Verneshot

Last updated

A verneshot (named after French author Jules Verne) is a hypothetical volcanic eruption event caused by the buildup of gas deep underneath a craton. Such an event may be forceful enough to launch an extreme amount of material from the crust and mantle into a sub-orbital trajectory, leading to significant further damage after the material crashes back down to the surface.

Contents

Connection with mass extinctions

Verneshots have been proposed as a causal mechanism explaining the statistically unlikely contemporaneous occurrence of continental flood basalts, mass extinctions, and "impact signals" (such as planar deformation features, shocked quartz, and iridium anomalies) traditionally considered definitive evidence of hypervelocity impact events. [1]

The verneshot theory suggests that mantle plumes may cause heating and the buildup of carbon dioxide gas underneath continental lithosphere. If continental rifting occurs above this location, an explosive release of the built up gas may occur, potentially sending out a column of crust and mantle into a globally dispersive, super-stratospheric trajectory. It is unclear whether such a column could stay coherent through this process, or whether the force of this process would result in it shattering into much smaller pieces before impacting. The pipe through which the magma and gas had travelled would collapse during this process, sending a shockwave at hypersonic velocity that would deform the surrounding craton.

A verneshot event is likely to be related to nearby continental flood basalt events, which may occur before, during or after the verneshot event. This may help in searching for evidence for the results of verneshot events; however, it is also quite probable that most of such evidence will be buried underneath the basalt flows, making investigation difficult. J. Phipps Morgan and others have suggested that subcircular Bouguer gravity anomalies recognized beneath the Deccan Traps may indicate the presence of verneshot pipes related to the Cretaceous–Paleogene extinction event. [1]

If the Deccan Traps were the location of a verneshot event at the Cretaceous–Paleogene boundary, the strong iridium spike at the Cretaceous–Paleogene boundary could be explained by the iridium-rich nature of volatiles in the Reunion mantle plume, which is currently beneath Piton de la Fournaise, but during the end Cretaceous was located beneath India in the area of the Deccan Traps; the verneshot event could potentially distribute the iridium globally. [1]

Tunguska event

A verneshot has been proposed as an alternate explanation for the Tunguska event, widely regarded as the result of an atmospheric explosion of a small comet or asteroid. Arguments offered for this mechanism include the lack of extraterrestrial material at the event site, the lack of a credible impact structure, and the presence of shocked quartz in surface outcrops. [2] However, this hypothesis has not been generally accepted, with Mark Boslough arguing that there is no basis for rejecting the impact hypothesis. [3]

Name

In 1865 Jules Verne's novel From the Earth to the Moon introduced the concept of a ballistic projectile escaping the Earth's gravity, from which Phipps Morgan and others derived the name "Verneshot" in their paper theorizing a connection between extinction events and cratonic gas ejection.

Notes

  1. 1 2 3 Phipps Morgan, J.; Reston, T. J.; Ranero, C. R. (15 January 2004). "Contemporaneous mass extinctions, continental flood basalts, and 'impact signals': are mantle plume-induced lithospheric gas explosions the causal link?" (PDF). Earth and Planetary Science Letters . 217 (3–4): 263–284. Bibcode:2004E&PSL.217..263P. doi:10.1016/S0012-821X(03)00602-2. (First submitted 17 April 2003). For an informal introduction see Professor Jason Phipps Morgan's faculty biography Archived 22 September 2006 at the Wayback Machine at Cornell University from May 2004: I became interested in the causes of mass-extinctions, in particular worrying about the 'too-many-coincidences' problem that these periods appear to be associated (if we believe what's published in the mainstream literature) with BOTH extremely rare continental flood basalts and continental rifting, and even rarer 'impact signals' commonly presumed to come from large extraterrestrial bolide impacts. Our recently published Verneshot hypothesis is our best guess on how to explain these coincidences in a self-consistent causal manner.'
  2. Vannucchi, Paola; Morgan, Jason P.; Della Lunga, Damiano; Andronicos, Christopher L.; Morgan, W. Jason (January 2015). "Direct evidence of ancient shock metamorphism at the site of the 1908 Tunguska event". Earth and Planetary Science Letters. 409: 168–174. Bibcode:2015E&PSL.409..168V. doi:10.1016/j.epsl.2014.11.001.
  3. Cohen, David (25 June 2008). "Tugnuska 100 years on". New Scientist. 198 (2662): 38–41. doi:10.1016/S0262-4079(08)61618-8.

Related Research Articles

<span class="mw-page-title-main">Deccan Traps</span> Large igneous province in India

The Deccan Traps is a large igneous province of west-central India. It is one of the largest volcanic features on Earth, taking the form of a large shield volcano. It consists of numerous layers of solidified flood basalt that together are more than about 2,000 metres (6,600 ft) thick, cover an area of about 500,000 square kilometres (200,000 sq mi), and have a volume of about 1,000,000 cubic kilometres (200,000 cu mi). Originally, the Deccan Traps may have covered about 1,500,000 square kilometres (600,000 sq mi), with a correspondingly larger original volume. This volume overlies the Archean age Indian Shield, which is likely the lithology the province passed through during eruption. The province is commonly divided into four subprovinces: the main Deccan, the Malwa Plateau, the Mandla Lobe, and the Saurashtran Plateau.

