Ecosystem diversity deals with the variations in ecosystems within a geographical location and its overall impact on human existence and the environment.
Ecosystem diversity addresses the combined characteristics of biotic properties which are living organisms (biodiversity) and abiotic properties such as nonliving things like water or soil (geodiversity). It is a variation in the ecosystems found in a region or the variation in ecosystems over the whole planet. Ecological diversity includes the variation in both terrestrial and aquatic ecosystems. Ecological diversity can also take into account the variation in the complexity of a biological community, including the number of different niches, the number of and other ecological processes. An example of ecological diversity on a global scale would be the variation in ecosystems, such as deserts, forests, grasslands, wetlands and oceans. Ecological diversity is the largest scale of biodiversity, and within each ecosystem, there is a great deal of both species and genetic diversity. [1] [2] [3] [4]
Diversity in the ecosystem is significant to human existence for a variety of reasons. Ecosystem diversity boosts the availability of oxygen via the process of photosynthesis amongst plant organisms domiciled in the habitat. Diversity in an aquatic environment helps in the purification of water by plant varieties for use by humans. Diversity increases plant varieties which serves as a good source for medicines and herbs for human use. A lack of diversity in the ecosystem produces an opposite result. [5]
Some examples of ecosystems that are rich in diversity are:
Ecological diversity around the world can be directly linked to the evolutionary and selective pressures that constrain the diversity outcome of the ecosystems within different niches. Tundras, Rainforests, coral reefs and deciduous forests all are formed as a result of evolutionary pressures. Even seemingly small evolutionary interactions can have large impacts on the diversity of the ecosystems throughout the world. One of the best studied cases of this is of the honeybee's interaction with angiosperms on every continent in the world except Antarctica. [6]
In 2010, Robert Brodschneider and Karl Crailsheim conducted a study on the health and nutrition in honeybee colonies. The study focused on overall colony health, adult nutrition, and larva nutrition as a function of the effect of pesticides, monocultures and genetically modified crops to see if the anthropogenically created problems can have an effect pollination levels. [7] The results indicate that human activity does have a role in the destruction of the fitness of the bee colony. The extinction or near extinction of these pollinators would result in many plants that feed humans on a wide scale needing alternative pollination methods. [8] Crop pollinating insects are worth annually $14.6 billion to the US economy [9] and the cost to hand pollinate over insect pollination is estimated to cost $5,715-$7,135 more per hectare. Not only will there be a cost increase but also an decrease in colony fitness, leading to a decrease in genetic diversity, which studies have shown has a direct link to the long-term survival of the honeybee colonies. [10] [11]
According to a study, there are over 50 plants that are dependent on bee pollination, many of these being key staples to feeding the world. [12] Another study conducted states that a lack of plant diversity will lead to a decline in the bee population fitness, and a low bee colony fitness has impacts on the fitness of plant ecosystem diversity. [13] By allowing for bee pollination and working to reduce anthropogenically harmful footprints, bee pollination can increase genetic diversity of flora growth and create a unique ecosystem that is highly diverse and can provide a habitat and niche for many other organisms to thrive. [14] Due to the evolutionary pressures of bees being located on six out of seven continents, there can be no denying the impact of pollinators on the ecosystem diversity. The pollen collected by the bees is harvested and used as an energy source for wintertime; this act of collecting pollen from local plants also has a more important effect of facilitating the movement of genes between organisms. [15]
The new evolutionary pressures that are largely anthropogenically catalyzed can potentially cause widespread collapse of ecosystems. In the north Atlantic Sea, a study was conducted that followed the effects of the human interaction on surrounding ocean habitats. They found that there was no habitat or trophic level that in some way was affected negatively by human interaction, and that much of the diversity of life was being stunted as a result. [16]
Biology – The natural science that studies life. Areas of focus include structure, function, growth, origin, evolution, distribution, and taxonomy.
A pollinator is an animal that moves pollen from the male anther of a flower to the female stigma of a flower. This helps to bring about fertilization of the ovules in the flower by the male gametes from the pollen grains.
