valley Arizona 2014.jpg
Small herd of mule deer in the Sulphur Springs Valley of southern Arizona
Stotting mule deer Stotting mule deer.jpg
Stotting mule deer
Female desert/burro mule deer (O. h. eremicus) in Truth or Consequences, New Mexico Mule Deer Trotting.jpg
Female desert/burro mule deer (O. h. eremicus) in Truth or Consequences, New Mexico

The most noticeable differences between white-tailed and mule deer are ear size, tail color, and antler configuration. In many cases, body size is also a key difference. The mule deer's tail is black-tipped, whereas the white-tailed deer's is not. Mule deer antlers are bifurcated; they "fork" as they grow, rather than branching from a single main beam, as is the case with white-tails.

Each spring, a buck's antlers start to regrow almost immediately after the old antlers are shed. Shedding typically takes place in mid-February, with variations occurring by locale.

Although capable of running, mule deer are often seen stotting (also called pronking), with all four feet coming down together.

The mule deer is the larger of the three Odocoileus species on average, with a height of 80–106 cm (31–42 in) at the shoulders and a nose-to-tail length ranging from 1.2 to 2.1 m (3.9 to 6.9 ft). Of this, the tail may comprise 11.6 to 23 cm (4.6 to 9.1 in). Adult bucks normally weigh 55–150 kg (121–331 lb), averaging around 92 kg (203 lb), although trophy specimens may weigh up to 210 kg (460 lb). Does (female deer) are smaller and typically weigh from 43 to 90 kg (95 to 198 lb), with an average of around 68 kg (150 lb). [24] [25] [26] [27]

Unlike the white-tailed, the mule deer does not generally show marked size variation across its range, although environmental conditions can cause considerable weight fluctuations in any given population. An exception to this is the Sitka deer subspecies (O. h. sitkensis). This race is markedly smaller than other mule deer, with an average weight of 54.5 kg (120 lb) and 36 kg (79 lb) in males and females, respectively. [28]

Seasonal behaviors

In addition to movements related to available shelter and food, the breeding cycle is important in understanding deer behavior. The rut or mating season usually begins in the fall as does go into estrus for a period of a few days, and males become more aggressive, competing for mates. Does may mate with more than one buck and go back into estrus within a month if they did not become pregnant. The gestation period is about 190–200 days, with fawns born in the spring. [29] The survival rate of the fawns during labor is about 50%. [30] Fawns stay with their mothers during the summer and are weaned in the fall after about 60–75 days. Mule deer females usually give birth to two fawns, although if it is their first time having a fawn, they often have just one. [29]

A buck's antlers fall off during the winter, then grow again in preparation for the next season's rut. The annual cycle of antler growth is regulated by changes in the length of the day. [29] [31]

The size of mule deer groups follows a marked seasonal pattern. Groups are smallest during fawning season (June and July in Saskatchewan and Alberta) and largest in early gestation (winter; February and March in Saskatchewan and Alberta). [31]

Besides humans, the three leading predators of mule deer are coyotes, wolves, and cougars. Bobcats, Canada lynx, wolverines, American black bears, and grizzly bears may prey upon adult deer but most often attack only fawns or infirm specimens, or they may eat a deer after it has died naturally. Bears and small carnivores are typically opportunistic feeders and pose little threat to a strong, healthy mule deer. [25]

Diet and foraging behaviors

In 99 studies of mule deer diets, some 788 species of plants were eaten by mule deer, and their diets vary greatly depending on the season, geographic region, year, and elevation. [32] The studies [33] gave these data for Rocky Mountain mule deer diets: [34]

Shrubs and trees Forbs Grasses and grass-like plants
Winter74%15%11% (varies 0–53%)
Spring49%25%26% (varies 4–64%)
Summer49%46% (varies 3–77%)3% (varies 0–22%)
Fall60%30% (varies 2–78%)9% (varies 0–24%)

The diets of mule deer are very similar to those of white-tailed deer in areas where they coexist. [35] [32] Mule deer are intermediate feeders rather than pure browsers or grazers; they predominantly browse but also eat forb vegetation, small amounts of grass and, where available, tree or shrub fruits such as beans, pods, nuts (including acorns), and berries. [32] [34]

Mule deer readily adapt to agricultural products and landscape plantings. [36] [37] In the Sierra Nevada range, mule deer depend on the lichen Bryoria fremontii as a winter food source. [38]

The most common plant species consumed by mule deer are the following:

Mule deer have also been known to eat ricegrass, gramagrass, and needlegrass, as well as bearberry, bitter cherry, black oak, California buckeye, ceanothus, cedar, cliffrose, cottonwood, creek dogwood, creeping barberry, dogwood, Douglas fir, elderberry, Fendlera species, goldeneye, holly-leaf buckthorn, jack pine, knotweed, Kohleria species, manzanita, mesquite, pine, rabbitbrush, ragweed, redberry, scrub oak, serviceberry (including Pacific serviceberry), Sierra juniper, silktassel, snowberry, stonecrop, sunflower, tesota, thimbleberry, turbinella oak, velvet elder, western chokecherry, wild cherry, and wild oats. [39] Where available, mule deer also eat a variety of wild mushrooms, which are most abundant in late summer and fall in the southern Rocky Mountains; mushrooms provide moisture, protein, phosphorus, and potassium. [32] [39]

Humans sometimes engage in supplemental feeding efforts in severe winters in an attempt to help mule deer avoid starvation. Wildlife agencies discourage such efforts, which cause harm to mule deer populations by spreading disease (such as tuberculosis and chronic wasting disease) when deer congregate for feed, disrupting migratory patterns, causing overpopulation of local mule deer populations, and causing habitat destruction from overbrowsing of shrubs and forbs. Supplemental feeding efforts might be appropriate when carefully conducted under limited circumstances, but to be successful, the feeding must begin early in the severe winter (before poor range conditions and severe weather cause malnourishment or starvation) and must be continued until range conditions can support the herd. [40]

Mule deer are variably gregarious, with a large proportion of solitary individuals (35 to 64%) and small groups (groups with ≤5 deer, 50 to 78%). [41] [42] Reported mean group size measurements are three to five and typical group size (i.e., crowding) is about seven. [31] [43]

Nutrition

Mule deer are ruminants, meaning they employ a nutrient acquisition strategy of fermenting plant material before digesting it. Deer consuming high-fiber, low-starch diets require less food than those consuming high-starch, low-fiber diets. Rumination time also increases when deer consume high-fiber, low-starch diets, which allows for increased nutrient acquisition due to greater length of fermentation. [44] Because some of the subspecies of mule deer are migratory, they encounter variable habitats and forage quality throughout the year. [45] Forages consumed in the summer are higher in digestible components (i.e. proteins, starches, sugars, and hemicellulose) than those consumed in the winter. The average gross energy content of the consumed forage material is 4.5 kcal/g. [46]

Due to fluctuations in forage quality and availability, mule deer fat storage varies throughout the year, with the most fat stored in October, which is depleted throughout the winter to the lowest levels of fat storage in March. Changes in hormone levels are indications of physiological adjustments to the changes in the habitat. Total body fat is a measure of the individual's energy reserves, while thyroid hormone concentrations are a metric to determine the deer's ability to use the fat reserves. Triiodothyronine (T3) hormone is directly involved with basal metabolic rate and thermoregulation. [47]

Migration

The Grand Canyon, Mule Deer diorama at the Milwaukee Public Museum Milwaukee Public Museum April 2023 020 (Land of Sun- The Southwest--The Grand Canyon, Mule Deer).jpg
The Grand Canyon, Mule Deer diorama at the Milwaukee Public Museum

Mule deer migrate from low elevation winter ranges to high elevation summer ranges. [48] Although not all individuals in populations migrate, some will travel long distances between summer and winter ranges. [49] Researchers discovered the longest mule deer migration in Wyoming spanning 150 miles from winter to summer range [48] Multiple US states track mule deer migrations. [50] [51] [52] [53]

Mule deer migrate in fall to avoid harsh winter conditions like deep snow that covers up food resources, and in spring follow the emergence of new growth northwards. [54] [55] There is evidence to suggest that mule deer migrate based on cognitive memory, meaning they use the same path year after year even if the availability of resources has changed. This contradicts the idea that animals will go to the areas with the best available resources, which makes migratory paths crucial for survival. [55]

Risks

There are many risks that mule deer face during migration including climate change and human disturbance. Climate change impacts on seasonal growth patterns constitute a risk for migrating mule deer by invalidating historic or learned migration paths. [56] [57]

