An anoxic event describes a period wherein large expanses of Earth's oceans were depleted of dissolved oxygen (O2), creating toxic, euxinic (anoxic and sulfidic) waters. [1] Although anoxic events have not happened for millions of years, the geologic record shows that they happened many times in the past. Anoxic events coincided with several mass extinctions and may have contributed to them. [2] These mass extinctions include some that geobiologists use as time markers in biostratigraphic dating. [3] On the other hand, there are widespread, various black-shale beds from the mid-Cretaceous which indicate anoxic events but are not associated with mass extinctions. [4] Many geologists believe oceanic anoxic events are strongly linked to the slowing of ocean circulation, climatic warming, and elevated levels of greenhouse gases. Researchers have proposed enhanced volcanism (the release of CO2) as the "central external trigger for euxinia." [5] [6]
Human activities in the Holocene epoch, such as the release of nutrients from farms and sewage, cause relatively small-scale dead zones around the world. British oceanologist and atmospheric scientist Andrew Watson says full-scale ocean anoxia would take "thousands of years to develop." [7] The idea that modern climate change could lead to such an event is also referred to as Kump's hypothesis. [8]
The concept of the oceanic anoxic event (OAE) was first proposed in 1976 by Seymour Schlanger (1927–1990) and geologist Hugh Jenkyns [9] and arose from discoveries made by the Deep Sea Drilling Project (DSDP) in the Pacific Ocean. The finding of black, carbon-rich shales in Cretaceous sediments that had accumulated on submarine volcanic plateaus (e.g. Shatsky Rise, Manihiki Plateau), coupled with their identical age to similar, cored deposits from the Atlantic Ocean and known outcrops in Europe—particularly in the geological record of the otherwise limestone-dominated Apennines [9] chain in Italy—led to the observation that these widespread, similarly distinct strata recorded very unusual, oxygen-depleted conditions in the world's oceans spanning several discrete periods of geological time.
Modern sedimentological investigations of these organic-rich sediments typically reveal the presence of fine laminations undisturbed by bottom-dwelling fauna, indicating anoxic conditions on the seafloor believed to coincide with a low-lying poisonous layer of hydrogen sulfide, H2S. [10] Furthermore, detailed organic geochemical studies have recently revealed the presence of molecules (so-called biomarkers) that derive from both purple sulfur bacteria [10] and green sulfur bacteria—organisms that required both light and free hydrogen sulfide (H2S), illustrating that anoxic conditions extended high into the photic upper-water column.
This is a recent understanding,[ when? ] the puzzle having been pieced slowly together in the last three decades. The handful of known and suspected anoxic events have been tied geologically to large-scale production of the world's oil reserves in worldwide bands of black shale in the geologic record.[ citation needed ]
Anoxic events with euxinic (anoxic, sulfidic) conditions have been linked to extreme episodes of volcanic outgassing. Volcanism contributed to the buildup of CO2 in the atmosphere and increased global temperatures, causing an accelerated hydrological cycle that introduced nutrients into the oceans (stimulating planktonic productivity). These processes potentially acted as a trigger for euxinia in restricted basins where water-column stratification could develop. Under anoxic to euxinic conditions, oceanic phosphate is not retained in sediment and could hence be released and recycled, aiding perpetual high productivity. [5]
Temperatures throughout the Jurassic and Cretaceous are generally thought to have been relatively warm, and consequently dissolved oxygen levels in the ocean were lower than today—making anoxia easier to achieve. However, more specific conditions are required to explain the short-period (less than a million years) oceanic anoxic events. Two hypotheses, and variations upon them, have proved most durable.[ citation needed ]
One hypothesis suggests that the anomalous accumulation of organic matter relates to its enhanced preservation under restricted and poorly oxygenated conditions, which themselves were a function of the particular geometry of the ocean basin: such a hypothesis, although readily applicable to the young and relatively narrow Cretaceous Atlantic (which could be likened to a large-scale Black Sea, only poorly connected to the World Ocean), fails to explain the occurrence of coeval black shales on open-ocean Pacific plateaus and shelf seas around the world. There are suggestions, again from the Atlantic, that a shift in oceanic circulation was responsible, where warm, salty waters at low latitudes became hypersaline and sank to form an intermediate layer, at 500 to 1,000 m (1,640 to 3,281 ft) depth, with a temperature of 20 to 25 °C (68 to 77 °F). [11]
The second hypothesis suggests that oceanic anoxic events record a major change in the fertility of the oceans that resulted in an increase in organic-walled plankton (including bacteria) at the expense of calcareous plankton such as coccoliths and foraminifera. Such an accelerated flux of organic matter would have expanded and intensified the oxygen minimum zone, further enhancing the amount of organic carbon entering the sedimentary record. Essentially this mechanism assumes a major increase in the availability of dissolved nutrients such as nitrate, phosphate and possibly iron to the phytoplankton population living in the illuminated layers of the oceans.
