An ecological cascade effect is a series of secondary extinctions that are triggered by the primary extinction of a key species in an ecosystem. Secondary extinctions are likely to occur when the threatened species are: dependent on a few specific food sources, mutualistic (dependent on the key species in some way), or forced to coexist with an invasive species that is introduced to the ecosystem. Species introductions to a foreign ecosystem can often devastate entire communities, and even entire ecosystems. These exotic species monopolize the ecosystem's resources, and since they have no natural predators to decrease their growth, they are able to increase indefinitely. Olsen et al. [1] showed that exotic species have caused lake and estuary ecosystems to go through cascade effects due to loss of algae, crayfish, mollusks, fish, amphibians, and birds. However, the principal cause of cascade effects is the loss of top predators as the key species. As a result of this loss, a dramatic increase (ecological release) of prey species occurs. The prey is then able to overexploit its own food resources, until the population numbers decrease in abundance, which can lead to extinction. When the prey's food resources disappear, they starve and may go extinct as well. If the prey species is herbivorous, then their initial release and exploitation of the plants may result in a loss of plant biodiversity in the area. [2] If other organisms in the ecosystem also depend upon these plants as food resources, then these species may go extinct as well. An example of the cascade effect caused by the loss of a top predator is apparent in tropical forests. When hunters cause local extinctions of top predators, the predators' prey's population numbers increase, causing an overexploitation of a food resource and a cascade effect of species loss. [3] Recent studies have been performed on approaches to mitigate extinction cascades in food-web networks. [4]
One example of the cascade effect caused by the loss of a top predator has to do with sea otters (Enhydra lutris). Starting before the 17th century and not phased out until 1911 when an international treaty was signed to prevent their further exploitation, sea otters were hunted aggressively for their pelts, which caused a cascade effect through the kelp forest ecosystems along the Pacific Coast of North America. [5] One of the sea otters' primary food sources is the sea urchin (Class:Echinoidea). When hunters caused sea otter populations to decline, an ecological release of sea urchin populations occurred. The sea urchins then overexploited their main food source, kelp, creating urchin barrens where no life exists. No longer having food to eat, the sea urchins populations became locally extinct as well. Also, since kelp forest ecosystems are homes to many other species, the loss of the kelp ultimately caused their extinction as well. [6] In conclusion, the loss of sea otters in local areas along the Pacific coast seems to have caused a cascade effect of secondary extinctions, continuing into the present day.
A keystone species is a species that has a disproportionately large effect on its natural environment relative to its abundance, a concept introduced in 1969 by the zoologist Robert T. Paine. Keystone species play a critical role in maintaining the structure of an ecological community, affecting many other organisms in an ecosystem and helping to determine the types and numbers of various other species in the community. Without keystone species, the ecosystem would be dramatically different or cease to exist altogether. Some keystone species, such as the wolf, are also apex predators.
This glossary of ecology is a list of definitions of terms and concepts in ecology and related fields. For more specific definitions from other glossaries related to ecology, see Glossary of biology, Glossary of evolutionary biology, and Glossary of environmental science.
An ecological or environmental crisis occurs when changes to the environment of a species or population destabilizes its continued survival. Some of the important causes include:
Kelp forests are underwater areas with a high density of kelp, which covers a large part of the world's coastlines. Smaller areas of anchored kelp are called kelp beds. They are recognized as one of the most productive and dynamic ecosystems on Earth. Although algal kelp forest combined with coral reefs only cover 0.1% of Earth's total surface, they account for 0.9% of global primary productivity. Kelp forests occur worldwide throughout temperate and polar coastal oceans. In 2007, kelp forests were also discovered in tropical waters near Ecuador.
Regime shifts are large, abrupt, persistent changes in the structure and function of ecosystems, the climate, financial systems or other complex systems. A regime is a characteristic behaviour of a system which is maintained by mutually reinforced processes or feedbacks. Regimes are considered persistent relative to the time period over which the shift occurs. The change of regimes, or the shift, usually occurs when a smooth change in an internal process (feedback) or a single disturbance triggers a completely different system behavior. Although such non-linear changes have been widely studied in different disciplines ranging from atoms to climate dynamics, regime shifts have gained importance in ecology because they can substantially affect the flow of ecosystem services that societies rely upon, such as provision of food, clean water or climate regulation. Moreover, regime shift occurrence is expected to increase as human influence on the planet increases – the Anthropocene – including current trends on human induced climate change and biodiversity loss. When regime shifts are associated with a critical or bifurcation point, they may also be referred to as critical transitions.
An urchin barren is commonly defined as an urchin-dominated area with little or no kelp. Urchin grazing pressure on kelp is a direct and observable cause of a "barren" area. However, determining which factors contribute to shifting a kelp bed to an urchin barren is a complex problem and remains a matter of debate among scientists.
Trophic cascades are powerful indirect interactions that can control entire ecosystems, occurring when a trophic level in a food web is suppressed. For example, a top-down cascade will occur if predators are effective enough in predation to reduce the abundance, or alter the behavior of their prey, thereby releasing the next lower trophic level from predation.
