Biotechnology risk

Last updated

Biotechnology risk is a form of existential risk from biological sources, such as genetically engineered biological agents. [1] [2] The release of such high-consequence pathogens could be

Contents

A chapter on biotechnology and biosecurity was included in Nick Bostrom's 2008 anthology Global Catastrophic Risks , which covered risks including viral agents. [3] Since then, new technologies like CRISPR and gene drives have been introduced.

While the ability to deliberately engineer pathogens has been constrained to high-end labs run by top researchers, the technology to achieve this is rapidly becoming cheaper and more widespread. [4] For example, the diminishing cost of sequencing the human genome (from $10 million to $1,000), the accumulation of large datasets of genetic information, the discovery of gene drives, and the discovery of CRISPR. [5] Biotechnology risk is therefore a credible explanation for the Fermi paradox. [6]

Genetically modified organisms (GMO)

There are several advantages and disadvantages of genetically modified organisms. The disadvantages include many risks, which have been classified into six classes: 1. Health risks, 2. Environmental risks, 3. Threat to biodiversity, 4. Increase in social differences, 5. Scientific concerns, 6. Potential threat to the autonomy and welfare of farmers who wish to produce non-GM products. [7]

1. Health risks

The following are potential health risks related to the consumption of GMOs.

Unexpected gene interactions

The expected outcomes of the transferred gene construct may differ due to gene interactions. It has been hypothesized that genetic modification can potentially cause changes in metabolism, though results are conflicting in animal studies. [8]

Cancer risks

GM crops require lower amounts of pesticide compared to non-GM crops. [9] [10] [11] Because some pesticides' main component is glyphosate, the lower amounts of pesticides needed on GM crops may reduce the risk of non-Hodgkin's lymphoma in workers who handle raw GM products. [12] [13]

Allergenic potential

Allergenic potential is the potential to elicit an allergic reaction in already sensitized consumers. A particular gene that has been added to a GM crop possibly can create new allergens, and constant exposure to a particular protein allergen may have resulted in developing new allergies. This is not related directly to the use of GM technology; but since no test can predict allergenicity, it is highly possible that the new proteins or their interactions with usual proteins could produce new allergies. [7]

Horizontal gene transfer (HGT)

Horizontal gene transfer is any process by which an organism acquires genetic material from a second organism without descending from it. In contrast, the vertical transfer is when an organism acquires genetic material from its ancestors (i.e., its parents). HGT is the transfer of DNA between cells of the same generation. Humans and animals have been in contact with "foreign DNA". In humans, DNA has absorbed through food daily through fragments of plant and animal genes and bacterial DNA.[ medical citation needed ]

Antibiotic resistance

Theoretically, antibiotic resistance can occur by consuming genetically modified plants. Genes can be transferred to bacteria in the human gastrointestinal tract and develop resistance to that specific antibiotic.[ medical citation needed ] Considering this risk factor, more research is needed. [7]

Gain-of-function mutations

Research

Pathogens may be intentionally or unintentionally genetically modified to change their characteristics, including virulence or toxicity. [2] When intentional, these mutations can serve to adapt the pathogen to a laboratory setting, understand the mechanism of transmission or pathogenesis, or in the development of therapeutics. Such mutations have also been used in the development of biological weapons, and dual-use risk continues to be a concern in the research of pathogens. [14] The greatest concern is frequently associated with gain-of-function mutations, which confer novel or increased functionality, and the risk of their release. Gain-of-function research on viruses has been occurring since the 1970s, and came to notoriety after influenza vaccines were serially passed through animal hosts.[ citation needed ]

Mousepox

A group of Australian researchers unintentionally changed characteristics of the mousepox virus while trying to develop a virus to sterilize rodents as a means of biological pest control. [2] [15] [16] The modified virus became highly lethal even in vaccinated and naturally resistant mice. [17]

Influenza

In 2011, two laboratories published reports of mutational screens of avian influenza viruses, identifying variants which become transmissible through the air between ferrets. These viruses seem to overcome an obstacle which limits the global impact of natural H5N1. [18] [19] In 2012, scientists further screened point mutations of the H5N1 virus genome to identify mutations which allowed airborne spread. [20] [21] While the stated goal of this research was to improve surveillance and prepare for influenza viruses which are of particular risk in causing a pandemic, [22] there was significant concern that the laboratory strains themselves could escape. [23] Marc Lipsitch and Alison P. Galvani coauthored a paper in PLoS Medicine arguing that experiments in which scientists manipulate bird influenza viruses to make them transmissible in mammals deserve more intense scrutiny as to whether or not their risks outweigh their benefits. [24] Lipsitch also described influenza as the most frightening "potential pandemic pathogen". [25]