For such an increase to occur would have required an accelerated influx of land-derived nutrients coupled with vigorous upwelling, requiring major climate change on a global scale. Geochemical data from oxygen-isotope ratios in carbonate sediments and fossils, and magnesium/calcium ratios in fossils, indicate that all major oceanic anoxic events were associated with thermal maxima, making it likely that global weathering rates, and nutrient flux to the oceans, were increased during these intervals. Indeed, the reduced solubility of oxygen would lead to phosphate release, further nourishing the ocean and fuelling high productivity, hence a high oxygen demand—sustaining the event through a positive feedback. [12]
Another way to explain anoxic events is that the Earth releases a huge volume of carbon dioxide during an interval of intense volcanism; global temperatures rise due to the greenhouse effect; global weathering rates and fluvial nutrient flux increase; organic productivity in the oceans increases; organic-carbon burial in the oceans increases (OAE begins); carbon dioxide is drawn down due to both burial of organic matter and weathering of silicate rocks (inverse greenhouse effect); global temperatures fall, and the ocean–atmosphere system returns to equilibrium (OAE ends).
In this way, an oceanic anoxic event can be viewed as the Earth's response to the injection of excess carbon dioxide into the atmosphere and hydrosphere. One test of this notion is to look at the age of large igneous provinces (LIPs), the extrusion of which would presumably have been accompanied by rapid effusion of vast quantities of volcanogenic gases such as carbon dioxide. The age of three LIPs (Karoo-Ferrar flood basalt, Caribbean large igneous province, Ontong Java Plateau) correlates well with that of the major Jurassic (early Toarcian) and Cretaceous (early Aptian and Cenomanian–Turonian) oceanic anoxic events, indicating that a causal link is feasible.
Oceanic anoxic events most commonly occurred during periods of very warm climate characterized by high levels of carbon dioxide (CO2) and mean surface temperatures probably in excess of 25 °C (77 °F). The Quaternary levels, the current period, are just 13 °C (55 °F) in comparison. Such rises in carbon dioxide may have been in response to a great outgassing of the highly flammable natural gas (methane) that some call an "oceanic burp". [10] [13] Vast quantities of methane are normally locked into the Earth's crust on the continental plateaus in one of the many deposits consisting of compounds of methane hydrate, a solid precipitated combination of methane and water much like ice. Because the methane hydrates are unstable, except at cool temperatures and high (deep) pressures, scientists have observed smaller outgassing events due to tectonic events. Studies suggest the huge release of natural gas [10] could be a major climatological trigger, methane itself being a greenhouse gas many times more powerful than carbon dioxide. However, anoxia was also rife during the Hirnantian (late Ordovician) ice age.[ citation needed ]
Oceanic anoxic events have been recognized primarily from the already warm Cretaceous and Jurassic Periods, when numerous examples have been documented, [14] [15] but earlier examples have been suggested to have occurred in the late Triassic, Permian, Devonian (Kellwasser event), Ordovician and Cambrian.
The Paleocene–Eocene Thermal Maximum (PETM), which was characterized by a global rise in temperature and deposition of organic-rich shales in some shelf seas, shows many similarities to oceanic anoxic events.
Typically, oceanic anoxic events lasted for less than a million years, before a full recovery.
