Marine reptile

Last updated
Extant Cenozoic marine reptiles:
* Saltwater crocodile (top left)
* Sea turtle (top right)
* Marine iguana (bottom left)
* Sea snake (bottom right) Modern-marine-reptiles-001.jpg
Extant Cenozoic marine reptiles:
  Saltwater crocodile (top left)
  Sea turtle (top right)
  Marine iguana (bottom left)
  Sea snake (bottom right)

Marine reptiles are reptiles which have become secondarily adapted for an aquatic or semiaquatic life in a marine environment. Only about 100 of the 12,000 extant reptile species and subspecies are classed as marine reptiles, including marine iguanas, sea snakes, sea turtles and saltwater crocodiles. [1]

Contents

The earliest marine reptile was Mesosaurus (not to be confused with Mosasaurus ), which arose in the Permian period of the Paleozoic era. [2] During the Mesozoic era, many groups of reptiles became adapted to life in the seas, including such familiar clades as the ichthyosaurs, plesiosaurs (these two orders were once thought united in the group "Enaliosauria", [3] a classification now cladistically obsolete), mosasaurs, nothosaurs, placodonts, sea turtles, thalattosaurs and thalattosuchians. Most marine reptile groups became extinct at the end of the Cretaceous period, but some still existed during the Cenozoic, most importantly the sea turtles. Other Cenozoic marine reptiles included the bothremydids, [4] palaeophiid snakes, a few choristoderes such as Simoedosaurus and dyrosaurid crocodylomorphs. Various types of marine gavialid crocodilians remained widespread as recently as the Late Miocene. [5]

Some marine reptiles, such as ichthyosaurs, plesiosaurs, metriorhynchid thalattosuchians, and mosasaurs became so well adapted to a marine lifestyle that they were incapable of venturing onto land and gave birth in the water. Others, such as sea turtles and saltwater crocodiles, return to shore to lay their eggs. Some marine reptiles also occasionally rest and bask on land.

Extant groups

Hawksbill sea turtle (Eretmochelys imbricata) Eretmochelys-imbricata-Kelonia-2.JPG
Hawksbill sea turtle (Eretmochelys imbricata)

Extinct groups

Fossil of Ophthalmosaurus icenius, a species of ichthyosaur OphthalmosaurusIcenius-NaturalHistoryMuseum-August23-08.jpg
Fossil of Ophthalmosaurus icenius , a species of ichthyosaur

Adaptation to the marine environment

Conservation

Most species of marine reptiles are considered endangered to some degree. All but one species of sea turtles are endangered due to destruction of nesting habitats on coastal lands, exploitation, and marine fishing; [6] many species of sea snakes are threatened or endangered due to commercial exploitation (sale of skins) and pollution especially in Asia; marine iguanas are threatened due to their very limited habitation range. [1] Saltwater crocodiles are at low risk for extinction. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Reptile</span> Group of animals including lepidosaurs, testudines, and archosaurs

Reptiles, as commonly defined, are a group of tetrapods with an ectothermic ('cold-blooded') metabolism and amniotic development. Living reptiles comprise four orders: Testudines (turtles), Crocodilia (crocodilians), Squamata, and Rhynchocephalia. As of May 2023, about 12,000 living species of reptiles are listed in the Reptile Database. The study of the traditional reptile orders, customarily in combination with the study of modern amphibians, is called herpetology.

<span class="mw-page-title-main">Diapsid</span> Clade of reptiles with two holes in each side of their skulls

Diapsids are a clade of sauropsids, distinguished from more primitive eureptiles by the presence of two holes, known as temporal fenestrae, in each side of their skulls. The earliest traditionally identified diapsids, the araeoscelidians, appeared about three hundred million years ago during the late Carboniferous period. All diapsids other than the most primitive ones in the clade Araeoscelidia are often placed into the clade Neodiapsida. The diapsids are extremely diverse, and include birds and all modern reptile groups, including turtles, which were historically thought to lie outside the group. All modern reptiles and birds are placed within the neodiapsid subclade Sauria. Although some diapsids have lost either one hole (lizards), or both holes, or have a heavily restructured skull, they are still classified as diapsids based on their ancestry. At least 17,084 species of diapsid animals are extant: 9,159 birds, and 7,925 snakes, lizards, tuatara, turtles, and crocodiles.

Several groups of tetrapods have undergone secondary aquatic adaptation, an evolutionary transition from being purely terrestrial to living at least part of the time in water. These animals are called "secondarily aquatic" because although their ancestors lived on land for hundreds of millions of years, they all originally descended from aquatic animals. These ancestral tetrapods had never left the water, and were thus primarily aquatic, like modern fishes. Secondary aquatic adaptations tend to develop in early speciation as the animal ventures into water in order to find available food. As successive generations spend more time in the water, natural selection causes the acquisition of more adaptations. Animals of later generations may spend most their life in the water, coming ashore for mating. Finally, fully adapted animals may take to mating and birthing in water or ice.