Human activities such as natural resource extraction, highways, fencing, and urban development all have an impact on mule deer populations and migrations through habitat degradation and fragmentation. [58] [59] [60] [61] Natural gas extraction has been found to have varying negative effects on mule deer behavior and can even cause them to avoid areas they use to migrate. [58] Highways not only cause injury and death to mule deer, but they can also serve as a barrier to migration. [62] As traffic volumes increase, the more mule deer tend to avoid those areas and abandon their typical migration routes. It has also been found that fencing can alter deer behavior, acting as a barrier, and potentially changing mule deer migration patterns. [63] In addition, urban development has replaced mule deer habitat with subdivisions, and human activity has increased. As a result of this, researchers have seen a decline in mule deer populations. This is especially prominent in Colorado where the human population has grown by over 2.2 million since 1980. [61]

Management

Protecting migration corridors

Protecting migration corridors is essential to maintain healthy mule deer populations. One thing everyone can do is help slow the increase in climate change by using greener energy sources and reducing the amount of waste in our households. [64] In addition, managers and researchers can assess the risks listed above and take the proper steps to mitigate any adverse impacts those risk have on mule deer populations. Not only will populations benefit from these efforts but so will many other wildlife species. [65]

Highways

One way to help protect deer from getting hit on roadways is to install high fence wildlife fencing with escape routes. [66] This helps keep deer off the road, preventing vehicle collisions and allowing animals that are trapped between the road and the fence a way to escape to safety. [66] However, to maintain migration routes that cross busy highways, managers have also implemented natural, vegetated, overpasses and underpasses to allow animals, like mule deer, to migrate and move safely across highways. [67]

Natural resource extraction

Approaches to mitigating the impact of drilling and mining operations include regulating the time of year when active drilling and heavy traffic to sites are taking place, and using well-informed planning to protect critical deer habitat and using barriers to mitigate the activity, noise, light at the extraction sites. [68]

Urban development

The increase in urbanization has impacted mule deer migrations and there is evidence to show it also disrupts gene flow among mule deer populations. [69] One clear option is to not build houses in critical mule deer habitat; however, build near mule deer habitat has resulted in some deer becoming accustomed to humans and the resources, such as food and water. [70] Rather than migrate through urban areas some deer tend to stay close to those urban developments, potentially for resources and to avoid the obstacles in urban areas. [71] Suggested measures by property owners to protect mule deer genetic diversity and migration paths include planting deer-resistant plants, placing scare devices such as noise-makers, and desisting from feeding deer. [70]

Disease

Wildlife officials in Utah announced that a November–December 2021 field study had detected the first case of SARS-CoV-2 in mule deer. Several deer possessed apparent SARS-CoV-2 antibodies, however a female deer in Morgan County had an active Delta variant infection. [72] White-tailed deer, which are able to hybridize with mule deer and which have shown high rates of SARS-CoV-2 infection, have migrated into Morgan County and other traditional mule deer habitats since at least the early 2000s. [73] [74]

Chronic wasting disease

Chronic wasting disease (CWD) is a disease rapidly spreading throughout populations of the Cervus family. [75] It first appeared in captive deer in Colorado in 1967 but has made a large impact on wild mule deer populations since then, spreading throughout all of North America. [76]

Related Research Articles

<span class="mw-page-title-main">European fallow deer</span> Species of hooved mammal

The European fallow deer, also known as the common fallow deer or simply fallow deer, is a species of deer native to Eurasia. It is historically native to Turkey and possibly the Italian Peninsula, Balkan Peninsula, and the island of Rhodes near Anatolia. Prehistorically native to and introduced into a larger portion of Europe, it has also been introduced to other regions in the world. It is one of two living species of fallow deer (Dama) alongside the Persian fallow deer.

<span class="mw-page-title-main">Sika deer</span> Species of deer native to much of East Asia

The sika deer, also known as the Northernspotted deer or the Japanese deer, is a species of deer native to much of East Asia and introduced to other parts of the world. Previously found from northern Vietnam in the south to the Russian Far East in the north, it was hunted to the brink of extinction in the 19th century. Protection laws were enacted in the mid-20th century, leading to a rapid recovery of their population from the 1950s to the 1980s.

<span class="mw-page-title-main">White-tailed deer</span> Medium-sized species of deer

The white-tailed deer, also known commonly as the whitetail and the Virginia deer, is a medium-sized species of deer native to North America, Central America, and South America as far south as Peru and Bolivia, where it predominately inhabits high mountain terrains of the Andes. It has also been introduced to New Zealand, all the Greater Antilles in the Caribbean, and some countries in Europe, such as the Czech Republic, Finland, France, Germany, Romania and Serbia. In the Americas, it is the most widely distributed wild ungulate.