Pollination is the transfer of pollen from an anther of a plant to the stigma of a plant, later enabling fertilisation and the production of seeds. Pollinating agents can be animals such as insects, for example beetles or butterflies; birds, and bats; water; wind; and even plants themselves. Pollinating animals travel from plant to plant carrying pollen on their bodies in a vital interaction that allows the transfer of genetic material critical to the reproductive system of most flowering plants. When self-pollination occurs within a closed flower. Pollination often occurs within a species. When pollination occurs between species, it can produce hybrid offspring in nature and in plant breeding work.
Urban ecology is the scientific study of the relation of living organisms with each other and their surroundings in an urban environment. An urban environment refers to environments dominated by high-density residential and commercial buildings, paved surfaces, and other urban-related factors that create a unique landscape. The goal of urban ecology is to achieve a balance between human culture and the natural environment.
This glossary of ecology is a list of definitions of terms and concepts in ecology and related fields. For more specific definitions from other glossaries related to ecology, see Glossary of biology, Glossary of evolutionary biology, and Glossary of environmental science.
In population genetics, gene flow is the transfer of genetic material from one population to another. If the rate of gene flow is high enough, then two populations will have equivalent allele frequencies and therefore can be considered a single effective population. It has been shown that it takes only "one migrant per generation" to prevent populations from diverging due to drift. Populations can diverge due to selection even when they are exchanging alleles, if the selection pressure is strong enough. Gene flow is an important mechanism for transferring genetic diversity among populations. Migrants change the distribution of genetic diversity among populations, by modifying allele frequencies. High rates of gene flow can reduce the genetic differentiation between the two groups, increasing homogeneity. For this reason, gene flow has been thought to constrain speciation and prevent range expansion by combining the gene pools of the groups, thus preventing the development of differences in genetic variation that would have led to differentiation and adaptation. In some cases dispersal resulting in gene flow may also result in the addition of novel genetic variants under positive selection to the gene pool of a species or population
Pollinator decline is the reduction in abundance of insect and other animal pollinators in many ecosystems worldwide that began being recorded at the end of the 20th century. Multiple lines of evidence exist for the reduction of wild pollinator populations at the regional level, especially within Europe and North America. Similar findings from studies in South America, China and Japan make it reasonable to suggest that declines are occurring around the globe. The majority of studies focus on bees, particularly honeybee and bumblebee species, with a smaller number involving hoverflies and lepidopterans.
Biological dispersal refers to both the movement of individuals from their birth site to their breeding site and the movement from one breeding site to another . Dispersal is also used to describe the movement of propagules such as seeds and spores. Technically, dispersal is defined as any movement that has the potential to lead to gene flow. The act of dispersal involves three phases: departure, transfer, and settlement. There are different fitness costs and benefits associated with each of these phases. Through simply moving from one habitat patch to another, the dispersal of an individual has consequences not only for individual fitness, but also for population dynamics, population genetics, and species distribution. Understanding dispersal and the consequences, both for evolutionary strategies at a species level and for processes at an ecosystem level, requires understanding on the type of dispersal, the dispersal range of a given species, and the dispersal mechanisms involved. Biological dispersal can be correlated to population density. The range of variations of a species' location determines the expansion range.
Habitat fragmentation describes the emergence of discontinuities (fragmentation) in an organism's preferred environment (habitat), causing population fragmentation and ecosystem decay. Causes of habitat fragmentation include geological processes that slowly alter the layout of the physical environment, and human activity such as land conversion, which can alter the environment much faster and causes the extinction of many species. More specifically, habitat fragmentation is a process by which large and contiguous habitats get divided into smaller, isolated patches of habitats.
Bombus terrestris, the buff-tailed bumblebee or large earth bumblebee, is one of the most numerous bumblebee species in Europe. It is one of the main species used in greenhouse pollination, and so can be found in many countries and areas where it is not native, such as Tasmania. Moreover, it is a eusocial insect with an overlap of generations, a division of labour, and cooperative brood care. The queen is monogamous which means she mates with only one male. B. terrestris workers learn flower colours and forage efficiently.