The quadratojugal is a skull bone present in many vertebrates, including some living reptiles and amphibians.

<span class="mw-page-title-main">American crocodile</span> Species of crocodile endemic to the Neotropics

The American crocodile is a species of crocodilian found in the Neotropics. It is the most widespread of the four extant species of crocodiles from the Americas, with populations present from South Florida, the Caribbean islands of Cuba, Jamaica, Hispaniola, and the coasts of Mexico to as far south as Peru, Ecuador, Colombia, and Venezuela.

<span class="mw-page-title-main">Sauropterygia</span> Group of Mesozoic aquatic reptiles

Sauropterygia is an extinct taxon of diverse, aquatic reptiles that developed from terrestrial ancestors soon after the end-Permian extinction and flourished during the Triassic before all except for the Plesiosauria became extinct at the end of that period. The plesiosaurs would continue to diversify until the end of the Mesozoic. Sauropterygians are united by a radical adaptation of their pectoral girdle, adapted to support powerful flipper strokes. Some later sauropterygians, such as the pliosaurs, developed a similar mechanism in their pelvis. It is possible that sauropterygians are a distant relatives of turtles, uniting them under the group Pantestudines, although this is still debatable as sauropterygians might be archosauromorphs or completely unrelated to both.

<span class="mw-page-title-main">Placodontia</span> Extinct order of Triassic marine reptiles

Placodonts are an extinct order of marine reptiles that lived during the Triassic period, becoming extinct at the end of the period. They were part of Sauropterygia, the group that includes plesiosaurs. Placodonts were generally between 1 and 2 m in length, with some of the largest measuring 3 m (9.8 ft) long.

<span class="mw-page-title-main">Euryapsida</span>

Euryapsida is a polyphyletic group of sauropsids that are distinguished by a single temporal fenestra, an opening behind the orbit, under which the post-orbital and squamosal bones articulate. They are different from Synapsida, which also have a single opening behind the orbit, by the placement of the fenestra. In synapsids, this opening is below the articulation of the post-orbital and squamosal bones. It is now commonly believed that euryapsids are in fact diapsids that lost the lower temporal fenestra. Euryapsids are usually considered entirely extinct, although turtles might be part of the sauropterygian clade while other authors disagree. Euryapsida may also be a synonym of Sauropterygia sensu lato.

<i>Claudiosaurus</i> Extinct genus of reptiles

Claudiosaurus is an extinct genus of diapsid reptiles from the Late Permian Sakamena Formation of the Morondava Basin, Madagascar. It has been suggested to be semi-aquatic.

<span class="mw-page-title-main">Thalattosauria</span> Extinct group of marine reptiles

Thalattosauria is an extinct order of marine reptiles that lived in the Middle to Late Triassic. Thalattosaurs were diverse in size and shape, and are divided into two superfamilies: Askeptosauroidea and Thalattosauroidea. Askeptosauroids were endemic to the Tethys Ocean, their fossils have been found in Europe and China, and they were likely semiaquatic fish eaters with straight snouts and decent terrestrial abilities. Thalattosauroids were more specialized for aquatic life and most had unusual downturned snouts and crushing dentition. Thalattosauroids lived along the coasts of both Panthalassa and the Tethys Ocean, and were most diverse in China and western North America. The largest species of thalattosaurs grew to over 4 meters (13 feet) in length, including a long, flattened tail utilized in underwater propulsion. Although thalattosaurs bore a superficial resemblance to lizards, their exact relationships are unresolved. They are widely accepted as diapsids, but experts have variously placed them on the reptile family tree among Lepidosauromorpha, Archosauromorpha, ichthyosaurs, and/or other marine reptiles.

<i>Sea Monsters: A Prehistoric Adventure</i> 2007 American film

Sea Monsters: A Prehistoric Adventure is a 2007 American IMAX 3D documentary film by National Geographic, about prehistoric marine reptiles. It alternates modern-day sequences about the work of scientists studying the animals with computer-animated scenes depicting the prehistoric past.

<span class="mw-page-title-main">Marine vertebrate</span> Marine animals with a vertebrate column

Marine vertebrates are vertebrates that live in marine environments. These are the marine fish and the marine tetrapods. Vertebrates are a subphylum of chordates that have a vertebral column (backbone). The vertebral column provides the central support structure for an internal skeleton. The internal skeleton gives shape, support, and protection to the body and can provide a means of anchoring fins or limbs to the body. The vertebral column also serves to house and protect the spinal cord that lies within the column.