Ecological release refers to a population increase or population explosion that occurs when a species is freed from limiting factors in its environment. Sometimes this may occur when a plant or animal species is introduced, for example, to an island or to a new territory or environment other than its native habitat. When this happens, the new arrivals may find themselves suddenly free from the competitors, diseases, or predatory species, etc. in their previous environment, allowing their population numbers to increase beyond their previous limitations. Another common example of ecological release can occur if a disease or a competitor or a keystone species, such as a top predator, is removed from a community or ecosystem. Classical examples of this latter dynamics include population explosions of sea urchins in California's offshore kelp beds, for example, when human hunters began to kill too many sea otters, and/or sudden population explosions of jackrabbits if hunters or ranchers kill too many coyotes.
In ecology, a community is a group or association of populations of two or more different species occupying the same geographical area at the same time, also known as a biocoenosis, biotic community, biological community, ecological community, or life assemblage. The term community has a variety of uses. In its simplest form it refers to groups of organisms in a specific place or time, for example, "the fish community of Lake Ontario before industrialization".
The mesopredator release hypothesis is an ecological theory used to describe the interrelated population dynamics between apex predators and mesopredators within an ecosystem, such that a collapsing population of the former results in dramatically increased populations of the latter. This hypothesis describes the phenomenon of trophic cascade in specific terrestrial communities.
Ecological extinction is "the reduction of a species to such low abundance that, although it is still present in the community, it no longer interacts significantly with other species".
A fishery is an area with an associated fish or aquatic population which is harvested for its commercial or recreational value. Fisheries can be wild or farmed. Population dynamics describes the ways in which a given population grows and shrinks over time, as controlled by birth, death, and migration. It is the basis for understanding changing fishery patterns and issues such as habitat destruction, predation and optimal harvesting rates. The population dynamics of fisheries is used by fisheries scientists to determine sustainable yields.
Defaunation is the global, local, or functional extinction of animal populations or species from ecological communities. The growth of the human population, combined with advances in harvesting technologies, has led to more intense and efficient exploitation of the environment. This has resulted in the depletion of large vertebrates from ecological communities, creating what has been termed "empty forest". Defaunation differs from extinction; it includes both the disappearance of species and declines in abundance. Defaunation effects were first implied at the Symposium of Plant-Animal Interactions at the University of Campinas, Brazil in 1988 in the context of Neotropical forests. Since then, the term has gained broader usage in conservation biology as a global phenomenon.
Island ecology is the study of island organisms and their interactions with each other and the environment. Islands account for nearly 1/6 of earth’s total land area, yet the ecology of island ecosystems is vastly different from that of mainland communities. Their isolation and high availability of empty niches lead to increased speciation. As a result, island ecosystems comprise 30% of the world’s biodiversity hotspots, 50% of marine tropical diversity, and some of the most unusual and rare species. Many species still remain unknown.
Overexploitation, also called overharvesting, refers to harvesting a renewable resource to the point of diminishing returns. Continued overexploitation can lead to the destruction of the resource, as it will be unable to replenish. The term applies to natural resources such as water aquifers, grazing pastures and forests, wild medicinal plants, fish stocks and other wildlife.
A food chain is a linear network of links in a food web, often starting with an autotroph, also called a producer, and typically ending at an apex predator, detritivore, or decomposer. It is not the same as a food web. A food chain depicts relations between species based on what they consume for energy in trophic levels, and they are most commonly quantified in length-the number of links between a trophic consumer and the base of the chain.
Empty forest is a term coined by Kent H. Redford's article "The Empty Forest" (1992), which was published in BioScience. An "empty forest" refers to an ecosystem that is void of large mammals. Empty forests are characterized by an otherwise excellent habitat, and often have large, fully grown trees, although they lack large mammals as a result of human impact. Empty forests show that human impact can destroy an ecosystem from within as well as from without.
Salt marsh die-off is a term that has been used in the US and UK to describe the death of salt marsh cordgrass leading to subsequent degradation of habitat, specifically in the low marsh zones of salt marshes on the coasts of the Western Atlantic. Cordgrass normally anchors sediment in salt marshes; its loss leads to decreased substrate hardness, increased erosion, and collapse of creek banks into the water, ultimately resulting in decreased marsh health and productivity.
A Mesopredator is a predator that occupies a mid-ranking trophic level in a food web. There is no standard definition of a mesopredator, but mesopredators are usually medium-sized carnivorous or omnivorous animals, such as raccoons, foxes, or coyotes. They are often defined by contrast from apex predators or prey in a particular food web. Mesopredators typically prey on smaller animals.
James Allen Estes is an American ecologist and Distinguished Professor at University of California, Santa Cruz (UCSC), known for his studies of sea otters and kelp forest ecology. Born in Sacramento, California, he graduated from the University of Minnesota in 1967, earned a master's degree in Biology from Washington State University in 1969, and a Ph.D. in biology and statistics from the University of Arizona in 1974. He worked for the U.S. Fish and Wildlife Service and the U.S. Geological Survey from 1974 to 2007 before joining the UCSC faculty. He is a wildlife ecologist known for his work on ecosystem effect of large predators on ecosystems. He co-edited the books The Community Ecology of Sea Otters (1988), Whales, Whaling, and Ocean Ecosystems (2007), and Trophic Cascades: Predators, Prey, and the Changing Dynamics of Nature (2010), and is the author of Serendipity: An Ecologist's Quest to Understand Nature (2016). He was elected to the National Academy of Sciences in 2014. Estes and his work are featured prominently in the 2018 documentary film The Serengeti Rules.