Sediment trap

Last updated
Model of a sediment trap: It mainly consists of a huge funnel, a ring of Glass floats (3 are visible) and a revolving wheel with sample bottles. BrnBldSedimentTrap.jpg
Model of a sediment trap: It mainly consists of a huge funnel, a ring of Glass floats (3 are visible) and a revolving wheel with sample bottles.

Sediment traps are instruments used in oceanography and limnology to measure the quantity of sinking particulate organic (and inorganic) material in aquatic systems, usually oceans, lakes, or reservoirs. This flux of material is the product of biological and ecological processes typically within the surface euphotic zone, and is of interest to scientists studying the role of the biological pump in the carbon cycle. [1]

Sediments traps normally consist of an upward-facing funnel that directs sinking particulate matter (e.g. marine snow) towards a mechanism for collection and preservation. Typically, traps operate over an extended period of time (weeks to months) and their collection mechanisms may consist of a series of sampling vessels that are cycled through to allow the trap to record the changes in sinking flux with time (for instance, across a seasonal cycle). Preservation of collected material is necessary because of these long deployments, and prevents sample decomposition and its consumption by zooplankton "swimmers". [2]

Sediment trap deployment in Thermaikos Gulf, Greece, 2000. The sediment trap has H/D 5.5, internal diameter 127 mm, and a net at the top. The sediment trap had been cast at 25-30 m depth and 3 m above seabed. The anchor (chain) of the mooring can also be seen. Sediment trap Thermaikos 2.jpg
Sediment trap deployment in Thermaikos Gulf, Greece, 2000. The sediment trap has H/D 5.5, internal diameter 127 mm, and a net at the top. The sediment trap had been cast at 25-30 m depth and 3 m above seabed. The anchor (chain) of the mooring can also be seen.

Traps are often moored at a specific depth in the water column (usually below the euphotic zone or mixed layer) in a particular location, but some are so-called Lagrangian traps that drift with the surrounding ocean currents (though they may remain at a fixed depth). These latter traps travel with the biological systems that they study, while moored traps are subject to variability introduced by different systems (or states of systems) "passing by". However, because of their fixed location moored traps are straightforward to recover for analysis of their measurements. Lagrangian traps must surface at a pre-determined time, and report their position (usually via satellite) in order to be recovered.

See also

Related Research Articles

Biological pump The oceans biologically driven sequestration of carbon from the atmosphere to the ocean interior and seafloor

The biological pump, also known as the marine carbon pump, is, in its simplest form, the ocean's biologically driven sequestration of carbon from the atmosphere and land runoff to the ocean interior and seafloor sediments. It is the part of the oceanic carbon cycle responsible for the cycling of organic matter formed mainly by phytoplankton during photosynthesis (soft-tissue pump), as well as the cycling of calcium carbonate (CaCO3) formed into shells by certain organisms such as plankton and mollusks (carbonate pump).

The mesopelagiczone, also known as the middle pelagic or twilight zone, is the part of the pelagic zone that lies between the photic epipelagic and the aphotic bathypelagic zones. It is defined by light, and begins at the depth where only 1% of incident light reaches and ends where there is no light; the depths of this zone are between approximately 200 to 1000 meters below the ocean surface. It hosts a diverse biological community that includes bristlemouths, blobfish, bioluminescent jellyfish, giant squid, and a myriad of other unique organisms adapted to live in a low-light environment. It has long captivated the imagination of scientists, artists and writers; deep sea creatures are prominent in popular culture, particularly as horror movie villains.

Whale fall Whale carcass in an ocean bathyal or abyssal zone, and the resulting ecosystem

A whale fall occurs when the carcass of a whale has fallen onto the ocean floor at a depth greater than 1,000 m (3,300 ft), in the bathyal or abyssal zones. On the sea floor, these carcasses can create complex localized ecosystems that supply sustenance to deep-sea organisms for decades. This is unlike in shallower waters, where a whale carcass will be consumed by scavengers over a relatively short period of time. Whale falls were first observed in the late 1970s with the development of deep-sea robotic exploration. Since then, several natural and experimental whale falls have been monitored through the use of observations from submersibles and remotely operated underwater vehicles (ROVs) in order to understand patterns of ecological succession on the deep seafloor.

