Volcanism

Last updated
Plate tectonics map with volcano locations indicated with red circles Plate tectonics map.gif
Plate tectonics map with volcano locations indicated with red circles

Volcanism is the phenomenon of eruption of molten rock (magma) onto the surface of the Earth or a solid-surface planet or moon, where lava, pyroclastics and volcanic gases erupt through a break in the surface called a vent. [1] It includes all phenomena resulting from and causing magma within the crust or mantle of the body, to rise through the crust and form volcanic rocks on the surface.

Magma Mixture of molten or semi-molten rock, volatiles and solids that is found beneath the surface of the Earth

Magma is the molten or semi-molten natural material from which all igneous rocks are formed. Magma is found beneath the surface of the Earth, and evidence of magmatism has also been discovered on other terrestrial planets and some natural satellites. Besides molten rock, magma may also contain suspended crystals and gas bubbles. Magma is produced by melting of the mantle and/or the crust at various tectonic settings, including subduction zones, continental rift zones, mid-ocean ridges and hotspots. Mantle and crustal melts migrate upwards through the crust where they are thought to be stored in magma chambers or trans-crustal crystal-rich mush zones. During their storage in the crust, magma compositions may be modified by fractional crystallization, contamination with crustal melts, magma mixing, and degassing. Following their ascent through the crust, magmas may feed a volcano or solidify underground to form an intrusion. While the study of magma has historically relied on observing magma in the form of lava flows, magma has been encountered in situ three times during geothermal drilling projects—twice in Iceland, and once in Hawaii.

Lava Molten rock expelled by a volcano during an eruption

Lava is molten rock generated by geothermal energy and expelled through fractures in planetary crust or in an eruption, usually at temperatures from 700 to 1,200 °C. The structures resulting from subsequent solidification and cooling are also sometimes described as lava. The molten rock is formed in the interior of some planets, including Earth, and some of their satellites, though such material located below the crust is referred to by other terms.

Volcanic gas

Volcanic gases are gases given off by active volcanoes. These include gases trapped in cavities (vesicles) in volcanic rocks, dissolved or dissociated gases in magma and lava, or gases emanating directly from lava or indirectly through ground water heated by volcanic action.

Contents

Volcanic processes

Non-viscous lava during an effusive eruption of Kilauea A204, Hawaii Volcanoes National Park, USA, new lava flow, 2007.JPG
Non-viscous lava during an effusive eruption of Kīlauea

Magma from the mantle or lower crust rises through its crust towards the surface. If magma reaches the surface, its behavior depends on the viscosity of the molten constituent rock. Viscous (thick) magma produces volcanoes characterised by explosive eruptions, while non-viscous (runny) magma produce volcanoes characterised by effusive eruptions pouring large amounts of lava onto the surface.

Viscosity physical property of a fluid

The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water.

Rock (geology) A naturally occurring solid aggregate of one or more minerals or mineraloids

Rock is a solid inorganic substance. It is defined by the minerals included, its chemical composition and the way in which it is formed. Rocks are usually grouped into four different main groups: igneous rocks, metamorphic rocks, sedimentary rocks and meteorites. The rocks are part of the bedrock that builds up the Earth's crust.

Explosive eruption type of volcanic eruption

In volcanology, an explosive eruption is a volcanic eruption of the most violent type. A notable example is the 1980 eruption of Mount St. Helens. Such eruptions result when sufficient gas has dissolved under pressure within a viscous magma such that expelled lava violently froths into volcanic ash when pressure is suddenly lowered at the vent. Sometimes a lava plug will block the conduit to the summit, and when this occurs, eruptions are more violent. Explosive eruptions can send rocks, dust, gas and pyroclastic material up to 20 km into the atmosphere at a rate of up to 100,000 tonnes per second, traveling at several hundred meters per second. This cloud may then collapse, creating a pyroclastic flow of hot volcanic matter.

In some cases, rising magma can cool and solidify without reaching the surface. Instead, the cooled and solidified igneous mass crystallises within the crust to form an igneous intrusion. As magma cools the chemicals in the crystals formed are effectively removed from the main mix of the magma (by a process known as fractional crystallization), so the chemical content of the remaining magma evolves as it solidifies slowly. Fresh unevolved magma injections can remobilise more evolved magmas, allowing eruptions from more viscous magmas.