Regulation

In 2014, the United States instituted a moratorium on gain-of-function research into influenza, MERS, and SARS. [26] This was in response to the particular risks these airborne pathogens pose. However, many scientists opposed the moratorium, arguing that this limited their ability to develop antiviral therapies. [27] The scientists argued gain-of-function mutations were necessary, such as adapting MERS to laboratory mice so it could be studied.

The National Science Advisory Board for Biosecurity also has instituted rules for research proposals using gain-of-function research of concern. [28] The rules outline how experiments are to be evaluated for risks, safety measures, and potential benefits; prior to funding.

In order to limit access to minimize the risk of easy access to genetic material from pathogens, including viruses, the members of the International Gene Synthesis Consortium screen orders for regulated pathogen and other dangerous sequences. [29] Orders for pathogenic or dangerous DNA are verified for customer identity, barring customers on governmental watch lists, and only to institutions "demonstrably engaged in legitimate research".

CRISPR

Following surprisingly fast advances in CRISPR editing, an international summit proclaimed[ clarification needed ] in December 2015 that it was "irresponsible" to proceed with human gene editing until issues in safety and efficacy were addressed. [30] One way in which CRISPR editing can cause existential risk is through gene drives, which are said to have potential to "revolutionize" ecosystem management. [31] Gene drives are a novel technology that have potential to make genes spread through wild populations extremely quickly. They have the potential to rapidly spread resistance genes against malaria in order to rebuff the malaria parasite Plasmodium falciparum . [32] These gene drives were originally engineered in January 2015 by Ethan Bier and Valentino Gantz; this editing was spurred by the discovery of CRISPR-Cas9. In late 2015, DARPA started to study approaches that could halt gene drives if they went out of control and threatened biological species. [33]

See also

Related Research Articles

<span class="mw-page-title-main">Genetically modified organism</span> Organisms whose genetic material has been altered using genetic engineering methods

A genetically modified organism (GMO) is any organism whose genetic material has been altered using genetic engineering techniques. The exact definition of a genetically modified organism and what constitutes genetic engineering varies, with the most common being an organism altered in a way that "does not occur naturally by mating and/or natural recombination". A wide variety of organisms have been genetically modified (GM), including animals, plants, and microorganisms.

<span class="mw-page-title-main">Genetic engineering</span> Manipulation of an organisms genome

Genetic engineering, also called genetic modification or genetic manipulation, is the modification and manipulation of an organism's genes using technology. It is a set of technologies used to change the genetic makeup of cells, including the transfer of genes within and across species boundaries to produce improved or novel organisms.

<span class="mw-page-title-main">Genetically modified food</span> Foods produced from organisms that have had changes introduced into their DNA

Genetically modified foods, also known as genetically engineered foods, or bioengineered foods are foods produced from organisms that have had changes introduced into their DNA using various methods of genetic engineering. Genetic engineering techniques allow for the introduction of new traits as well as greater control over traits when compared to previous methods, such as selective breeding and mutation breeding.

<i>Influenza A virus</i> Species of virus

Influenza A virus (IAV) is a pathogen that causes the flu in birds and some mammals, including humans. It is an RNA virus whose subtypes have been isolated from wild birds. Occasionally, it is transmitted from wild to domestic birds, and this may cause severe disease, outbreaks, or human influenza pandemics.

<span class="mw-page-title-main">Avian influenza</span> Influenza caused by viruses adapted to birds

Avian influenza, also known as avian flu, is a bird flu caused by the influenza A virus, which can infect people. It is similar to other types of animal flu in that it is caused by a virus strain that has adapted to a specific host. The type with the greatest risk is highly pathogenic avian influenza (HPAI).

<span class="mw-page-title-main">Human genetic enhancement</span> Technologies to genetically improve human bodies

Human genetic enhancement or human genetic engineering refers to human enhancement by means of a genetic modification. This could be done in order to cure diseases, prevent the possibility of getting a particular disease, to improve athlete performance in sporting events, or to change physical appearance, metabolism, and even improve physical capabilities and mental faculties such as memory and intelligence. These genetic enhancements may or may not be done in such a way that the change is heritable.