Oceanic anoxic events have had many important consequences. It is believed that they have been responsible for mass extinctions of marine organisms both in the Paleozoic and Mesozoic. [12] [16] [17] The early Toarcian and Cenomanian-Turonian anoxic events correlate with the Toarcian and Cenomanian-Turonian extinction events of mostly marine life forms. Apart from possible atmospheric effects, many deeper-dwelling marine organisms could not adapt to an ocean where oxygen penetrated only the surface layers.[ citation needed ]
An economically significant consequence of oceanic anoxic events is the fact that the prevailing conditions in so many Mesozoic oceans has helped produce most of the world's petroleum and natural gas reserves. During an oceanic anoxic event, the accumulation and preservation of organic matter was much greater than normal, allowing the generation of potential petroleum source rocks in many environments across the globe. Consequently, some 70 percent of oil source rocks are Mesozoic in age, and another 15 percent date from the warm Paleogene: only rarely in colder periods were conditions favorable for the production of source rocks on anything other than a local scale.
A model put forward by Lee Kump, Alexander Pavlov and Michael Arthur in 2005 suggests that oceanic anoxic events may have been characterized by upwelling of water rich in highly toxic hydrogen sulfide gas, which was then released into the atmosphere. This phenomenon would probably have poisoned plants and animals and caused mass extinctions. Furthermore, it has been proposed that the hydrogen sulfide rose to the upper atmosphere and attacked the ozone layer, which normally blocks the deadly ultraviolet radiation of the Sun. The increased UV radiation caused by this ozone depletion would have amplified the destruction of plant and animal life. Fossil spores from strata recording the Permian–Triassic extinction event show deformities consistent with UV radiation. This evidence, combined with fossil biomarkers of green sulfur bacteria, indicates that this process could have played a role in that mass extinction event, and possibly other extinction events. The trigger for these mass extinctions appears to be a warming of the ocean caused by a rise of carbon dioxide levels to about 1000 parts per million. [18]
Reduced oxygen levels are expected to lead to increased seawater concentrations of redox-sensitive metals. The reductive dissolution of iron–manganese oxyhydroxides in seafloor sediments under low-oxygen conditions would release those metals and associated trace metals. Sulfate reduction in such sediments could release other metals such as barium. When heavy-metal-rich anoxic deep water entered continental shelves and encountered increased O2 levels, precipitation of some of the metals, as well as poisoning of the local biota, would have occurred. In the late Silurian mid-Pridoli event, increases are seen in the Fe, Cu, As, Al, Pb, Ba, Mo and Mn levels in shallow-water sediment and microplankton; this is associated with a marked increase in the malformation rate in chitinozoans and other microplankton types, likely due to metal toxicity. [19] Similar metal enrichment has been reported in sediments from the mid-Silurian Ireviken event. [20]
Sulfidic (or euxinic) conditions, which exist today in many water bodies from ponds to various land-surrounded mediterranean seas [21] such as the Black Sea, were particularly prevalent in the Cretaceous Atlantic but also characterised other parts of the world ocean. In an ice-free sea of these supposed super-greenhouse worlds, oceanic waters were as much as 200 metres (660 ft) higher, in some eras. During the timespans in question, the continental plates are believed to have been well separated, and the mountains as they are known today were (mostly) future tectonic events—meaning the overall landscapes were generally much lower— and even the half super-greenhouse climates would have been eras of highly expedited water erosion [10] carrying massive amounts of nutrients into the world oceans fuelling an overall explosive population of microorganisms and their predator species in the oxygenated upper layers.
Detailed stratigraphic studies of Cretaceous black shales from many parts of the world have indicated that two oceanic anoxic events (OAEs) were particularly significant in terms of their impact on the chemistry of the oceans, one in the early Aptian (~120 Ma), sometimes called the Selli Event (or OAE 1a) [22] after the Italian geologist Raimondo Selli (1916–1983), and another at the Cenomanian–Turonian boundary (~93 Ma), also called the Bonarelli Event (or OAE2) [22] after the Italian geologist Guido Bonarelli (1871–1951). [23] OAE1a lasted for ~1.0 to 1.3 Myr. [24] The duration of OAE2 is estimated to be ~820 kyr based on a high-resolution study of the significantly expanded OAE2 interval in southern Tibet, China. [25]
More minor oceanic anoxic events have been proposed for other intervals in the Cretaceous (in the Valanginian, Hauterivian, Albian and Coniacian–Santonian stages), [26] [27] but their sedimentary record, as represented by organic-rich black shales, appears more parochial, being dominantly represented in the Atlantic and neighbouring areas, and some researchers relate them to particular local conditions rather than being forced by global change.