Fractional crystallization (geology) One of the main processes of magmatic differentiation

Fractional crystallization, or crystal fractionation, is one of the most important geochemical and physical processes operating within the Earth's crust and mantle. It is important in the formation of igneous rocks because it is one of the main processes of magmatic differentiation. Fractional crystallization is also important in the formation of sedimentary evaporite rocks.

Driving forces of volcanism

Three types of plate boundary. Tectonic plate boundaries.png
Three types of plate boundary.

Movement of molten rock in the mantle, caused by thermal convection currents, coupled with gravitational effects of changes on the earth's surface (erosion, deposition, even asteroid impact and patterns of post-glacial rebound) drive plate tectonic motion and ultimately volcanism.

Convection movement of groups of molecules within fluids such as liquids or gases, and within rheids; takes place through advection, diffusion or both

Convection is the heat transfer due to the bulk movement of molecules within fluids such as gases and liquids, including molten rock (rheid). Convection includes sub-mechanisms of advection, and diffusion.

Isostasy is the state of gravitational equilibrium between Earth's crust and mantle such that the crust "floats" at an elevation that depends on its thickness and density.

Erosion Processes which remove soil and rock from one place on the Earths crust, then transport it to another location where it is deposited

In earth science, erosion is the action of surface processes that removes soil, rock, or dissolved material from one location on the Earth's crust, and then transports it to another location. This natural process is caused by the dynamic activity of erosive agents, that is, water, ice (glaciers), snow, air (wind), plants, animals, and humans. In accordance with these agents, erosion is sometimes divided into water erosion, glacial erosion, snow erosion, wind (aeolic) erosion, zoogenic erosion, and anthropogenic erosion. The particulate breakdown of rock or soil into clastic sediment is referred to as physical or mechanical erosion; this contrasts with chemical erosion, where soil or rock material is removed from an area by its dissolving into a solvent, followed by the flow away of that solution. Eroded sediment or solutes may be transported just a few millimetres, or for thousands of kilometres.

Aspects of volcanism

Volcanoes

Cross-section through a stratovolcano (vertical scale is exaggerated):
Large magma chamber
Bedrock
Conduit (pipe)
Base
Sill
Dike
Layers of ash emitted by the volcano
Flank
Layers of lava emitted by the volcano
Throat
Parasitic cone
Lava flow
Vent
Crater
Ash cloud Volcano scheme.svg
Cross-section through a stratovolcano (vertical scale is exaggerated):
  1. Large magma chamber
  2. Bedrock
  3. Conduit (pipe)
  4. Base
  5. Sill
  6. Dike
  7. Layers of ash emitted by the volcano
  8. Flank
  9. Layers of lava emitted by the volcano
  10. Throat
  11. Parasitic cone
  12. Lava flow
  13. Vent
  14. Crater
  15. Ash cloud

Volcanoes are places where magma reaches the earth's surface. The type of volcano depends on the location of the eruption and the consistency of the magma.

Intrusions

Types of Intrusion:
Laccolith
small Dike
Pluton/Batholith
Dike
Sill
Pipe/Volcanic neck
Lopolith Intrusion types.svg
Types of Intrusion:

These are formed where magma pushes between existing rock, intrusions can be in the form of batholiths, dikes, sills and layered intrusions.

Batholith

A batholith is a large mass of intrusive igneous rock, larger than 100 square kilometres (40 sq mi) in area, that forms from cooled magma deep in the Earth's crust. Batholiths are almost always made mostly of felsic or intermediate rock types, such as granite, quartz monzonite, or diorite.

Dike (geology) A sheet of rock that is formed in a fracture in a pre-existing rock body

A dike or dyke, in geological usage, is a sheet of rock that is formed in a fracture in a pre-existing rock body. Dikes can be either magmatic or sedimentary in origin. Magmatic dikes form when magma flows into a crack then solidifies as a sheet intrusion, either cutting across layers of rock or through a contiguous mass of rock. Clastic dikes are formed when sediment fills a pre-existing crack.