<span class="mw-page-title-main">Black-tailed deer</span> Subspecies of deer

Black-tailed deer or blacktail deer occupy coastal regions of western North America. There are two subspecies, the Columbian black-tailed deer which ranges from Northern California into the Pacific Northwest of the United States and coastal British Columbia in Canada., and a second subspecies known as the Sitka deer which is geographically disjunct occupying from mid-coastal British Columbia up through southeast Alaska, and southcentral Alaska. The black-tailed deer subspecies are about half the size of the mainland mule deer subspecies, the latter ranging further east in the western United States. They have sometimes been treated as a distinct species, but virtually all recent authorities maintain black-tailed deer are mule deer subspecies.

<span class="mw-page-title-main">Sitka deer</span> Subspecies of deer

The Sitka deer or Sitka black-tailed deer is a subspecies of mule deer, similar to the Columbian black-tailed subspecies. Their name originates from Sitka, Alaska, and it is not to be confused with the similarly named sika deer. Weighing in on average between 48 and 90 kg, Sitka deer are characteristically smaller than other subspecies of mule deer. Reddish-brown in the summer, their coats darken to a gray-brown in mid- to late August. They are also good swimmers, and can occasionally be seen crossing deep channels between islands. Their average lifespan is about 10 years, but a few are known to have attained an age of 15.

<span class="mw-page-title-main">California Central Valley grasslands</span> Temperate grasslands, savannas, and shrublands ecoregion in California, United States

The California Central Valley grasslands is a temperate grasslands, savannas, and shrublands ecoregion in California's Central Valley. It a diverse ecoregion containing areas of desert grassland, prairie, savanna, riparian forest, marsh, several types of seasonal vernal pools, and large lakes such as now-dry Tulare Lake, Buena Vista Lake, and Kern Lake.

<span class="mw-page-title-main">Key deer</span> Subspecies of deer endemic to the Florida Keys

The Key deer is an endangered subspecies of the white-tailed deer that lives only in the Florida Keys. It is the smallest extant North American deer species.

Parelaphostrongylus tenuis is a neurotropic nematode parasite common to white-tailed deer, Odocoileus virginianus, which causes damage to the central nervous system. Moose, elk, caribou, mule deer, and others are also susceptible to the parasite, but are aberrant hosts and are infected in neurological instead of meningeal tissue. The frequency of infection in these species increases dramatically when their ranges overlap high densities of white-tailed deer.

<span class="mw-page-title-main">Pampas deer</span> Species of mammals

The Pampas deer is a species of deer that live in the grasslands of South America at low elevations. They are known as veado-campeiro in Portuguese and as venado or gama in Spanish. It is the only species in the genus Ozotoceros.

<span class="mw-page-title-main">Columbian white-tailed deer</span> Subspecies of deer

The Columbian white-tailed deer is one of the several subspecies of white-tailed deer in North America. It is a member of the Cervidae (deer) family, which includes mule deer, elk, moose, caribou, and the black-tailed deer that live nearby.

<span class="mw-page-title-main">California mule deer</span> Subspecies of deer

The California mule deer is a subspecies of mule deer whose range covers much of the state of California.

<span class="mw-page-title-main">Capreolinae</span> Subfamily of mammals

The Capreolinae, Odocoileinae, or the New World deer are a subfamily of deer. Alternatively, they are known as the telemetacarpal deer, due to their bone structure being different from the plesiometacarpal deer subfamily Cervinae. The telemetacarpal deer maintain their distal lateral metacarpals, while the plesiometacarpal deer maintain only their proximal lateral metacarpals. The Capreolinae are believed to have originated in the Middle Miocene, between 7.7 and 11.5 million years ago, in Central Asia.

<span class="mw-page-title-main">American mountain deer</span> Extinct species of deer

Odocoileus lucasi, known commonly as the American mountain deer, is an extinct species of North American deer.

<span class="mw-page-title-main">Pronghorn</span> Species of North American hoofed mammal

The pronghorn is a species of artiodactyl mammal indigenous to interior western and central North America. Though not an antelope, it is known colloquially in North America as the American antelope, prong buck, pronghorn antelope and prairie antelope, because it closely resembles the antelopes of the Old World and fills a similar ecological niche due to parallel evolution. It is the only surviving member of the family Antilocapridae.

The Cedros Island mule deer is a subspecies of mule deer found only on Cedros Island off the coast of Baja California. Only about 50 individuals remain, with no captive population. Its behavior is similar to that of other subspecies of mule deer. The subspecies is threatened by feral dogs and poaching.