The dwarf honey bee, Apis florea, is one of two species of small, wild honey bees of southern and southeastern Asia. It has a much wider distribution than its sister species, Apis andreniformis. First identified in the late 18th century, Apis florea is unique for its morphology, foraging behavior and defensive mechanisms like making a piping noise. Apis florea have open nests and small colonies, which makes them more susceptible to predation than cavity nesters with large numbers of defensive workers. These honey bees are important pollinators and therefore commodified in countries like Cambodia.
A functional group is a collection of organisms that share characteristics within a community. Ideally, these would perform equivalent tasks based on domain forces, rather than a common ancestor or evolutionary relationship. This could potentially lead to analogous structures that overrule the possibility of homology. More specifically, these beings produce resembling effects to external factors of an inhabiting system. Due to the fact that a majority of these creatures share an ecological niche, it is practical to assume they require similar structures in order to achieve the greatest amount of fitness. This refers to such as the ability to successfully reproduce to create offspring, and furthermore sustain life by avoiding predators and sharing meals.
Functional ecology is a branch of ecology that focuses on the roles, or functions, that species play in the community or ecosystem in which they occur. In this approach, physiological, anatomical, and life history characteristics of the species are emphasized. The term "function" is used to emphasize certain physiological processes rather than discrete properties, describe an organism's role in a trophic system, or illustrate the effects of natural selective processes on an organism. This sub-discipline of ecology represents the crossroads between ecological patterns and the processes and mechanisms that underlie them.
In ecology, a disturbance is a temporary change in environmental conditions that causes a pronounced change in an ecosystem. Disturbances often act quickly and with great effect, to alter the physical structure or arrangement of biotic and abiotic elements. A disturbance can also occur over a long period of time and can impact the biodiversity within an ecosystem.
Ecological stoichiometry considers how the balance of energy and elements influences living systems. Similar to chemical stoichiometry, ecological stoichiometry is founded on constraints of mass balance as they apply to organisms and their interactions in ecosystems. Specifically, how does the balance of energy and elements affect and how is this balance affected by organisms and their interactions. Concepts of ecological stoichiometry have a long history in ecology with early references to the constraints of mass balance made by Liebig, Lotka, and Redfield. These earlier concepts have been extended to explicitly link the elemental physiology of organisms to their food web interactions and ecosystem function.
In ecology, a community is a group or association of populations of two or more different species occupying the same geographical area at the same time, also known as a biocoenosis, biotic community, biological community, ecological community, or life assemblage. The term community has a variety of uses. In its simplest form it refers to groups of organisms in a specific place or time, for example, "the fish community of Lake Ontario before industrialization".
The East African lowland honey bee is a subspecies of the western honey bee. It is native to central, southern and eastern Africa, though at the southern extreme it is replaced by the Cape honey bee. This subspecies has been determined to constitute one part of the ancestry of the Africanized bees spreading through North and South America.
The western honey bee or European honey bee is the most common of the 7–12 species of honey bees worldwide. The genus name Apis is Latin for 'bee', and mellifera is the Latin for 'honey-bearing' or 'honey-carrying', referring to the species' production of honey.
In ecology, functional equivalence is the ecological phenomenon that multiple species representing a variety of taxonomic groups can share similar, if not identical, roles in ecosystem functionality. This phenomenon can apply to both plant and animal taxa. The idea was originally presented in 2005 by Stephen Hubbell, a plant ecologist at the University of Georgia. This idea has led to a new paradigm for species-level classification – organizing species into groups based on functional similarity rather than morphological or evolutionary history. In the natural world, several examples of functional equivalence among different taxa have emerged analogously.
Plant-animal interactions are important pathways for the transfer of energy within ecosystems, where both advantageous and unfavorable interactions support ecosystem health. Plant-animal interactions can take on important ecological functions and manifest in a variety of combinations of favorable and unfavorable associations, for example predation, frugivory and herbivory, parasitism, and mutualism. Without mutualistic relationships, some plants may not be able to complete their life cycles, and the animals may starve due to resource deficiency.