Dissolved inorganic carbon The sum of inorganic carbon species in a solution

Dissolved inorganic carbon (DIC) is the sum of the aqueous species of inorganic carbon in a solution. Carbon compounds can be distinguished as either organic or inorganic, and as dissolved or particulate, depending on their composition. Organic carbon forms the backbone of key component of organic compounds such as – proteins, lipids, carbohydrates, and nucleic acids.

Biogenic silica

Biogenic silica (bSi), also referred to as opal, biogenic opal, or amorphous opaline silica, forms one of the most widespread biogenic minerals. For example, microscopic particles of silica called phytoliths can be found in grasses and other plants. Silica is an amorphous metal oxide formed by complex inorganic polymerization processes. This is opposed to the other major biogenic minerals, comprising carbonate and phosphate, which occur in nature as crystalline iono-covalent solids (e.g. salts) whose precipitation is dictated by solubility equilibria. Chemically, bSi is hydrated silica (SiO2·nH2O), which is essential to many plants and animals.

f-ratio In oceanic biogeochemistry, the fraction of total primary production fuelled by nitrate

In oceanic biogeochemistry, the f-ratio is the fraction of total primary production fuelled by nitrate. The ratio was originally defined by Richard Eppley and Bruce Peterson in one of the first papers estimating global oceanic production. This fraction was originally believed significant because it appeared to directly relate to the sinking (export) flux of organic marine snow from the surface ocean by the biological pump. However, this interpretation relied on the assumption of a strong depth-partitioning of a parallel process, nitrification, that more recent measurements has questioned.

Diel vertical migration A pattern of daily vertical movement characteristic of many aquatic species

Diel vertical migration (DVM), also known as diurnal vertical migration, is a pattern of movement used by some organisms, such as copepods, living in the ocean and in lakes. The migration occurs when organisms move up to the uppermost layer of the sea at night and return to the bottom of the daylight zone of the oceans or to the dense, bottom layer of lakes during the day. The word diel comes from the Latin dies day, and means a 24-hour period. In terms of biomass, it is the greatest migration in the world. It is not restricted to any one taxon as examples are known from crustaceans (copepods), molluscs (squid), and ray-finned fishes (trout). Various stimuli are responsible for this phenomenon, the most prominent being response to changes in light intensity, though evidence suggests that biological clocks are an underlying stimulus as well. The phenomenon may arise for a number of reasons, though it is most typically to access food and avoid predators. While this mass migration is generally nocturnal, with the animals ascending from the depths at nightfall and descending at sunrise, the timing can be altered in response to the different cues and stimuli that trigger it. Some unusual events impact vertical migration: DVM is absent during the midnight sun in Arctic regions and vertical migration can occur suddenly during a solar eclipse.

Bermuda Institute of Ocean Sciences

The Bermuda Institute of Ocean Sciences is an independent, non-profit marine science and education institute located in Ferry Reach, St. George's, Bermuda. The Institute, founded in 1903 as the Bermuda Biological Station, hosts a full-time faculty of oceanographers, biologists, and environmental scientists, graduate and undergraduate students, K-12 groups, and Road Scholar groups. BIOS's strategic mid-Atlantic Ocean location has at its doorstep a diverse marine environment, with close proximity to deep ocean as well as coral reef and near shore habitats.

Marine snow Shower of mostly organic detritus falling from the upper layers of the water column

In the deep ocean, marine snow is a continuous shower of mostly organic detritus falling from the upper layers of the water column. It is a significant means of exporting energy from the light-rich photic zone to the aphotic zone below which is referred to as the biological pump. Export production is the amount of organic matter produced in the ocean by primary production that is not recycled (remineralised) before it sinks into the aphotic zone. Because of the role of export production in the ocean's biological pump, it is typically measured in units of carbon .The term was first coined by the explorer William Beebe as he observed it from his bathysphere. As the origin of marine snow lies in activities within the productive photic zone, the prevalence of marine snow changes with seasonal fluctuations in photosynthetic activity and ocean currents. Marine snow can be an important food source for organisms living in the aphotic zone, particularly for organisms which live very deep in the water column.

In 1995, the Ocean Time Series Program called CARIACO was initiated, completing 232 monthly core cruises through January 2017. This time series consists of field observations using ship, mooring, and satellite platforms in the eastern Cariaco Basin at 10°30’N, 64°40’W. The program seeks to understand the relationship between surface primary production, physical forcing variables like the wind, and the settling flux of particles in this unique location.

