Food chain

Last updated
Food chain in a Swedish lake. Osprey feed on northern pike, which in turn feed on perch which eat bleak which eat crustaceans. Food chain.png
Food chain in a Swedish lake. Osprey feed on northern pike, which in turn feed on perch which eat bleak which eat crustaceans.

A food chain is a linear network of links in a food web, often starting with an autotroph (such as grass or algae), also called a producer, and typically ending at an apex predator (such as grizzly bears or killer whales), detritivore (such as earthworms and woodlice), or decomposer (such as fungi or bacteria). It is not the same as a food web. A food chain depicts relations between species based on what they consume for energy in trophic levels, and they are most commonly quantified in length: the number of links between a trophic consumer and the base of the chain.

Contents

Food chain studies play an important role in many biological studies.

Food chain stability is very important for the survival of most species. When only one element is removed from the food chain it can result in extinction or immense decreases of survival of a species. Many food chains and food webs contain a keystone species, a species that has a large impact on the surrounding environment and that can directly affect the food chain. If a keystone species is removed it can set the entire food chain off balance. [1]

The efficiency of a food chain depends on the energy first consumed by the primary producers. [2] This energy then moves through the trophic levels.

History

Food Chains were first discussed by al-Jahiz, a 10th century Arab philosopher. [3] The modern concepts of food chains and food webs were introduced by Charles Elton. [4] [5] [6]

Foodchain vs. food web

A food chain differs from a food web as a food chain follows a direct linear pathway of consumption and energy transfer. Naturalinterconnections between food chains make a food web, which are non-linear and depictinterconnecting pathways of consumption and energy transfer.

Trophic levels

Food chain models typically predict that communities are controlled by predators at the top and plants (autotrophs or producers) at the bottom. [7]

Trophic pyramids (also called ecological pyramids) model trophic levels in a food chain and/or biomass productivity. Ecological Pyramid.svg
Trophic pyramids (also called ecological pyramids) model trophic levels in a food chain and/or biomass productivity.

Thus, the foundation of the food chain typically consists of primary producers. Primary producers, or autotrophs, utilize energy derived from either sunlight or inorganic chemical compounds to create complex organic compounds, such as starch, for energy. Because the sun's light is necessary for photosynthesis, most life could not exist if the sun disappeared. Even so, it has recently been discovered that there are some forms of life, chemotrophs, that appear to gain all their metabolic energy from chemosynthesis driven by hydrothermal vents, thus showing that some life may not require solar energy to thrive. Chemosynthetic bacteria and archaea use hydrogen sulfide and methane from hydrothermal vents and cold seeps as an energy source (just as plants use sunlight) to produce carbohydrates; they form the base of the food chain in regions with little to no sunlight. [8] Regardless of where the energy is obtained, a species that produces its own energy lies at the base of the food chain model, and is a critically important part of an ecosystem. [9]

Higher trophic levels cannot produce their own energy and so must consume producers or other life that itself consumes producers. In the higher trophic levels lies consumers (secondary consumers, tertiary consumers, etc.).Consumers are organisms that eat other organisms. All organisms in a food chain, except the first organism, are consumers. Secondary consumers eat and obtain energy from primary consumers, tertiary consumers eat and obtain energy from secondary consumers, etc.

At the highest trophic level is typically an apex predator; a consumer with no natural predators in the food chain model.

When any trophic level dies, detritivores and decomposers consume their organic material for energy and expel nutrients into the environment in their waste. Decomposers and detritivores break down the organic compounds into simple nutrients that are returned to the soil. These are the simple nutrients that plants require to create organic compounds. It is estimated that there are more than 100,000 different decomposers in existence.

Models of trophic levels also often model energy transfer between trophic levels. Primary consumers get energy from the producer and pass it to the secondary and tertiary consumers.

Studies

Food chains are vital in ecotoxicology studies, which trace the pathways and biomagnification of environmental contaminants. [10] It is also necessary to consider interactions amongst different trophic levels to predict community dynamics; food chains are often the base level for theory development of trophic levels and community/ecosystem investigations. [7]

Length

This food web of waterbirds from Chesapeake Bay is a network of food chains Chesapeake Waterbird Food Web.jpg
This food web of waterbirds from Chesapeake Bay is a network of food chains

The length of a food chain is a continuous variable providing a measure of the passage of energy and an index of ecological structure that increases through the linkages from the lowest to the highest trophic (feeding) levels.