<span class="mw-page-title-main">Influenza A virus subtype H5N1</span> Subtype of influenza A virus

Influenza A virus subtype H5N1 (A/H5N1) is a subtype of the influenza A virus which can cause illness in humans and many other species. A bird-adapted strain of H5N1, called HPAI A(H5N1) for highly pathogenic avian influenza virus of type A of subtype H5N1, is the highly pathogenic causative agent of H5N1 flu, commonly known as avian influenza. It is enzootic in many bird populations, especially in Southeast Asia. One strain of HPAI A(H5N1) is spreading globally after first appearing in Asia. It is epizootic and panzootic, killing tens of millions of birds and spurring the culling of hundreds of millions of others to stem its spread. Many references to "bird flu" and H5N1 in the popular media refer to this strain.

<span class="mw-page-title-main">Genetically modified crops</span> Plants used in agriculture

Genetically modified crops are plants used in agriculture, the DNA of which has been modified using genetic engineering methods. Plant genomes can be engineered by physical methods or by use of Agrobacterium for the delivery of sequences hosted in T-DNA binary vectors. In most cases, the aim is to introduce a new trait to the plant which does not occur naturally in the species. Examples in food crops include resistance to certain pests, diseases, environmental conditions, reduction of spoilage, resistance to chemical treatments, or improving the nutrient profile of the crop. Examples in non-food crops include production of pharmaceutical agents, biofuels, and other industrially useful goods, as well as for bioremediation.

An emergent virus is a virus that is either newly appeared, notably increasing in incidence/geographic range or has the potential to increase in the near future. Emergent viruses are a leading cause of emerging infectious diseases and raise public health challenges globally, given their potential to cause outbreaks of disease which can lead to epidemics and pandemics. As well as causing disease, emergent viruses can also have severe economic implications. Recent examples include the SARS-related coronaviruses, which have caused the 2002–2004 outbreak of SARS (SARS-CoV-1) and the 2019–2023 pandemic of COVID-19 (SARS-CoV-2). Other examples include the human immunodeficiency virus, which causes HIV/AIDS; the viruses responsible for Ebola; the H5N1 influenza virus responsible for avian influenza; and H1N1/09, which caused the 2009 swine flu pandemic. Viral emergence in humans is often a consequence of zoonosis, which involves a cross-species jump of a viral disease into humans from other animals. As zoonotic viruses exist in animal reservoirs, they are much more difficult to eradicate and can therefore establish persistent infections in human populations.

<span class="mw-page-title-main">H5N1 genetic structure</span>

H5N1 genetic structure is the molecular structure of the H5N1 virus's RNA.

<span class="mw-page-title-main">Human mortality from H5N1</span>

Human mortality from H5N1 or the human fatality ratio from H5N1 or the case-fatality rate of H5N1 is the ratio of the number of confirmed human deaths resulting from confirmed cases of transmission and infection of H5N1 to the number of those confirmed cases. For example, if there are 100 confirmed cases of humans infected with H5N1 and 50 die, then there is a 50% human fatality ratio. H5N1 flu is a concern due to the global spread of H5N1 that constitutes a pandemic threat. The majority of H5N1 flu cases have been reported in southeast and east Asia. The case-fatality rate is central to pandemic planning. Estimates of case-fatality (CF) rates for past influenza pandemics have ranged from to 2-3% for the 1918 pandemic to about 0.6% for the 1957 pandemic to 0.2% for the 1968 pandemic. As of 2008, the official World Health Organization estimate for the case-fatality rate for the outbreak of H5N1 avian influenza was approximately 60%. Public health officials in Ontario, Canada argue that the true case-fatality rate could be lower, pointing to studies suggesting it could be 14-33%, and warned that it was unlikely to be as low as the 0.1–0.4% rate that was built into many pandemic plans.