The only oceanic anoxic event documented from the Jurassic took place during the early Toarcian (~183 Ma). [28] [14] [15] Since no DSDP (Deep Sea Drilling Project) or ODP (Ocean Drilling Program) cores have recovered black shales of this age—there being little or no Toarcian ocean crust remaining—the samples of black shale primarily come from outcrops on land. These outcrops, together with material from some commercial oil wells, are found on all major continents [28] and this event seems similar in kind to the two major Cretaceous examples.
The Permian–Triassic extinction event, triggered by runaway CO2 [6] from the Siberian Traps, was marked by ocean deoxygenation.
The boundary between the Ordovician and Silurian periods is marked by repetitive periods of anoxia, interspersed with normal, oxic conditions. In addition, anoxic periods are found during the Silurian. These anoxic periods occurred at a time of low global temperatures (although CO2 levels were high), in the midst of a glaciation. [29]
Jeppsson (1990) proposes a mechanism whereby the temperature of polar waters determines the site of formation of downwelling water. [30] If the high latitude waters are below 5 °C (41 °F), they will be dense enough to sink; as they are cool, oxygen is highly soluble in their waters, and the deep ocean will be oxygenated. If high latitude waters are warmer than 5 °C (41 °F), their density is too low for them to sink below the cooler deep waters. Therefore, thermohaline circulation can only be driven by salt-increased density, which tends to form in warm waters where evaporation is high. This warm water can dissolve less oxygen, and is produced in smaller quantities, producing a sluggish circulation with little deep water oxygen. [30] The effect of this warm water propagates through the ocean, and reduces the amount of CO2 that the oceans can hold in solution, which makes the oceans release large quantities of CO2 into the atmosphere in a geologically short time (tens or thousands of years). [31] The warm waters also initiate the release of clathrates, which further increases atmospheric temperature and basin anoxia. [31] Similar positive feedbacks operate during cold-pole episodes, amplifying their cooling effects.
The periods with cold poles are termed "P-episodes" (short for primo [31] ), and are characterised by bioturbated deep oceans, a humid equator and higher weathering rates, and terminated by extinction events—for example, the Ireviken and Lau events. The inverse is true for the warmer, oxic "S-episodes" (secundo), where deep ocean sediments are typically graptolitic black shales. [30] A typical cycle of secundo-primo episodes and ensuing event typically lasts around 3 Ma. [31]
The duration of events is so long compared to their onset because the positive feedbacks must be overwhelmed. Carbon content in the ocean-atmosphere system is affected by changes in weathering rates, which in turn is dominantly controlled by rainfall. Because this is inversely related to temperature in Silurian times, carbon is gradually drawn down during warm (high CO2) S-episodes, while the reverse is true during P-episodes. On top of this gradual trend is overprinted the signal of Milankovic cycles, which ultimately trigger the switch between P- and S- episodes. [31]
These events become longer during the Devonian; the enlarging land plant biota probably acted as a large buffer to carbon dioxide concentrations. [31]
The end-Ordovician Hirnantian event may alternatively be a result of algal blooms, caused by sudden supply of nutrients through wind-driven upwelling or an influx of nutrient-rich meltwater from melting glaciers, which by virtue of its fresh nature would also slow down oceanic circulation. [32]
It has been thought that through most of Earth's history, oceans were largely oxygen-deficient. During the Archean, euxinia was largely absent because of low availability of sulfate in the oceans, [5] but during the Proterozoic, it would become more common.
Several anoxic events are known from the late Neoproterozoic, including one from the early Nama assemblage possibly coinciding with the first pulse of the end-Ediacaran extinction. [33] [34]
The Cambrian is the first geological period of the Paleozoic Era, and the Phanerozoic Eon. The Cambrian lasted 53.4 million years from the end of the preceding Ediacaran period 538.8 Ma to the beginning of the Ordovician Period 485.4 Ma.