Food chains are directional paths of trophic energy or, equivalently, sequences of links that start with basal species, such as producers or fine organic matter, and end with consumer organisms. [11] :370

Food chains are often used in ecological modeling (such as a three-species food chain). They are simplified abstractions of real food webs, but complex in their dynamics and mathematical implications. [12]

In its simplest form, the length of a chain is the number of links between a trophic consumer and the base of the web. The mean chain length of an entire web is the arithmetic average of the lengths of all chains in the food web. [13] The food chain is an energy source diagram. The food chain begins with a producer, which is eaten by a primary consumer. The primary consumer may be eaten by a secondary consumer, which in turn may be consumed by a tertiary consumer. The tertiary consumers may sometimes become prey to the top predators known as the quaternary consumers. For example, a food chain might start with a green plant as the producer, which is eaten by a snail, the primary consumer. The snail might then be the prey of a secondary consumer such as a frog, which itself may be eaten by a tertiary consumer such as a snake which in turn may be consumed by an eagle. This simple view of a food chain with fixed trophic levels within a species -species A is eaten by species B, B is eaten by C…- is often contrasted by the real situation in which the juveniles of a species belong to a lower trophic level than the adults, a situation more often seen in aquatic and amphibious environments, e.g., in insects and fishes. This complexity was denominated metaphoetesis by G. E. Hutchinson, 1959. [14]

Ecologists have formulated and tested hypotheses regarding the nature of ecological patterns associated with food chain length, such as length increasing with ecosystem volume, [15] limited by the reduction of energy at each successive level, [16] or reflecting habitat type. [17]

Food chain length is important because the amount of energy transferred decreases as trophic level increases; generally only ten percent of the total energy at one trophic level is passed to the next, as the remainder is used in the metabolic process. There are usually no more than five tropic levels in a food chain. [18] Humans are able to receive more energy by going back a level in the chain and consuming the food before, for example getting more energy per pound from consuming a salad than an animal which ate lettuce. [19] [2]

Keystone species

The sea otter is a prime example of a keystone species Sea otter cropped.jpg
The sea otter is a prime example of a keystone species

A keystone species is a singular species within an ecosystem that others within the same ecosystem, or the entire ecosystem itself, rely upon. [20] Keystone species' are so vital for an ecosystem that without their presence, an ecosystem could transform or stop existing entirely. [20]

One way keystone species impact an ecosystem is through their presence in an ecosystem's food web and, by extension, a food chain within said ecosystem. [21] Sea otters, a keystone species in Pacific coastal regions, prey on sea urchins. [22] Without the presence of sea otters, sea urchins practice destructive grazing on kelp populations which contributes to declines in coastal ecosystems within the northern pacific regions. [22] The presence of sea otters controls sea urchin populations and helps maintain kelp forests, which are vital for other species within the ecosystem. [20]

See also

Related Research Articles

<span class="mw-page-title-main">Ecology</span> Study of organisms and their environment

Ecology is the natural science of the relationships among living organisms, including humans, and their physical environment. Ecology considers organisms at the individual, population, community, ecosystem, and biosphere levels. Ecology overlaps with the closely related sciences of biogeography, evolutionary biology, genetics, ethology, and natural history.

<span class="mw-page-title-main">Biomass (ecology)</span> Total mass of living organisms in a given area (all species or selected species)

Biomass is the mass of living biological organisms in a given area or ecosystem at a given time. Biomass can refer to species biomass, which is the mass of one or more species, or to community biomass, which is the mass of all species in the community. It can include microorganisms, plants or animals. The mass can be expressed as the average mass per unit area, or as the total mass in the community.

<span class="mw-page-title-main">Food web</span> Natural interconnection of food chains

A food web is the natural interconnection of food chains and a graphical representation of what-eats-what in an ecological community. Position in the food web, or trophic level, is used in ecology to broadly classify organisms as autotrophs or heterotrophs. This is a non-binary classification; some organisms occupy the role of mixotrophs, or autotrophs that additionally obtain organic matter from non-atmospheric sources.

<span class="mw-page-title-main">Keystone species</span> Species with a large effect on its environment

A keystone species is a species that has a disproportionately large effect on its natural environment relative to its abundance. The concept was introduced in 1969 by the zoologist Robert T. Paine. Keystone species play a critical role in maintaining the structure of an ecological community, affecting many other organisms in an ecosystem and helping to determine the types and numbers of various other species in the community. Without keystone species, the ecosystem would be dramatically different or cease to exist altogether. Some keystone species, such as the wolf and lion, are also apex predators.