<span class="mw-page-title-main">Influenza</span> Infectious disease

Influenza, commonly known as "the flu" or just "flu", is an infectious disease caused by influenza viruses. Symptoms range from mild to severe and often include fever, runny nose, sore throat, muscle pain, headache, coughing, and fatigue. These symptoms begin one to four days after exposure to the virus and last for about two to eight days. Diarrhea and vomiting can occur, particularly in children. Influenza may progress to pneumonia from the virus or a subsequent bacterial infection. Other complications include acute respiratory distress syndrome, meningitis, encephalitis, and worsening of pre-existing health problems such as asthma and cardiovascular disease.

<span class="mw-page-title-main">Genetically modified virus</span> Species of virus

A genetically modified virus is a virus that has been altered or generated using biotechnology methods, and remains capable of infection. Genetic modification involves the directed insertion, deletion, artificial synthesis or change of nucleotide bases in viral genomes. Genetically modified viruses are mostly generated by the insertion of foreign genes intro viral genomes for the purposes of biomedical, agricultural, bio-control, or technological objectives. The terms genetically modified virus and genetically engineered virus are used synonymously.

<span class="mw-page-title-main">Genome editing</span> Type of genetic engineering

Genome editing, or genome engineering, or gene editing, is a type of genetic engineering in which DNA is inserted, deleted, modified or replaced in the genome of a living organism. Unlike early genetic engineering techniques that randomly inserts genetic material into a host genome, genome editing targets the insertions to site-specific locations. The basic mechanism involved in genetic manipulations through programmable nucleases is the recognition of target genomic loci and binding of effector DNA-binding domain (DBD), double-strand breaks (DSBs) in target DNA by the restriction endonucleases, and the repair of DSBs through homology-directed recombination (HDR) or non-homologous end joining (NHEJ).

<span class="mw-page-title-main">Gene drive</span> Way to propagate genes throughout a population

A gene drive is a natural process and technology of genetic engineering that propagates a particular suite of genes throughout a population by altering the probability that a specific allele will be transmitted to offspring. Gene drives can arise through a variety of mechanisms. They have been proposed to provide an effective means of genetically modifying specific populations and entire species.

Horizontal Environmental Genetic Alteration Agents (HEGAAs) are any artificially developed agents that are engineered to edit the genome of eukaryotic species they infect when intentionally dispersed into the environment (outside of contained facilities such as laboratories or hospitals).

The hazards of synthetic biology include biosafety hazards to workers and the public, biosecurity hazards stemming from deliberate engineering of organisms to cause harm, and hazards to the environment. The biosafety hazards are similar to those for existing fields of biotechnology, mainly exposure to pathogens and toxic chemicals; however, novel synthetic organisms may have novel risks. For biosecurity, there is concern that synthetic or redesigned organisms could theoretically be used for bioterrorism. Potential biosecurity risks include recreating known pathogens from scratch, engineering existing pathogens to be more dangerous, and engineering microbes to produce harmful biochemicals. Lastly, environmental hazards include adverse effects on biodiversity and ecosystem services, including potential changes to land use resulting from agricultural use of synthetic organisms.

<span class="mw-page-title-main">CRISPR gene editing</span> Gene editing method

CRISPR gene editing is a genetic engineering technique in molecular biology by which the genomes of living organisms may be modified. It is based on a simplified version of the bacterial CRISPR-Cas9 antiviral defense system. By delivering the Cas9 nuclease complexed with a synthetic guide RNA (gRNA) into a cell, the cell's genome can be cut at a desired location, allowing existing genes to be removed and/or new ones added in vivo.

The eradication or abolition of suffering is the concept of using biotechnology to create a permanent absence of involuntary pain and suffering in all sentient beings.

Gain-of-function research is medical research that genetically alters an organism in a way that may enhance the biological functions of gene products. This may include an altered pathogenesis, transmissibility, or host range, i.e., the types of hosts that a microorganism can infect. This research is intended to reveal targets to better predict emerging infectious diseases and to develop vaccines and therapeutics. For example, influenza B can infect only humans and harbor seals. Introducing a mutation that would allow influenza B to infect rabbits in a controlled laboratory situation would be considered a gain-of-function experiment, as the virus did not previously have that function. That type of experiment could then help reveal which parts of the virus's genome correspond to the species that it can infect, enabling the creation of antiviral medicines which block this function.