An extinction event is a widespread and rapid decrease in the biodiversity on Earth. Such an event is identified by a sharp fall in the diversity and abundance of multicellular organisms. It occurs when the rate of extinction increases with respect to the background extinction rate and the rate of speciation. Estimates of the number of major mass extinctions in the last 540 million years range from as few as five to more than twenty. These differences stem from disagreement as to what constitutes a "major" extinction event, and the data chosen to measure past diversity.
The Late Ordovician mass extinction (LOME), sometimes known as the end-Ordovician mass extinction or the Ordovician-Silurian extinction, is the first of the "big five" major mass extinction events in Earth's history, occurring roughly 445 million years ago (Ma). It is often considered to be the second-largest known extinction event just behind the end-Permian mass extinction, in terms of the percentage of genera that became extinct. Extinction was global during this interval, eliminating 49–60% of marine genera and nearly 85% of marine species. Under most tabulations, only the Permian-Triassic mass extinction exceeds the Late Ordovician mass extinction in biodiversity loss. The extinction event abruptly affected all major taxonomic groups and caused the disappearance of one third of all brachiopod and bryozoan families, as well as numerous groups of conodonts, trilobites, echinoderms, corals, bivalves, and graptolites. Despite its taxonomic severity, the Late Ordovician mass extinction did not produce major changes to ecosystem structures compared to other mass extinctions, nor did it lead to any particular morphological innovations. Diversity gradually recovered to pre-extinction levels over the first 5 million years of the Silurian period.
The Late Devonian extinction consisted of several extinction events in the Late Devonian Epoch, which collectively represent one of the five largest mass extinction events in the history of life on Earth. The term primarily refers to a major extinction, the Kellwasser event, also known as the Frasnian-Famennian extinction, which occurred around 372 million years ago, at the boundary between the Frasnian age and the Famennian age, the last age in the Devonian Period. Overall, 19% of all families and 50% of all genera became extinct. A second mass extinction called the Hangenberg event, also known as the end-Devonian extinction, occurred 359 million years ago, bringing an end to the Famennian and Devonian, as the world transitioned into the Carboniferous Period.
The important sulfur cycle is a biogeochemical cycle in which the sulfur moves between rocks, waterways and living systems. It is important in geology as it affects many minerals and in life because sulfur is an essential element (CHNOPS), being a constituent of many proteins and cofactors, and sulfur compounds can be used as oxidants or reductants in microbial respiration. The global sulfur cycle involves the transformations of sulfur species through different oxidation states, which play an important role in both geological and biological processes. Steps of the sulfur cycle are:
The Hirnantian glaciation, also known as the Andean-Saharan glaciation, Early Paleozoic Ice Age (EPIA), the Early Paleozoic Icehouse, the Late Ordovician glaciation, or the end-Ordovician glaciation, occurred during the Paleozoic from approximately 460 Ma to around 420 Ma, during the Late Ordovician and the Silurian period. The major glaciation during this period was formerly thought only to consist of the Hirnantian glaciation itself but has now been recognized as a longer, more gradual event, which began as early as the Darriwilian, and possibly even the Floian. Evidence of this glaciation can be seen in places such as Arabia, North Africa, South Africa, Brazil, Peru, Bolivia, Chile, Argentina, and Wyoming. More evidence derived from isotopic data is that during the Late Ordovician, tropical ocean temperatures were about 5 °C cooler than present day; this would have been a major factor that aided in the glaciation process.
The Great Oxidation Event (GOE) or Great Oxygenation Event, also called the Oxygen Catastrophe, Oxygen Revolution, Oxygen Crisis or Oxygen Holocaust, was a time interval during the Earth's Paleoproterozoic era when the Earth's atmosphere and shallow seas first experienced a rise in the concentration of free oxygen. This began approximately 2.460–2.426 Ga (billion years) ago during the Siderian period and ended approximately 2.060 Ga ago during the Rhyacian. Geological, isotopic and chemical evidence suggests that biologically produced molecular oxygen (dioxygen or O2) started to accumulate in the Archean prebiotic atmosphere due to microbial photosynthesis, and eventually changed it from a weakly reducing atmosphere practically devoid of oxygen into an oxidizing one containing abundant free oxygen, with oxygen levels being as high as 10% of modern atmospheric level by the end of the GOE.