<span class="mw-page-title-main">Cosumnes River Preserve</span> Jointly managed protected area in the Central Valley of California

The Cosumnes River Preserve is a nature preserve of over 51,000 acres (210 km2) located 20 miles (30 km) south of Sacramento, in the US state of California. The preserve protects a Central Valley remnant that once contained one of the largest expanses of oak tree savanna, riparian oak forest and wetland habitat in North America. Agricultural development has changed the landscape from groves of oaks and tule marshes to productive farmlands.

<span class="mw-page-title-main">Mammals of Glacier National Park (U.S.)</span>

There are at least 14 large mammal and 50 small mammal species known to occur in Glacier National Park.

<span class="mw-page-title-main">Alberta Mountain forests</span> Temperate coniferous forests ecoregion of Alberta and British Columbia, Canada

The Alberta Mountain forests are a temperate coniferous forests ecoregion of Western Canada, as defined by the World Wildlife Fund (WWF) categorization system.

<span class="mw-page-title-main">Mammals of Olympic National Park</span>

There are at least 9 large terrestrial mammals, 50 small mammals, and 14 marine mammal species known to occur in Olympic National Park.

The Tiburón Island mule deer or Sheldon's mule deer, is a subspecies of the mule deer that is native to Tiburón Island, Sonora, Mexico.