References

  1. "Existential Risks: Analyzing Human Extinction Scenarios". Nickbostrom.com. Retrieved 3 April 2016.
  2. 1 2 3 Ali Noun; Christopher F. Chyba (2008). "Chapter 20: Biotechnology and biosecurity". In Bostrom, Nick; Cirkovic, Milan M. (eds.). Global Catastrophic Risks. Oxford University Press.
  3. Bostrom, Nick; Cirkovic, Milan M. (29 September 2011). Global Catastrophic Risks: Nick Bostrom, Milan M. Cirkovic: 9780199606504: Amazon.com: Books. OUP Oxford. ISBN   978-0199606504 via Amazon.com.
  4. Collinge, David B.; Jørgensen, Hans J.L.; Lund, Ole S.; Lyngkjær, Michael F. (1 July 2010). "Engineering Pathogen Resistance in Crop Plants: Current Trends and Future Prospects". Annual Review of Phytopathology. 48 (1): 269–291. doi:10.1146/annurev-phyto-073009-114430. ISSN   0066-4286. PMID   20687833.
  5. "FLI – Future of Life Institute". Futureoflife.org. Retrieved 3 April 2016.
  6. Sotos, John G. (15 January 2019). "Biotechnology and the lifetime of technical civilizations". International Journal of Astrobiology. 18 (5): 445–454. arXiv: 1709.01149 . Bibcode:2019IJAsB..18..445S. doi:10.1017/s1473550418000447. ISSN   1473-5504. S2CID   119090767.
  7. 1 2 3 Hug, Kristina (February 2008). "Genetically modified organisms: Do the benefits outweigh the risks?". Medicina. 44 (2): 87–99. doi: 10.3390/medicina44020012 . ISSN   1648-9144. PMID   18344661.
  8. Bawa, A. S.; Anilakumar, K. R. (19 December 2012). "Genetically modified foods: safety, risks and public concerns—a review". Journal of Food Science and Technology. 50 (6): 1035–1046. doi:10.1007/s13197-012-0899-1. ISSN   0022-1155. PMC   3791249 . PMID   24426015.
  9. Klümper, Wilhelm; Qaim, Matin (3 November 2014). "A Meta-Analysis of the Impacts of Genetically Modified Crops". PLOS ONE. 9 (11): e111629. Bibcode:2014PLoSO...9k1629K. doi: 10.1371/journal.pone.0111629 . PMC   4218791 . PMID   25365303.
  10. Raman, Ruchir (2 October 2017). "The impact of Genetically Modified (GM) crops in modern agriculture: A review". GM Crops & Food. 8 (4): 195–208. doi:10.1080/21645698.2017.1413522. PMC   5790416 . PMID   29235937.
  11. Brookes, Graham (31 December 2022). "Genetically Modified (GM) Crop Use 1996–2020: Environmental Impacts Associated with Pesticide Use Change". GM Crops & Food. 13 (1): 262–289. doi:10.1080/21645698.2022.2118497. PMC   9578716 . PMID   36226624.
  12. Zhang, Luoping; Rana, Iemaan; Shaffer, Rachel M.; Taioli, Emanuela; Sheppard, Lianne (July 2019). "Exposure to glyphosate-based herbicides and risk for non-Hodgkin lymphoma: A meta-analysis and supporting evidence". Mutation Research/Reviews in Mutation Research. 781: 186–206. doi:10.1016/j.mrrev.2019.02.001. PMC   6706269 . PMID   31342895.
  13. Weisenburger, Dennis D. (September 2021). "A Review and Update with Perspective of Evidence that the Herbicide Glyphosate (Roundup) is a Cause of Non-Hodgkin Lymphoma". Clinical Lymphoma, Myeloma & Leukemia. 21 (9): 621–630. doi: 10.1016/j.clml.2021.04.009 . ISSN   2152-2669. PMID   34052177. S2CID   235257521.
  14. Kloblentz, GD (2012). "From biodefence to biosecurity: the Obama administration's strategy for countering biological threats". International Affairs. 88 (1): 131–48. doi:10.1111/j.1468-2346.2012.01061.x. PMID   22400153. S2CID   22869150.
  15. Jackson, R; Ramshaw, I (January 2010). "The mousepox experience. An interview with Ronald Jackson and Ian Ramshaw on dual-use research. Interview by Michael J. Selgelid and Lorna Weir". EMBO Reports. 11 (1): 18–24. doi:10.1038/embor.2009.270. PMC   2816623 . PMID   20010799.