<span class="mw-page-title-main">Energy flow (ecology)</span> Flow of energy through food chains in ecological energetics

Energy flow is the flow of energy through living things within an ecosystem. All living organisms can be organized into producers and consumers, and those producers and consumers can further be organized into a food chain. Each of the levels within the food chain is a trophic level. In order to more efficiently show the quantity of organisms at each trophic level, these food chains are then organized into trophic pyramids. The arrows in the food chain show that the energy flow is unidirectional, with the head of an arrow indicating the direction of energy flow; energy is lost as heat at each step along the way.

<span class="mw-page-title-main">Soil food web</span> Complex living system in the soil

The soil food web is the community of organisms living all or part of their lives in the soil. It describes a complex living system in the soil and how it interacts with the environment, plants, and animals.

<span class="mw-page-title-main">Apex predator</span> Predator at the top of a food chain

An apex predator, also known as a top predator or superpredator, is a predator at the top of a food chain, without natural predators of its own.

<span class="mw-page-title-main">River ecosystem</span> Type of aquatic ecosystem with flowing freshwater

River ecosystems are flowing waters that drain the landscape, and include the biotic (living) interactions amongst plants, animals and micro-organisms, as well as abiotic (nonliving) physical and chemical interactions of its many parts. River ecosystems are part of larger watershed networks or catchments, where smaller headwater streams drain into mid-size streams, which progressively drain into larger river networks. The major zones in river ecosystems are determined by the river bed's gradient or by the velocity of the current. Faster moving turbulent water typically contains greater concentrations of dissolved oxygen, which supports greater biodiversity than the slow-moving water of pools. These distinctions form the basis for the division of rivers into upland and lowland rivers.

Trophic cascades are powerful indirect interactions that can control entire ecosystems, occurring when a trophic level in a food web is suppressed. For example, a top-down cascade will occur if predators are effective enough in predation to reduce the abundance, or alter the behavior of their prey, thereby releasing the next lower trophic level from predation.

<span class="mw-page-title-main">Community (ecology)</span> Associated populations of species in a given area

In ecology, a community is a group or association of populations of two or more different species occupying the same geographical area at the same time, also known as a biocoenosis, biotic community, biological community, ecological community, or life assemblage. The term community has a variety of uses. In its simplest form it refers to groups of organisms in a specific place or time, for example, "the fish community of Lake Ontario before industrialization".

<span class="mw-page-title-main">Trophic level</span> Position of an organism in a food chain

The trophic level of an organism is the position it occupies in a food web. Within a food web, a food chain is a succession of organisms that eat other organisms and may, in turn, be eaten themselves. The trophic level of an organism is the number of steps it is from the start of the chain. A food web starts at trophic level 1 with primary producers such as plants, can move to herbivores at level 2, carnivores at level 3 or higher, and typically finish with apex predators at level 4 or 5. The path along the chain can form either a one-way flow or a part of a wider food "web". Ecological communities with higher biodiversity form more complex trophic paths.

<span class="mw-page-title-main">Forage fish</span> Small prey fish

Forage fish, also called prey fish or bait fish, are small pelagic fish that feed on planktons and other small aquatic organisms. They are in turn preyed upon by various predators including larger fish, seabirds and marine mammals, this making them keystone species in their aquatic ecosystems.

Ecological efficiency describes the efficiency with which energy is transferred from one trophic level to the next. It is determined by a combination of efficiencies relating to organismic resource acquisition and assimilation in an ecosystem.

A consumer in a food chain is a living creature that eats organisms from a different population. A consumer is a heterotroph and a producer is an autotroph. Like sea angels, they take in organic moles by consuming other organisms, so they are commonly called consumers. Heterotrophs can be classified by what they usually eat as herbivores, carnivores, omnivores, or decomposers. On the other hand, autotrophs are organisms that use energy directly from the sun or from chemical bonds. Autotrophs are vital to all ecosystems because all organisms need organic molecules, and only autotrophs can produce them from inorganic compounds. Autotrophs are classified as either photoautotrophs or chemoautotrophs.