References

  1. 1 2 3 Sanchez-Rojas, G.; Gallina-Tessaro, S. (2016). "Odocoileus hemionus". IUCN Red List of Threatened Species . 2016: e.T42393A22162113. doi: 10.2305/IUCN.UK.2016-1.RLTS.T42393A22162113.en . Retrieved 12 November 2021.
  2. "Odocoileus hemionus". Integrated Taxonomic Information System . Retrieved 23 March 2006.
  3. Anderson, Allen E.; Wallmo, Olof C. (27 April 1984). "Odocoileus hemionus". Mammalian Species (219): 1–9. doi: 10.2307/3504024 . JSTOR   3504024.
  4. Rafinesque, Constantine Samuel (1817). "Extracts from the Journal of Mr. Charles Le Raye, relating to some new Quadrupeds of the Missouri Region, with Notes". The American Monthly Magazine and Critical Review. 1 (6): 436. hdl:2027/mdp.39015073310313.
  5. 1 2 3 4 5 6 Wilson, D. E.; Reeder, D. M., eds. (2005). Mammal Species of the World: A Taxonomic and Geographic Reference (3rd ed.). Johns Hopkins University Press. ISBN   978-0-8018-8221-0. OCLC   62265494.
  6. 1 2 Nowak, Ronald M. (7 April 1999). Walker's Mammals of the World . JHU Press. ISBN   978-0-8018-5789-8 via Internet Archive.
  7. 1 2 Reid, Fiona A. (15 November 2006). Peterson Field Guide to Mammals of North America (4th ed.). Houghton Mifflin Harcourt. ISBN   0-547-34553-4.
  8. 1 2 3 Heffelfinger, J. (March 2011). "Tails with a Dark Side: The truth about whitetail–mule deer hybrids". Coues Whitetail. Archived from the original on 9 February 2014. Retrieved 8 January 2014.
  9. 1 2 3 4 5 Geist, Valerius (January 1998). Deer of the World: Their Evolution, Behaviour, and Ecology. Stackpole Books. ISBN   978-0-8117-0496-0.
  10. 1 2 Feldhamer, George A.; Thompson, Bruce C.; Chapman, Joseph A. (19 November 2003). Wild Mammals of North America: Biology, Management, and Conservation. JHU Press. ISBN   978-0-8018-7416-1.
  11. Heffelfinger, J. (11 April 2000). "Status of the name Odocoileus hemionus crooki (Mammalia: Cervidae)" (PDF). Proceedings of the Biological Society of Washington . 113 (1): 319–333. Archived (PDF) from the original on 15 September 2020.
  12. 1 2 "Observations • iNaturalist" . Retrieved 8 June 2024.
  13. "Observations • iNaturalist" . Retrieved 8 June 2024.
  14. "Observations • iNaturalist" . Retrieved 8 June 2024.
  15. "Observations • iNaturalist" . Retrieved 8 June 2024.
  16. "Observations • inaturalist" . Retrieved 8 June 2024.
  17. "Observations • inaturalist" . Retrieved 8 June 2024.
  18. "Observations • iNaturalist" . Retrieved 8 June 2024.
  19. "Observations • iNaturalist" . Retrieved 8 June 2024.
  20. "Observations • iNaturalist" . Retrieved 8 June 2024.
  21. "Observations • iNaturalist" . Retrieved 8 June 2024.
  22. "Observations • iNaturalist" . Retrieved 8 June 2024.
  23. "Observations • iNaturalist" . Retrieved 8 June 2024.
  24. Petersen, David (1 November 1985). "North American Deer: Mule, Whitetail and Coastal Blacktail Deer". Mother Earth News . Ogden Publications. Archived from the original on 15 March 2012. Retrieved 4 January 2012.
  25. 1 2 Misuraca, Michael (1999). "Odocoileus hemionus mule deer". Animal Diversity Web . University of Michigan Museum of Zoology. Archived from the original on 15 September 2020.
  26. Burnie, David (1 September 2011). Animal: The Definitive Visual Guide to the World's Wildlife. Dorling Kindersley Limited. ISBN   978-1-4053-6233-7.
  27. Timm, Robert M.; Slade, Norman A.; Pisani, George R. "Mule Deer Odocoileus hemionus (Rafinesque)". Mammals of Kansas. Archived from the original on 1 July 2015. Retrieved 8 January 2014.
  28. "Sitka Black-tailed Deer Hunting Information". Alaska Department of Fish and Game. 2014. Archived from the original on 23 January 2016. Retrieved 8 January 2014.
  29. 1 2 3 "Animal Fact Sheet: Mule Deer". Arizona-Sonora Desert Museum. 2008. Archived from the original on 15 September 2020. Retrieved 22 May 2012.
  30. Anderson, Mike (5 March 2019). "DWR Biologists Use Helicopter Rides, Ultrasound, To Check on Deer Pregnancies". KSL-TV . Cache County, UT: Bonneville International. Archived from the original on 4 February 2020. Retrieved 13 March 2019.
  31. 1 2 3 Mejía Salazar, María Fernanda; Waldner, Cheryl; Stookey, Joseph; Bollinger, Trent K. (23 March 2016). "Infectious Disease and Grouping Patterns in Mule Deer". PLOS One . 11 (3): e0150830. Bibcode:2016PLoSO..1150830M. doi: 10.1371/journal.pone.0150830 . ISSN   1932-6203. PMC   4805189 . PMID   27007808.
  32. 1 2 3 4 Heffelfinger, Jim (September 2006). Deer of the Southwest: A Complete Guide to the Natural History, Biology, and Management of Southwestern Mule Deer and White-tailed Deer. Texas A&M University Press. pp. 97–111. ISBN   1585445150.