  16. Jackson, Ronald J.; Ramsay, Alistair J.; Christensen, Carina D.; Beaton, Sandra; Hall, Diana F.; Ramshaw, Ian A. (2001). "Expression of Mouse Interleukin-4 by a Recombinant Ectromelia Virus Suppresses Cytolytic Lymphocyte Responses and Overcomes Genetic Resistance to Mousepox". Journal of Virology. 75 (3): 1205–1210. doi:10.1128/jvi.75.3.1205-1210.2001. PMC   114026 . PMID   11152493.
  17. Sandberg, Anders (29 May 2014). "The five biggest threats to human existence". theconversation.com. Retrieved 13 July 2014.
  18. Imai, M; Watanabe, T; Hatta, M; Das, SC; Ozawa, M; Shinya, K; Zhong, G; Hanson, A; Katsura, H; Watanabe, S; Li, C; Kawakami, E; Yamada, S; Kiso, M; Suzuki, Y; Maher, EA; Neumann, G; Kawaoka, Y (2 May 2012). "Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets". Nature. 486 (7403): 420–8. Bibcode:2012Natur.486..420I. doi:10.1038/nature10831. PMC   3388103 . PMID   22722205.
  19. "The Risk from Super-Viruses – The European". Theeuropean-magazine.com. Retrieved 3 April 2016.
  20. Herfst, S; Schrauwen, EJ; Linster, M; Chutinimitkul, S; de Wit, E; Munster, VJ; Sorrell, EM; Bestebroer, TM; Burke, DF; Smith, DJ; Rimmelzwaan, GF; Osterhaus, AD; Fouchier, RA (22 June 2012). "Airborne transmission of influenza A/H5N1 virus between ferrets". Science. 336 (6088): 1534–41. Bibcode:2012Sci...336.1534H. doi:10.1126/science.1213362. PMC   4810786 . PMID   22723413.
  21. "Five Mutations Make H5N1 Airborne". The-scientist.com. Retrieved 3 April 2016.
  22. "Deliberating Over Danger". The Scientist. 1 April 2012. Retrieved 28 July 2016.
  23. Connor, Steve (20 December 2013). "'Untrue statements' anger over work to make H5N1 bird-flu virus MORE dangerous to humans". The Independent. Retrieved 28 July 2016.
  24. Lipsitch, M; Galvani, AP (May 2014). "Ethical alternatives to experiments with novel potential pandemic pathogens". PLOS Medicine. 11 (5): e1001646. doi: 10.1371/journal.pmed.1001646 . PMC   4028196 . PMID   24844931.
  25. "Q & A: When lab research threatens humanity". Harvard T.H. Chan. 15 September 2014. Retrieved 28 July 2016.
  26. Kaiser, Jocelyn; Malakoff, David (17 October 2014). "U.S. halts funding for new risky virus studies, calls for voluntary moratorium". Science. Retrieved 28 July 2016.
  27. Kaiser, Jocelyn (22 October 2014). "Researchers rail against moratorium on risky virus experiments". Science. Retrieved 28 July 2016.
  28. Kaiser, Jocelyn (27 May 2016). "U.S. advisers sign off on plan for reviewing risky virus studies". Science. Retrieved 28 July 2016.
  29. "International Gene Synthesis Consortium (IGSC) - Harmonized Screening Protocol - Gene Sequence & Customer Screening to Promote Biosecurity" (PDF). International Gene Synthesis Consortium. Archived from the original (PDF) on 19 August 2016. Retrieved 28 July 2016.
  30. "Scientist Call For Moratorium on Human Genome Editing: The Dangers Of Using CRISPR To Create 'Designer Babies' : LIFE : Tech Times". Techtimes.com. 6 December 2015. Retrieved 3 April 2016.
  31. ""Gene Drives" And CRISPR Could Revolutionize Ecosystem Management – Scientific American Blog Network". Blogs.scientificamerican.com. 17 July 2014. Retrieved 3 April 2016.
  32. Ledford, Heidi; Callaway, Ewen (23 November 2015). "'Gene drive' mosquitoes engineered to fight malaria – Nature News & Comment". Nature.com. doi: 10.1038/nature.2015.18858 . S2CID   181366771 . Retrieved 3 April 2016.
  33. Begley, Sharon (12 November 2015). "Why FBI and the Pentagon are afraid of gene drives". Stat . Retrieved 3 April 2016.