Sill (geology) geology term for a type of rock formation

In geology, a sill is a tabular sheet intrusion that has intruded between older layers of sedimentary rock, beds of volcanic lava or tuff, or along the direction of foliation in metamorphic rock. A sill is a concordant intrusive sheet, meaning that a sill does not cut across preexisting rock beds. Stacking of sills builds a sill complex and a large magma chamber at high magma flux. In contrast, a dike is a discordant intrusive sheet, which does cut across older rocks. Sills are fed by dikes, except in unusual locations where they form in nearly vertical beds attached directly to a magma source. The rocks must be brittle and fracture to create the planes along which the magma intrudes the parent rock bodies, whether this occurs along preexisting planes between sedimentary or volcanic beds or weakened planes related to foliation in metamorphic rock. These planes or weakened areas allow the intrusion of a thin sheet-like body of magma paralleling the existing bedding planes, concordant fracture zone, or foliations.

Earthquakes

Earthquakes are generally associated with plate tectonic activity, but some earthquakes are generated as a result of volcanic activity [2] (though that itself is ultimately driven by the same forces).

Hydrothermal vents

These are formed where water interacts with volcanism. [3] These include geysers, fumaroles, hotsprings and mudpots, they are often used as a source of geothermal energy. [3]

Volcanic winter

The amount of gas and ash emitted by volcanic eruptions has a significant effect on the Earth's climate. Large eruptions correlate well with some significant climate change events. [4]

Forming rocks

When magma cools it solidifies and forms rocks. The type of rock formed depends on the chemical composition of the magma and how rapidly it cools. Magma that reaches the surface to become lava cools rapidly, resulting in rocks with small crystals such as basalt. Some of this magma may cool extremely rapidly and will form volcanic glass (rocks without crystals) such as obsidian. Magma trapped below ground in thin intrusions cools more slowly than exposed magma and produces rocks with medium-sized crystals. Magma that remains trapped in large quantities below ground cools most slowly resulting in rocks with larger crystals, such as granite and gabbro.

Existing rocks that come into contact with magma may be melted and assimilated into the magma. Other rocks adjacent to the magma may be altered by contact metamorphism or metasomatism as they are affected by the heat and escaping or externally-circulating hydrothermal fluids.

Volcanism on other bodies

Volcanism is not confined only to Earth, but is thought to be found on any body having a solid crust and fluid mantle. Evidence of volcanism should still be found on any body that has had volcanism at some point in its history. Volcanoes have indeed been clearly observed on other bodies in the Solar System – on some, such as Mars, in the shape of mountains that are unmistakably old volcanoes (most notably Olympus Mons), but on Io actual ongoing eruptions have been observed. It can be surmised that volcanism exists on planets and moons of this type in other planetary systems as well. In 2014, scientists found 70 lava flows which formed on the Moon in the last 100 million years. [5]

The internal structure of the inner planets. Terrestial Planets internal en.jpg
The internal structure of the inner planets.

See also

Related Research Articles

Volcano A rupture in the crust of a planetary-mass object that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface

A volcano is a rupture in the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface.

Basalt A magnesium- and iron-rich extrusive igneous rock

Basalt is a mafic extrusive igneous rock formed from the rapid cooling of magnesium-rich and iron-rich lava exposed at or very near the surface of a terrestrial planet or a moon. More than 90% of all volcanic rock on Earth is basalt. Basalt lava has a low viscosity, due to its low silica content, resulting in rapid lava flows that can spread over great areas before cooling and solidification. Flood basalt describes the formation in a series of lava basalt flows.

Stratovolcano Tall, conical volcano built up by many layers of hardened lava and other ejecta

A stratovolcano, also known as a composite volcano, is a conical volcano built up by many layers (strata) of hardened lava, tephra, pumice and ash. Unlike shield volcanoes, stratovolcanoes are characterized by a steep profile with a summit crater and periodic intervals of explosive eruptions and effusive eruptions, although some have collapsed summit craters called calderas. The lava flowing from stratovolcanoes typically cools and hardens before spreading far, due to high viscosity. The magma forming this lava is often felsic, having high-to-intermediate levels of silica, with lesser amounts of less-viscous mafic magma. Extensive felsic lava flows are uncommon, but have travelled as far as 15 km (9.3 mi).

Volcanic rock rocks composing or associated with volcanoes, volcanic activity or volcanism

Volcanic rock is a rock formed from magma erupted from a volcano. In other words, it differs from other igneous rock by being of volcanic origin. Like all rock types, the concept of volcanic rock is artificial, and in nature volcanic rocks grade into hypabyssal and metamorphic rocks and constitute an important element of some sediments and sedimentary rocks. For these reasons, in geology, volcanics and shallow hypabyssal rocks are not always treated as distinct. In the context of Precambrian shield geology, the term "volcanic" is often applied to what are strictly metavolcanic rocks. Volcanic rocks and sediment that form from magma erupted into the air are called "volcaniclastics," and these are technically sedimentary rocks.