  33. Kufeld, Roland C.; Wallmo, O. C.; Feddema, Charles (July 1973). Foods of the Rocky Mountain Mule Deer (Report). USDA Forest Service. OL   14738499M via Internet Archive.
  34. 1 2 3 4 5 Colorado Natural Resources Conservation Service (March 2000). "Mule Deer (Odocoileus hemionus) Fact Sheet" (PDF). USDA. Archived (PDF) from the original on 15 September 2020.
  35. Anthony, Robert G.; Smith, Norman S. (February 1977). "Ecological Relationships between Mule Deer and White-Tailed Deer in Southeastern Arizona". Ecological Monographs . 47 (3): 255–277. Bibcode:1977EcoM...47..255A. doi:10.2307/1942517. hdl: 10150/287962 . JSTOR   1942517.
  36. Armstrong, David M. (19 June 2012). "Species Profile: Deer". Colorado Division of Wildlife. Archived from the original on 8 January 2014. Retrieved 8 January 2014.
  37. Martin, Alexander Campbell; Zim, Herbert Spencer; Nelson, Arnold L. (1961). American Wildlife & Plants: A Guide to Wildlife Food Habits: The Use of Trees, Shrubs, Weeds, and Herbs by Birds and Mammals of the United States . Dover Publications. ISBN   978-0-486-20793-3 via Internet Archive.
  38. McCune, Bruce; Grenon, Jill; Mutch, Linda S.; Martin, Erin P. (2007). "Lichens in relation to management issues in the Sierra Nevada national parks". North American Fungi. 2: 2, 4. doi: 10.2509/pnwf.2007.002.003 (inactive 2 November 2024).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  39. 1 2 Rue, Leonard Lee III (October 1997). The Deer of North America. Lyons Press. pp. 499–502. ISBN   1558215778.
  40. Mule Deer: Changing Landscapes, Changing Perspectives: Supplemental Feeding—Just Say No (PDF) (Report). Western Association of Fish and Wildlife Agencies Mule Deer Working Group. pp. 25–26. Archived (PDF) from the original on 29 May 2020 via Utah Division of Wildlife Resources.
  41. Kucera, Thomas E. (21 August 1978). "Social Behavior and Breeding System of the Desert Mule Deer". Journal of Mammalogy . 59 (3): 463–476. doi:10.2307/1380224. ISSN   0022-2372. JSTOR   1380224.
  42. Bowyer, R. Terry; McCullough, Dale R.; Belovsky, G. E. "Causes and consequences of sociality in mule deer" (PDF). Alces . 37 (2): 371–402. Archived (PDF) from the original on 15 September 2020.
  43. Reiczigel, Jenő; Mejia Salazar, María Fernanda; Bollinger, Trent K.; Rózsa, Lajos (1 December 2015). "Comparing radio-tracking and visual detection methods to quantify group size measures". European Journal of Ecology . 1 (2): 1–4. doi: 10.1515/eje-2015-0011 . S2CID   52990318.
  44. McCusker, S.; Shipley, L. A.; Tollefson, T. N.; Griffin, M.; Koutsos, E. A. (3 July 2011). "Effects of starch and fibre in pelleted diets on nutritional status of mule deer (Odocoileus hemionus) fawns". Journal of Animal Physiology and Animal Nutrition. 95 (4): 489–498. doi:10.1111/j.1439-0396.2010.01076.x. PMID   21091543.
  45. deCalesta, David S.; Nagy, Julius G.; Bailey, James A. (October 1975). "Starving and Refeeding Mule Deer". The Journal of Wildlife Management . 39 (4): 663. doi:10.2307/3800224. JSTOR   3800224.
  46. Wallmo, O. C.; Carpenter, L. H.; Regelin, W. L.; Gill, R. B.; Baker, D. L. (March 1977). "Evaluation of Deer Habitat on a Nutritional Basis". Journal of Range Management. 30 (2): 122. doi:10.2307/3897753. hdl: 10150/646885 . JSTOR   3897753.
  47. Bergman, Eric J.; Doherty, Paul F.; Bishop, Chad J.; Wolfe, Lisa L.; Banulis, Bradley A.; Kaltenboeck, Bernhard (3 September 2014). "Herbivore Body Condition Response in Altered Environments: Mule Deer and Habitat Management". PLOS One . 9 (9): e106374. Bibcode:2014PLoSO...9j6374B. doi: 10.1371/journal.pone.0106374 . PMC   4153590 . PMID   25184410.
  48. 1 2 "Red Desert to Hoback Migration Assessment | Wyoming Migration Initiative". migrationinitiative.org. Archived from the original on 28 February 2021. Retrieved 25 February 2021.
  49. Aug. 20, Emily Benson; Now, 2018 From the print edition Like Tweet Email Print Subscribe Donate (20 August 2018). "The long, strange trip of Deer 255". www.hcn.org. Retrieved 25 February 2021.{{cite web}}: |first2= has generic name (help)CS1 maint: numeric names: authors list (link)
  50. "Colorado Parks & Wildlife - Species Data - Mule Deer Migration Corridors - Colorado GeoLibrary". geo.colorado.edu. Retrieved 25 February 2021.
  51. "New big game studies in Montana aimed at declining numbers, disease". goHUNT. Archived from the original on 22 October 2020. Retrieved 25 February 2021.
  52. "Mule Deer Initiative". Idaho Fish and Game. 19 September 2016. Retrieved 25 February 2021.