<span class="mw-page-title-main">Autotroph</span> Organism type

An autotroph is an organism that can convert abiotic sources of energy into energy stored in organic compounds, which can be used by other organisms. Autotrophs produce complex organic compounds using carbon from simple substances such as carbon dioxide, generally using energy from light or inorganic chemical reactions. Autotrophs do not need a living source of carbon or energy and are the producers in a food chain, such as plants on land or algae in water. Autotrophs can reduce carbon dioxide to make organic compounds for biosynthesis and as stored chemical fuel. Most autotrophs use water as the reducing agent, but some can use other hydrogen compounds such as hydrogen sulfide.

<span class="mw-page-title-main">Fishing down the food web</span> Fishing industry practice

Fishing down the food web is the process whereby fisheries in a given ecosystem, "having depleted the large predatory fish on top of the food web, turn to increasingly smaller species, finally ending up with previously spurned small fish and invertebrates".

Consumer–resource interactions are the core motif of ecological food chains or food webs, and are an umbrella term for a variety of more specialized types of biological species interactions including prey-predator, host-parasite, plant-herbivore and victim-exploiter systems. These kinds of interactions have been studied and modeled by population ecologists for nearly a century. Species at the bottom of the food chain, such as algae and other autotrophs, consume non-biological resources, such as minerals and nutrients of various kinds, and they derive their energy from light (photons) or chemical sources. Species higher up in the food chain survive by consuming other species and can be classified by what they eat and how they obtain or find their food.

<span class="mw-page-title-main">Planktivore</span> Aquatic organism that feeds on planktonic food

A planktivore is an aquatic organism that feeds on planktonic food, including zooplankton and phytoplankton. Planktivorous organisms encompass a range of some of the planet's smallest to largest multicellular animals in both the present day and in the past billion years; basking sharks and copepods are just two examples of giant and microscopic organisms that feed upon plankton.

<span class="mw-page-title-main">Aquatic-terrestrial subsidies</span>

Energy, nutrients, and contaminants derived from aquatic ecosystems and transferred to terrestrial ecosystems are termed aquatic-terrestrial subsidies or, more simply, aquatic subsidies. Common examples of aquatic subsidies include organisms that move across habitat boundaries and deposit their nutrients as they decompose in terrestrial habitats or are consumed by terrestrial predators, such as spiders, lizards, birds, and bats. Aquatic insects that develop within streams and lakes before emerging as winged adults and moving to terrestrial habitats contribute to aquatic subsidies. Fish removed from aquatic ecosystems by terrestrial predators are another important example. Conversely, the flow of energy and nutrients from terrestrial ecosystems to aquatic ecosystems are considered terrestrial subsidies; both aquatic subsidies and terrestrial subsidies are types of cross-boundary subsidies. Energy and nutrients are derived from outside the ecosystem where they are ultimately consumed.

<span class="mw-page-title-main">Marine food web</span> Marine consumer-resource system

A marine food web is a food web of marine life. At the base of the ocean food web are single-celled algae and other plant-like organisms known as phytoplankton. The second trophic level is occupied by zooplankton which feed off the phytoplankton. Higher order consumers complete the web. There has been increasing recognition in recent years that marine microorganisms.