<span class="mw-page-title-main">Tunguska event</span> 1908 meteor air burst explosion in Siberia

The Tunguska event was a 3–5 megaton explosion that occurred near the Podkamennaya Tunguska River in Yeniseysk Governorate, Russia, on the morning of 30 June 1908. The explosion over the sparsely populated East Siberian taiga flattened an estimated 80 million trees over an area of 2,150 km2 (830 sq mi) of forest, and eyewitness accounts suggest up to three people may have died. The explosion is generally attributed to a meteor air burst, the atmospheric explosion of a stony asteroid about 50–60 metres wide. The asteroid approached from the east-south-east, probably with a relatively high speed of about 27 km/s (60,000 mph). Though the incident is classified as an impact event, the object is thought to have exploded at an altitude of 5 to 10 kilometres rather than hitting the Earth's surface, leaving no impact crater.

<span class="mw-page-title-main">Chicxulub crater</span> Prehistoric impact crater in Mexico

The Chicxulub crater is an impact crater buried underneath the Yucatán Peninsula in Mexico. Its center is offshore, but the crater is named after the onshore community of Chicxulub Pueblo. It was formed slightly over 66 million years ago when a large asteroid, about ten kilometers in diameter, struck Earth. The crater is estimated to be 200 kilometers in diameter and 20 kilometers in depth. It is the second largest confirmed impact structure on Earth, and the only one whose peak ring is intact and directly accessible for scientific research.

<span class="mw-page-title-main">Mantle plume</span> Upwelling of abnormally hot rock within Earths mantle

A mantle plume is a proposed mechanism of convection within the Earth's mantle, hypothesized to explain anomalous volcanism. Because the plume head partially melts on reaching shallow depths, a plume is often invoked as the cause of volcanic hotspots, such as Hawaii or Iceland, and large igneous provinces such as the Deccan and Siberian Traps. Some such volcanic regions lie far from tectonic plate boundaries, while others represent unusually large-volume volcanism near plate boundaries.

<span class="mw-page-title-main">Siberian Traps</span> Large region of volcanic rock in Russia

The Siberian Traps is a large region of volcanic rock, known as a large igneous province, in Siberia, Russia. The massive eruptive event that formed the traps is one of the largest known volcanic events in the last 500 million years.

<span class="mw-page-title-main">Flood basalt</span> Very large volume eruption of basalt lava

A flood basalt is the result of a giant volcanic eruption or series of eruptions that covers large stretches of land or the ocean floor with basalt lava. Many flood basalts have been attributed to the onset of a hotspot reaching the surface of the Earth via a mantle plume. Flood basalt provinces such as the Deccan Traps of India are often called traps, after the Swedish word trappa, due to the characteristic stairstep geomorphology of many associated landscapes.

<span class="mw-page-title-main">Large igneous province</span> Huge regional accumulation of igneous rocks

A large igneous province (LIP) is an extremely large accumulation of igneous rocks, including intrusive and extrusive, arising when magma travels through the crust towards the surface. The formation of LIPs is variously attributed to mantle plumes or to processes associated with divergent plate tectonics. The formation of some of the LIPs in the past 500 million years coincide in time with mass extinctions and rapid climatic changes, which has led to numerous hypotheses about causal relationships. LIPs are fundamentally different from any other currently active volcanoes or volcanic systems.

<span class="mw-page-title-main">Iceland hotspot</span> Hotspot partly responsible for volcanic activity forming the Iceland Plateau and island

The Iceland hotspot is a hotspot which is partly responsible for the high volcanic activity which has formed the Iceland Plateau and the island of Iceland.

The Shiva crater is the claim by paleontologist Sankar Chatterjee and colleagues that the Bombay High and Surat Depression on the Indian continental shelf west of Mumbai, India represent a 500-kilometre (310 mi) impact crater, that formed around the Cretaceous-Paleogene boundary. Chatterjee and colleagues have claimed that this could have contributed to the K-Pg extinction event. Other scholars have questioned the claims, finding that there is no evidence of an impact structure.

<span class="mw-page-title-main">Alvarez hypothesis</span> Asteroid impact hypothesis as cause of the Cretaceous–Paleogene extinction

The Alvarez hypothesis posits that the mass extinction of the non-avian dinosaurs and many other living things during the Cretaceous–Paleogene extinction event was caused by the impact of a large asteroid on the Earth. Prior to 2013, it was commonly cited as having happened about 65 million years ago, but Renne and colleagues (2013) gave an updated value of 66 million years. Evidence indicates that the asteroid fell in the Yucatán Peninsula, at Chicxulub, Mexico. The hypothesis is named after the father-and-son team of scientists Luis and Walter Alvarez, who first suggested it in 1980. Shortly afterwards, and independently, the same was suggested by Dutch paleontologist Jan Smit.