Yellowstone Caldera volcanic caldera in Yellowstone National Park in the United States

The Yellowstone Caldera is a volcanic caldera and supervolcano in Yellowstone National Park in the Western United States, sometimes referred to as the Yellowstone Supervolcano. The caldera and most of the park are located in the northwest corner of Wyoming. The major features of the caldera measure about 34 by 45 miles.

Magma chamber Accumulation of molten rock within the Earths crust

A magma chamber is a large pool of liquid rock beneath the surface of the Earth. The molten rock, or magma, in such a chamber is under great pressure, and, given enough time, that pressure can gradually fracture the rock around it, creating a way for the magma to move upward. If it finds its way to the surface, then the result will be a volcanic eruption; consequently, many volcanoes are situated over magma chambers. These chambers are hard to detect deep within the Earth, and therefore most of those known are close to the surface, commonly between 1 km and 10 km down.

Intrusive rock intrusive volcanic rocks

Intrusive rock is formed when magma crystallizes and solidifies underground to form intrusions, for example plutons, batholiths, dikes, sills, laccoliths, and volcanic necks.

Volcanic bomb

A volcanic bomb is a mass of molten rock (tephra) larger than 64 mm (2.5 inches) in diameter, formed when a volcano ejects viscous fragments of lava during an eruption. They cool into solid fragments before they reach the ground. Because volcanic bombs cool after they leave the volcano, they are extrusive igneous rocks. Volcanic bombs can be thrown many kilometres from an erupting vent, and often acquire aerodynamic shapes during their flight. Bombs can be extremely large; the 1935 eruption of Mount Asama in Japan expelled bombs measuring 5–6 m in diameter up to 600 m from the vent. Volcanic bombs are a significant volcanic hazard, and can cause severe injuries and death to people in an eruption zone. One such incident occurred at Galeras volcano in Colombia in 1993; six people near the summit were killed and several seriously injured by lava bombs when the volcano erupted unexpectedly. On July 16, 2018, 23 people were injured on a tour boat near the Kilauea volcano as a result of a basketball-sized lava bomb from the 2018 lower Puna eruption.

Rock cycle Transitions through geologic time among the three main rock types: sedimentary, metamorphic, and igneous

The rock cycle is a basic concept in geology that describes the transitions through geologic time among the three main rock types: sedimentary, metamorphic, and igneous. As the adjacent diagram illustrates, each of the types of rocks is altered or destroyed when it is forced out of its equilibrium conditions. An igneous rock such as basalt may break down and dissolve when exposed to the atmosphere, or melt as it is subducted under a continent. Due to the driving forces of the rock cycle, plate tectonics and the water cycle, rocks do not remain in equilibrium and are forced to change as they encounter new environments. The rock cycle is an illustration that explains how the three rock types are related to each other, and how processes change from one type to another over time. This cyclical aspect makes rock change a geologic cycle and, on planets containing life, a biogeochemical cycle.

Diatreme A volcanic pipe formed by a gaseous explosion

A diatreme, sometimes known as a maar-diatreme volcano, is a volcanic pipe formed by a gaseous explosion. When magma rises up through a crack in the Earth's crust and makes contact with a shallow body of ground water, rapid expansion of heated water vapor and volcanic gases can cause a series of explosions. A relatively shallow crater is left and a rock filled fracture in the Earth's crust. Diatremes breach the Earth's surface and produce a steep inverted cone shape.

Northern Cordilleran Volcanic Province

The Northern Cordilleran Volcanic Province (NCVP), formerly known as the Stikine Volcanic Belt, is a geologic province defined by the occurrence of Miocene to Holocene volcanoes in the Pacific Northwest of North America. This belt of volcanoes extends roughly north-northwest from northwestern British Columbia and the Alaska Panhandle through Yukon to the Southeast Fairbanks Census Area of far eastern Alaska, in a corridor hundreds of kilometres wide. It is the most recently defined volcanic province in the Western Cordillera. It has formed due to extensional cracking of the North American continent—similar to other on-land extensional volcanic zones, including the Basin and Range Province and the East African Rift. Although taking its name from the Western Cordillera, this term is a geologic grouping rather than a geographic one. The southmost part of the NCVP has more, and larger, volcanoes than does the rest of the NCVP; further north it is less clearly delineated, describing a large arch that sways westward through central Yukon.