<span class="mw-page-title-main">Tangasauridae</span> Extinct family of reptiles

Tangasauridae is an extinct family of diapsids known from fossil specimens from Madagascar, Kenya and Tanzania that are Late Permian to Early Triassic in age. Fossils have been found of numerous specimens of common members of this family such as Hovasaurus in different stages of ontogenic development. Recent material from the Middle Sakamena Formation of the Morondava Basin of Madagascar that dates back to the early Triassic period suggests that the Tangasauridae were relatively unaffected by the Permian-Triassic extinction event.

<i>Helveticosaurus</i> Extinct genus of reptiles

Helveticosaurus is an extinct genus of diapsid marine reptile known from the Middle Triassic of southern Switzerland. It contains a single species, Helveticosaurus zollingeri, known from the nearly complete holotype T 4352 collected at Cava Tre Fontane of Monte San Giorgio, an area well known for its rich record of marine life during the Middle Triassic.

<span class="mw-page-title-main">Evolution of reptiles</span> Origin and diversification of reptiles through geologic time

Reptiles arose about 320 million years ago during the Carboniferous period. Reptiles, in the traditional sense of the term, are defined as animals that have scales or scutes, lay land-based hard-shelled eggs, and possess ectothermic metabolisms. So defined, the group is paraphyletic, excluding endothermic animals like birds that are descended from early traditionally-defined reptiles. A definition in accordance with phylogenetic nomenclature, which rejects paraphyletic groups, includes birds while excluding mammals and their synapsid ancestors. So defined, Reptilia is identical to Sauropsida.

Vivian de Buffrénil is a French histologist and paleobiologist who has worked at the Muséum National d'Histoire Naturelle in Paris from 1982 to 2021. His doctorate (1980) and his doctorat d'état (1990), a diploma now replaced by the habilitation, were supervised by Armand de Ricqlès. His main fields of interest include basic histological descriptions, growth dynamics as recorded in bone growth marks, and adaptation of the tetrapod skeleton to a secondarily aquatic lifestyle. He is also interested in life history and population dynamics of exploited or threatened reptile taxa, especially among Varanidae and Crocodilia. He has published at least 92 papers, including 76 research papers, 10 reports on exploited or threatened species, and six popular papers.

This list of fossil reptiles described in 2024 is a list of new taxa of fossil reptiles that were described during the year 2024, as well as other significant discoveries and events related to reptile paleontology that occurred in 2024.

References

  1. 1 2 3 4 5 6 Rasmussen, Arne Redsted; Murphy, John C.; Ompi, Medy; Gibbons, J. Whitfield; Uetz, Peter (2011-11-08). "Marine Reptiles". PLOS ONE. 6 (11): e27373. Bibcode:2011PLoSO...627373R. doi: 10.1371/journal.pone.0027373 . PMC   3210815 . PMID   22087300.
  2. Piñeiro, Graciela; Ferigolo, Jorge; Ramos, Alejandro; Laurin, Michel (1 July 2012). "Cranial morphology of the Early Permian mesosaurid Mesosaurus tenuidens and the evolution of the lower temporal fenestration reassessed". Comptes Rendus Palevol. 11 (5): 379–391. Bibcode:2012CRPal..11..379P. doi:10.1016/j.crpv.2012.02.001.
  3. Williston SW (1914) Water Reptiles of the Past and Present University of Chicago Press (reprint 2002). ISBN   1-4021-4677-9
  4. Carvalho, Anny Rafaela De Araújo; Ghilardi, Aline Marcele; Barreto, Alcina Magnólia Franca (21 June 2016). "A new side-neck turtle (Pelomedusoides: Bothremydidae) from the Early Paleocene (Danian) Maria Farinha Formation, Paraíba Basin, Brazil". Zootaxa. 4126 (4): 491–513. doi:10.11646/zootaxa.4126.4.3. PMID   27395602.
  5. Langston, Wann; Gasparini, Z. (1997). "Crocodilians, Gryposuchus, and the South American gavials". In Kay, Richard F; Madden, Richard H; Cifelli, Richard L; Flynn, John J. (eds.). Vertebrate paleontology in the neotropics: the Miocene fauna of La Venta, Colombia. Smithsonian Institution Press. pp. 113–154. ISBN   978-1-56098-418-4.
  6. 1 2 Zug, George R. "Sea Turtle". Encyclopædia Britannica Online. Retrieved December 8, 2015.
  7. "Sea Snake". Encyclopædia Britannica Online. Retrieved December 8, 2015.
  8. "Marine Iguanas". National Geographic. Archived from the original on May 21, 2011. Retrieved December 8, 2015.
  9. 1 2 "Saltwater crocodile". National Geographic. Archived from the original on February 4, 2010. Retrieved December 8, 2015.
  10. Ellis, T. M. (1981). "Tolerance of Sea Water by the American Crocodile, Crocodylus acutus". Journal of Herpetology. 15 (2): 187–192. doi:10.2307/1563379. JSTOR   1563379.