References

  1. "The Food Chain". www2.nau.edu. Retrieved 2019-05-04.
  2. 1 2 Rowland, Freya E.; Bricker, Kelly J.; Vanni, Michael J.; González, María J. (2015-04-13). "Light and nutrients regulate energy transfer through benthic and pelagic food chains". Oikos . 124 (12). Nordic Foundation Oikos: 1648–1663. Bibcode:2015Oikos.124.1648R. doi:10.1111/oik.02106. ISSN   1600-0706 . Retrieved 2019-10-25 via ResearchGate.
  3. Agutter, Paul S.; Wheatley, Denys N. (2008-11-05). Thinking about Life: The history and philosophy of biology and other sciences. Springer Science & Business Media. p. 43. ISBN   978-1-4020-8866-7.
  4. Elton, C. S. (1927). Animal Ecology. London, UK.: Sidgwick and Jackson. ISBN   0-226-20639-4.
  5. Allesina, S.; Alonso, D.; Pascal, M. (2008). "A general model for food web structure" (PDF). Science . 320 (5876): 658–661. Bibcode:2008Sci...320..658A. doi:10.1126/science.1156269. PMID   18451301. S2CID   11536563. Archived from the original (PDF) on 2016-05-15.
  6. Egerton, F. N. (2007). "Understanding food chains and food webs, 1700-1970". Bulletin of the Ecological Society of America. 88: 50–69. doi:10.1890/0012-9623(2007)88[50:UFCAFW]2.0.CO;2.
  7. 1 2 Wootton, J T; Power, M E (1993-02-15). "Productivity, consumers, and the structure of a river food chain". Proceedings of the National Academy of Sciences. 90 (4): 1384–1387. Bibcode:1993PNAS...90.1384W. doi: 10.1073/pnas.90.4.1384 . ISSN   0027-8424. PMC   45877 . PMID   11607368.
  8. US Department of Commerce, National Oceanic and Atmospheric Administration. "What is the difference between photosynthesis and chemosynthesis?: Ocean Exploration Facts: NOAA Ocean Exploration". oceanexplorer.noaa.gov. Retrieved 2024-04-15.
  9. Fretwell, Stephen D. (1987). "Food Chain Dynamics: The Central Theory of Ecology?". Oikos. 50 (3): 291–301. Bibcode:1987Oikos..50..291F. doi:10.2307/3565489. ISSN   0030-1299. JSTOR   3565489.
  10. Vander Zanden, M. J.; Shuter, B. J.; Lester, N.; Rasmussen, J. B. (1999). "Patterns of food chain length in lakes: A stable isotope study" (PDF). The American Naturalist . 154 (4): 406–416. doi:10.1086/303250. PMID   10523487. S2CID   4424697. Archived from the original (PDF) on 2016-03-04. Retrieved 2011-06-14.
  11. Martinez, N. D. (1991). "Artifacts or attributes? Effects of resolution on the Little Rock Lake food web" (PDF). Ecological Monographs . 61 (4): 367–392. Bibcode:1991EcoM...61..367M. doi:10.2307/2937047. JSTOR   2937047.
  12. Post, D. M.; Conners, M. E.; Goldberg, D. S. (2000). "Prey preference by a top predator and the stability of linked food chains" (PDF). Ecology . 81: 8–14. doi:10.1890/0012-9658(2000)081[0008:PPBATP]2.0.CO;2.
  13. Post, D. M.; Pace, M. L.; Haristis, A. M. (2006). "Parasites dominate food web links". Proceedings of the National Academy of Sciences. 103 (30): 11211–11216. Bibcode:2006PNAS..10311211L. doi: 10.1073/pnas.0604755103 . PMC   1544067 . PMID   16844774.
  14. G. E. Hutchinson. 1959. Homage to Santa Rosalia or Why Are There So Many Kinds of Animals? The American Naturalist, Vol. 93, No. 870 (May - Jun., 1959), pp. 145-159
  15. Briand, F.; Cohen, J. E. (1987). "Environmental correlates of food chain length" (PDF). Science . 238 (4829): 956–960. Bibcode:1987Sci...238..956B. doi:10.1126/science.3672136. PMID   3672136. Archived from the original (PDF) on 2012-04-25.
  16. Odum, E. P.; Barrett, G. W. (2005). Fundamentals of ecology. Brooks/Cole. p. 598. ISBN   978-0-534-42066-6.
  17. Briand, Frederic (Oct 1983). "Biogeographic Patterns in Food Web Organization". Oak Ridge National Laboratory Reports. ORNL-5983: 37–39.
  18. Wilkin, Douglas; Brainard, Jean (2015-12-11). "Food Chain". CK-12 . Retrieved 2019-11-06.
  19. Rafferty, John P.; et al. (Kara Rogers, Editors of Encyclopædia Britannica). "Food chain". Food chain | Definition, Types, & Facts. Encyclopædia Britannica. Retrieved 2019-10-25.
  20. 1 2 3 Sidhu, Jatinder (2021-09-16). "What is a keystone species, and why do they matter?". World Economic Forum.
  21. Jordán, Ferenc (2009-06-27). "Keystone species and food webs". Philosophical Transactions of the Royal Society B: Biological Sciences. 364 (1524): 1733–1741. doi:10.1098/rstb.2008.0335. ISSN   0962-8436. PMC   2685432 . PMID   19451124.
  22. 1 2 Park, Mailing Address: Glacier Bay National; Gustavus, Preserve PO Box 140; Us, AK 99826 Phone: 907 697-2230 Contact. "A Keystone Species, the Sea Otter, Colonizes Glacier Bay - Glacier Bay National Park & Preserve (U.S. National Park Service)". www.nps.gov. Retrieved 2024-04-15.{{cite web}}: CS1 maint: numeric names: authors list (link)