Types of volcanic eruptions Basic mechanisms of eruption and variations

Several types of volcanic eruptions—during which lava, tephra, and assorted gases are expelled from a volcanic vent or fissure—have been distinguished by volcanologists. These are often named after famous volcanoes where that type of behavior has been observed. Some volcanoes may exhibit only one characteristic type of eruption during a period of activity, while others may display an entire sequence of types all in one eruptive series.

Volcanology of Canada

Volcanology of Canada includes lava flows, lava plateaus, lava domes, cinder cones, stratovolcanoes, shield volcanoes, submarine volcanoes, calderas, diatremes, and maars, along with examples of more less common volcanic forms such as tuyas and subglacial mounds. It has a very complex volcanological history spanning from the Precambrian eon at least 3.11 billion years ago when this part of the North American continent began to form.

Anahim hotspot

The Anahim hotspot is a volcanic hotspot located in the West-Central Interior of British Columbia, Canada. One of the few hotspots in North America, the Anahim plume is responsible for the creation of the Anahim Volcanic Belt. This is a 300 km (190 mi) long chain of volcanoes and other magmatic features that have undergone erosion. The chain extends from the community of Bella Bella in the west to near the small city of Quesnel in the east. While most volcanoes are created by geological activity at tectonic plate boundaries, the Anahim hotspot is located hundreds of kilometres away from the nearest plate boundary.

Pilot Knob (Austin, Texas) volcano type

Pilot Knob is the eroded core of an extinct volcano located 8 miles (13 km) south of central Austin, Texas, near Austin-Bergstrom International Airport and McKinney Falls State Park.

Volcanology of Mars

Volcanic activity, or volcanism, has played a significant role in the geologic evolution of Mars. Scientists have known since the Mariner 9 mission in 1972 that volcanic features cover large portions of the Martian surface. These features include extensive lava flows, vast lava plains, and the largest known volcanoes in the Solar System. Martian volcanic features range in age from Noachian to late Amazonian, indicating that the planet has been volcanically active throughout its history, and some speculate it probably still is so today. Both Earth and Mars are large, differentiated planets built from similar chondritic materials. Many of the same magmatic processes that occur on Earth also occurred on Mars, and both planets are similar enough compositionally that the same names can be applied to their igneous rocks and minerals.

Volcanology of Northern Canada

Volcanology of Northern Canada includes hundreds of volcanic areas and extensive lava formations across Northern Canada. The region's different volcano and lava types originate from different tectonic settings and types of volcanic eruptions, ranging from passive lava eruptions to violent explosive eruptions. Northern Canada has a record of very large volumes of magmatic rock called large igneous provinces. They are represented by deep-level plumbing systems consisting of giant dike swarms, sill provinces and layered intrusions.

Igneous rock Rock formed through the cooling and solidification of magma or lava

Igneous rock, or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rock is formed through the cooling and solidification of magma or lava. The magma can be derived from partial melts of existing rocks in either a planet's mantle or crust. Typically, the melting is caused by one or more of three processes: an increase in temperature, a decrease in pressure, or a change in composition. Solidification into rock occurs either below the surface as intrusive rocks or on the surface as extrusive rocks. Igneous rock may form with crystallization to form granular, crystalline rocks, or without crystallization to form natural glasses. Igneous rocks occur in a wide range of geological settings: shields, platforms, orogens, basins, large igneous provinces, extended crust and oceanic crust.

References

  1. "Cooling Planets: Some Background: What is volcanism?" (PDF). The Lunar and Planetary Institute, Department of Education and Public Outreach. 2006. p. 4. Archived (PDF) from the original on 2013-08-01. Retrieved 2012-10-14.
  2. Watson, John; Watson, Kathie (January 7, 1998). "Volcanoes and Earthquakes". United States Geological Survey. Archived from the original on March 26, 2009. Retrieved May 9, 2009.
  3. 1 2 Nemzer, J. "Geothermal heating and cooling". Archived from the original on 2012-11-01. Retrieved 2012-11-03.
  4. Robock, Alan (2000). "Volcanic eruptions and climate". Reviews of geophysics 38 (2): 191-219. doi : 10.1029/1998RG000054
  5. "Recent volcanic eruptions on the moon". sciencemag.org. 12 October 2014. Retrieved 6 May 2018.