Anoxic waters are areas of sea water, fresh water, or groundwater that are depleted of dissolved oxygen. The US Geological Survey defines anoxic groundwater as those with dissolved oxygen concentration of less than 0.5 milligrams per litre. Anoxic waters can be contrasted with hypoxic waters, which are low in dissolved oxygen. This condition is generally found in areas that have restricted water exchange.
The clathrate gun hypothesis is a proposed explanation for the periods of rapid warming during the Quaternary. The hypothesis is that changes in fluxes in upper intermediate waters in the ocean caused temperature fluctuations that alternately accumulated and occasionally released methane clathrate on upper continental slopes. This would have had an immediate impact on the global temperature, as methane is a much more powerful greenhouse gas than carbon dioxide. Despite its atmospheric lifetime of around 12 years, methane's global warming potential is 72 times greater than that of carbon dioxide over 20 years, and 25 times over 100 years. It is further proposed that these warming events caused the Bond Cycles and individual interstadial events, such as the Dansgaard–Oeschger interstadials.
The Medea hypothesis is a term coined by paleontologist Peter Ward for a hypothesis that contests the Gaian hypothesis and proposes that multicellular life, understood as a superorganism, may be self-destructive or suicidal. The metaphor refers to the mythological Medea, who kills her own children.
Although oxygen is the most abundant element in Earth's crust, due to its high reactivity it mostly exists in compound (oxide) forms such as water, carbon dioxide, iron oxides and silicates. Before photosynthesis evolved, Earth's atmosphere had no free diatomic elemental oxygen (O2). Small quantities of oxygen were released by geological and biological processes, but did not build up in the reducing atmosphere due to reactions with then-abundant reducing gases such as atmospheric methane and hydrogen sulfide and surface reductants such as ferrous iron.
The Cretaceous Thermal Maximum (CTM), also known as Cretaceous Thermal Optimum, was a period of climatic warming that reached its peak approximately 90 million years ago (90 Ma) during the Turonian age of the Late Cretaceous epoch. The CTM is notable for its dramatic increase in global temperatures characterized by high carbon dioxide levels.
The Cenomanian-Turonian boundary event, also known as the Cenomanian-Turonian extinction, Cenomanian-Turonian Oceanic Anoxic Event, and referred to also as the Bonarelli Event or Level, was an anoxic extinction event in the Cretaceous period. The Cenomanian-Turonian oceanic anoxic event is considered to be the most recent truly global oceanic anoxic event in Earth's geologic history. There was a large carbon cycle disturbance during this time period, signified by a large positive carbon isotope excursion. However, apart from the carbon cycle disturbance, there were also large disturbances in the ocean's nitrogen, oxygen, phosphorus, sulphur, and iron cycles.
Three Western Interior Seaway anoxic events occurred during the Cretaceous in the shallow inland seaway that divided North America in two island continents, Appalachia and Laramidia. During these anoxic events much of the water column was depleted in dissolved oxygen. While anoxic events impact the world's oceans, Western Interior Seaway anoxic events exhibit a unique paleoenvironment compared to other basins. The notable Cretaceous anoxic events in the Western Interior Seaway mark the boundaries at the Aptian-Albian, Cenomanian-Turonian, and Coniacian-Santonian stages, and are identified as Oceanic Anoxic Events I, II, and III respectively. The episodes of anoxia came about at times when very high sea levels coincided with the nearby Sevier orogeny that affected Laramidia to the west and Caribbean large igneous province to the south, which delivered nutrients and oxygen-adsorbing compounds into the water column.