The Hawaii Ocean Time-series (HOT) program is a long-term oceanographic study based at the University of Hawaii at Manoa. In 2015, the American Society for Microbiology designated the HOT Program's field site Station ALOHA a "Milestone in Microbiology", for playing "a key role in defining the discipline of microbial oceanography and educating the public about the vital role of marine microbes in global ecosystems."

Ecosystem of the North Pacific Subtropical Gyre The largest contiguous ecosystem on earth and a major circulating system of ocean currents

The North Pacific Subtropical Gyre (NPSG) is the largest contiguous ecosystem on earth. In oceanography, a subtropical gyre is a ring-like system of ocean currents rotating clockwise in the Northern Hemisphere and counterclockwise in the Southern Hemisphere caused by the Coriolis Effect. They generally form in large open ocean areas that lie between land masses.

In biological oceanography, new production is supported by nutrient inputs from outside the euphotic zone, especially upwelling of nutrients from deep water, but also from terrestrial and atmosphere sources. New production depends on mixing and vertical advective processes associated with the circulation.

Oceanic carbon cycle Processes that exchange carbon between various pools within the ocean and the atmosphere, Earth interior, and the seafloor.

The oceanic carbon cycle is composed of processes that exchange carbon between various pools within the ocean as well as between the atmosphere, Earth interior, and the seafloor. The carbon cycle is a result of many interacting forces across multiple time and space scales that circulates carbon around the planet, ensuring that carbon is available globally. The Oceanic carbon cycle is a central process to the global carbon cycle and contains both inorganic carbon and organic carbon. Part of the marine carbon cycle transforms carbon between non-living and living matter.

Particulate organic matter

Particulate organic matter (POM) is a fraction of total organic matter operationally defined as that which does not pass through a filter pore size that typically ranges in size from 0.053 and 2 milimeters.

Jelly-falls Marine carbon cycling events whereby gelatinous zooplankton sink to the seafloor

Jelly-falls are marine carbon cycling events whereby gelatinous zooplankton, primarily cnidarians, sink to the seafloor and enhance carbon and nitrogen fluxes via rapidly sinking particulate organic matter. These events provide nutrition to benthic megafauna and bacteria. Jelly-falls have been implicated as a major “gelatinous pathway” for the sequestration of labile biogenic carbon through the biological pump. These events are common in protected areas with high levels of primary production and water quality suitable to support cnidarian species. These areas include estuaries and several studies have been conducted in fjords of Norway.

Marine biogeochemical cycles

Marine biogeochemical cycles are biogeochemical cycles that occur within marine environments, that is, in the saltwater of seas or oceans or the brackish water of coastal estuaries. These biogeochemical cycles are the pathways chemical substances and elements move through within the marine environment. In addition, substances and elements can be imported into or exported from the marine environment. These imports and exports can occur as exchanges with the atmosphere above, the ocean floor below, or as runoff from the land.

Viral shunt

The viral shunt is a mechanism that prevents marine microbial particulate organic matter (POM) from migrating up trophic levels by recycling them into dissolved organic matter (DOM), which can be readily taken up by microorganisms. The DOM recycled by the viral shunt pathway is comparable to the amount generated by the other main sources of marine DOM.

Benthic-pelagic coupling are processes that connect the benthic zone and the pelagic zone through the exchange of energy, mass, or nutrients. These processes play a prominent role in both freshwater and marine ecosystems and are influenced by a number of chemical, biological, and physical forces that are crucial to functions from nutrient cycling to energy transfer in food webs.

Total inorganic carbon

Total inorganic carbon is the sum of inorganic carbon species.

References

  1. Raven, J.A.; Falkowski, P.G. (1999). "Oceanic sinks for atmospheric CO2". Plant, Cell and Environment. 22 (6): 741–755. doi: 10.1046/j.1365-3040.1999.00419.x .
  2. Buesseler, K.O.; et al. (2007). "An assessment of the use of sediment traps for estimating upper ocean particle fluxes" (PDF). J. Mar. Res. 65 (3): 345–416. doi:10.1357/002224007781567621. ISSN   0022-2402.