  53. Lewis, Gary (23 February 2017). "Central Oregon mule deer migrations in crisis". The Bulletin. Retrieved 25 February 2021.
  54. "UNDERSTANDING MULE DEER MIGRATIONFact Sheet #12" (PDF). Mule Deer Working Group: Fact Sheet.
  55. 1 2 "New study: Migrating mule deer don't need directions". EurekAlert!. Retrieved 15 March 2021.
  56. "Impacts of climate change on migrating mule deer". ScienceDaily. Retrieved 6 April 2021.
  57. Aikens, Ellen O.; Monteith, Kevin L.; Merkle, Jerod A.; Dwinnell, Samantha P. H.; Fralick, Gary L.; Kauffman, Matthew J. (August 2020). "Drought reshuffles plant phenology and reduces the foraging benefit of green-wave surfing for a migratory ungulate". Global Change Biology. 26 (8): 4215–4225. Bibcode:2020GCBio..26.4215A. doi:10.1111/gcb.15169. ISSN   1354-1013. PMID   32524724. S2CID   219586821.
  58. 1 2 Sawyer, Hall; Kauffman, Matthew J.; Nielson, Ryan M. (September 2009). "Influence of Well Pad Activity on Winter Habitat Selection Patterns of Mule Deer". Journal of Wildlife Management. 73 (7): 1052–1061. Bibcode:2009JWMan..73.1052S. doi:10.2193/2008-478. ISSN   0022-541X. S2CID   26214504.
  59. Coe, Priscilla K.; Nielson, Ryan M.; Jackson, Dewaine H.; Cupples, Jacqueline B.; Seidel, Nigel E.; Johnson, Bruce K.; Gregory, Sara C.; Bjornstrom, Greg A.; Larkins, Autumn N.; Speten, David A. (June 2015). "Identifying migration corridors of mule deer threatened by highway development: Mule Deer Migration and Highways". Wildlife Society Bulletin. 39 (2): 256–267. doi:10.1002/wsb.544.
  60. "Abandoned Fencing Is Detrimental to Mule Deer and Other Wildlife". John In The Wild. 9 May 2019. Retrieved 6 April 2021.
  61. 1 2 "New Study Finds That Expanding Development Is Associated With Declining Deer Recruitment Across Western Colorado". newsroom.wcs.org. Retrieved 6 April 2021.
  62. Sawyer, Hall; Kauffman, Matthew J.; Middleton, Arthur D.; Morrison, Thomas A.; Nielson, Ryan M.; Wyckoff, Teal B. (5 December 2012). "A framework for understanding semi-permeable barrier effects on migratory ungulates". Journal of Applied Ecology. 50 (1): 68–78. doi: 10.1111/1365-2664.12013 . ISSN   0021-8901.
  63. "New study reveals how fences hinder migratory wildlife in Western US". ScienceDaily. Retrieved 6 April 2021.
  64. July 17; Denchak, 2017 Melissa. "How You Can Stop Global Warming". NRDC. Retrieved 6 April 2021.{{cite web}}: CS1 maint: numeric names: authors list (link)
  65. "Protecting big-game migration corridors". NFWF. Retrieved 6 April 2021.
  66. 1 2 Siemers, Jeremy L.; Wilson, Kenneth R.; Baruch-Mordo, Sharon (May 2015). "MONITORING WILDLIFE-VEHICLE COLLISIONS: ANALYSIS AND COST- BENEFIT OF ESCAPE RAMPS FOR DEER AND ELK ON U.S. HIGHWAY 550". Colorado Department of Transportation: Applied Research and Innovation Branch.
  67. staff, the Star-Tribune (8 October 2013). "Wyoming wildlife crossings labeled success". Casper Star-Tribune Online. Retrieved 7 April 2021.
  68. "Study quantifies natural gas development impacts on mule deer". SOURCE. 12 August 2015. Retrieved 7 April 2021.
  69. Fraser, Devaughn L.; Ironside, Kirsten; Wayne, Robert K.; Boydston, Erin E. (May 2019). "Connectivity of mule deer (Odocoileus hemionus) populations in a highly fragmented urban landscape". Landscape Ecology. 34 (5): 1097–1115. Bibcode:2019LaEco..34.1097F. doi:10.1007/s10980-019-00824-9. ISSN   0921-2973. S2CID   145022000.
  70. 1 2 "URBAN MULE DEER ISSUES Fact Sheet #9" (PDF). Mule Deer Working Group Fact Sheet. July 2014.
  71. "UNDERSTANDING MULE DEER MIGRATION Fact Sheet #12" (PDF). Mule Deer Working Group. July 2014.
  72. Harkins, Paighten (29 March 2022). "Utah mule deer is 1st in U.S. to test positive for COVID-19". The Salt Lake Tribune. Archived from the original on 29 March 2022. Retrieved 29 March 2022.
  73. Prettyman, Brett (19 October 2008). "Hunting: Whitetail deer influx brings mixed reaction". The Salt Lake Tribune. Archived from the original on 29 March 2022.
  74. Jacobs, Andrew (2 November 2021). "Widespread Coronavirus Infection Found in Iowa Deer, New Study Says". The New York Times . Archived from the original on 2 November 2021. Retrieved 5 November 2021.
  75. CDC (13 May 2024). "Chronic Wasting Disease in Animals". Chronic Wasting Disease. Retrieved 3 December 2024.
  76. Williams, E. S.; Young, S. (January 1980). "Chronic Wasting Disease of Captive Mule Deer: A Spongiform Encephalopathy". Journal of Wildlife Diseases. 16 (1): 89–98. doi:10.7589/0090-3558-16.1.89. ISSN   0090-3558.

Further reading