Gerta Keller is a geologist and paleontologist whose work has focused on global catastrophes and mass extinctions. She has been a professor of geosciences at Princeton University since 1984 and received emeritus status in July 2020. Keller contests the mainstream Alvarez hypothesis that the impact of the Chicxulub impactor, or another large celestial body, directly caused the Cretaceous–Paleogene extinction event. Keller maintains that such an impact predates the mass extinction and that Deccan volcanism and its environmental consequences were the most likely major cause, but possibly exacerbated by the impact. Considered a leading authority on catastrophes and mass extinctions, including the biotic and environmental effects of impacts and volcanism, Keller is one of few scientists whose work has consistently supported the contention, with nearly half of her 300 publications being articles which address the asteroid impact/volcano controversy

The term iridium anomaly commonly refers to an unusual abundance of the chemical element iridium in a layer of rock strata at the Cretaceous–Paleogene (K–Pg) boundary. The unusually high concentration of a rare metal like iridium is often taken as evidence for an extraterrestrial impact event.

Vincent E. Courtillot is an emeritus French geophysicist, prominent among the researchers who are critical of the hypothesis that impact events are a primary cause of mass extinction of life forms on the Earth. He is known for his book "La Vie en catastrophes", translated into English as "Evolutionary catastrophes" (1999).

<span class="mw-page-title-main">Cretaceous–Paleogene boundary</span> Geological formation between time periods

The Cretaceous–Paleogene (K–Pg) boundary, formerly known as the Cretaceous–Tertiary (K–T) boundary, is a geological signature, usually a thin band of rock containing much more iridium than other bands. The K–Pg boundary marks the end of the Cretaceous Period, the last period of the Mesozoic Era, and marks the beginning of the Paleogene Period, the first period of the Cenozoic Era. Its age is usually estimated at 66 million years, with radiometric dating yielding a more precise age of 66.043 ± 0.011 Ma.

The climate across the Cretaceous–Paleogene boundary is very important to geologic time as it marks a catastrophic global extinction event. Numerous theories have been proposed as to why this extinction event happened including an asteroid known as the Chicxulub asteroid, volcanism, or sea level changes. While the mass extinction is well documented, there is much debate about the immediate and long-term climatic and environmental changes caused by the event. The terrestrial climates at this time are poorly known, which limits the understanding of environmentally driven changes in biodiversity that occurred before the Chicxulub crater impact. Oxygen isotopes across the K–T boundary suggest that oceanic temperatures fluctuated in the Late Cretaceous and through the boundary itself. Carbon isotope measurements of benthic foraminifera at the K–T boundary suggest rapid, repeated fluctuations in oceanic productivity in the 3 million years before the final extinction, and that productivity and ocean circulation ended abruptly for at least tens of thousands of years just after the boundary, indicating devastation of terrestrial and marine ecosystems. Some researchers suggest that climate change is the main connection between the impact and the extinction. The impact perturbed the climate system with long-term effects that were much worse than the immediate, direct consequences of the impact.

<span class="mw-page-title-main">Cretaceous–Paleogene extinction event</span> Mass extinction event about 66 million years ago

The Cretaceous–Paleogene (K–Pg) extinction event, also known as the Cretaceous–Tertiary(K–T)extinction, was a sudden mass extinction of three-quarters of the plant and animal species on Earth, approximately 66 million years ago. The event caused the extinction of all non-avian dinosaurs. Most other tetrapods weighing more than 25 kilograms also became extinct, with the exception of some ectothermic species such as sea turtles and crocodilians. It marked the end of the Cretaceous period, and with it the Mesozoic era, while heralding the beginning of the Cenozoic era, which continues to this day.

<span class="mw-page-title-main">Timeline of Cretaceous–Paleogene extinction event research</span>

Since the 19th century, a significant amount of research has been conducted on the Cretaceous–Paleogene extinction event, the mass extinction that ended the dinosaur-dominated Mesozoic Era and set the stage for the Age of Mammals, or Cenozoic Era. A chronology of this research is presented here.

Intraplate volcanism is volcanism that takes place away from the margins of tectonic plates. Most volcanic activity takes place on plate margins, and there is broad consensus among geologists that this activity is explained well by the theory of plate tectonics. However, the origins of volcanic activity within plates remains controversial.

<span class="mw-page-title-main">Asish Basu</span> Indian geologist, academic, and researcher

Asish R. Basu is a geologist, academic, and researcher. He is Professor Emeritus of Earth and Environmental Sciences at the University of Texas at Arlington. He is most known for his research in Earth Science -related subjects, such as isotope geochemistry, flood basalt volcanism, and mineralogy-petrology.