Euxinia or euxinic conditions occur when water is both anoxic and sulfidic. This means that there is no oxygen (O2) and a raised level of free hydrogen sulfide (H2S). Euxinic bodies of water are frequently strongly stratified; have an oxic, highly productive, thin surface layer; and have anoxic, sulfidic bottom water. The word "euxinia" is derived from the Greek name for the Black Sea (Εὔξεινος Πόντος (Euxeinos Pontos)) which translates to "hospitable sea". Euxinic deep water is a key component of the Canfield ocean, a model of oceans during part of the Proterozoic eon (a part specifically known as the Boring Billion) proposed by Donald Canfield, an American geologist, in 1998. There is still debate within the scientific community on both the duration and frequency of euxinic conditions in the ancient oceans. Euxinia is relatively rare in modern bodies of water, but does still happen in places like the Black Sea and certain fjords.
The Toarcian extinction event, also called the Pliensbachian-Toarcian extinction event, the Early Toarcian mass extinction, the Early Toarcian palaeoenvironmental crisis, or the Jenkyns Event, was an extinction event that occurred during the early part of the Toarcian age, approximately 183 million years ago, during the Early Jurassic. The extinction event had two main pulses, the first being the Pliensbachian-Toarcian boundary event (PTo-E). The second, larger pulse, the Toarcian Oceanic Anoxic Event (TOAE), was a global oceanic anoxic event, representing possibly the most extreme case of widespread ocean deoxygenation in the entire Phanerozoic eon. In addition to the PTo-E and TOAE, there were multiple other, smaller extinction pulses within this span of time.
The Selli Event, also known as OAE1a, was an oceanic anoxic event (OAE) of global scale that occurred during the Aptian stage of the Early Cretaceous, about 120.5 million years ago (Ma). The OAE is associated with large igneous province volcanism and an extinction event of marine organisms driven by global warming, ocean acidification, and anoxia.
The Breistroffer Event (OAE1d) was an oceanic anoxic event (OAE) that occurred during the middle Cretaceous period, specifically in the latest Albian, around 101 million years ago (Ma).
The Paquier Event (OAE1b) was an oceanic anoxic event (OAE) that occurred around 111 million years ago (Ma), in the Albian geologic stage, during a climatic interval of Earth's history known as the Middle Cretaceous Hothouse (MKH).
The Amadeus Event (OAE1c) was an oceanic anoxic event (OAE). It occurred 106 million years ago (Ma), during the Albian age of the Cretaceous period, in a climatic interval known as the Middle Cretaceous Hothouse (MKH).
[At plus] Six degrees [i.e rise of 6 degrees Celsius] * At the end of the Permian period, 251 million years ago, up to 95% of species became extinct as a result of a super-greenhouse event, resulting in a temperature rise of six degrees, perhaps because of an even bigger methane belch that happened 200 million years later in the Eocene and also: *Five degrees of warming occurred during the Paleocene-Eocene Thermal Maximum, 55 million years ago: during that event, breadfruit trees grew on the coast of Greenland, while the Arctic Ocean saw water temperatures of 20C within 200km of the North Pole itself. There was no ice at either pole; forests were probably growing in central Antarctica. * The Eocene greenhouse event was probably caused by methane hydrates (an ice-like combination of methane and water) bursting into the atmosphere from the seabed in an immense "ocean burp", sparking a surge in global temperatures. Today vast amounts of these same methane hydrates still sit on subsea continental shelves. * The early Eocene greenhouse took at least 10,000 years to come about. Today we could accomplish the same feat in less than a century. (emphasis, links added)
With extreme weather continuing to bite – hurricanes may increase in power by half a category above today's top-level Category Five – world food supplies will be critically endangered. :And: The Eocene greenhouse event fascinates scientists not just because of its effects, which also saw a major mass-extinction in the seas, but also because of its likely cause: methane hydrates. This unlikely substance, a sort of ice-like combination of methane and water that is only stable at low temperatures and high pressure, may have burst into the atmosphere from the seabed in an immense "ocean burp", sparking a surge in global temperatures (methane is even more powerful as a greenhouse gas than carbon dioxide). Today vast amounts of these same methane hydrates still sit on sub-sea continental shelves. As the oceans warm, they could be released once more in a terrifying echo of that methane belch of 55 million years ago.
{{cite journal}}
: CS1 maint: DOI inactive as of November 2024 (link){{cite journal}}
: CS1 maint: DOI inactive as of December 2024 (link)