Cross section (geology)

Last updated
A cross section of the Anadarko Basin. The letters A and B at the top correspond to the line labeled A--B on the smaller map. In this example, the vertical scale is exaggerated compared to the horizontal scale. Anadarko Basin Geologic Cross Section.png
A cross section of the Anadarko Basin. The letters A and B at the top correspond to the line labeled A--B on the smaller map. In this example, the vertical scale is exaggerated compared to the horizontal scale.

A cross section or cross-section, in geology, is a diagram representing the geologic features intersecting a vertical plane, and is used to illustrate an area's structure and stratigraphy that would otherwise be hidden underground. The features described in a cross section can include rock units, faults, topography, and more. They often accompany geologic maps, complementing the overhead view with a side-on view, which can help to visualize the three-dimensional structure of the region and clarify the relationships between features. [1] [2]

Contents

A cross section is drawn as a vertical map, as if the ground had been cut open and exposed along a given line. Various lines, colors, patterns, and symbols are used to represent different rock sections and features. Because the length of the studied area is often much greater than the depth, the diagram's scale can be vertically exaggerated to emphasize the depth or height of features and make them more visible. The plane a cross section illustrates is typically labeled as a line on a map of the surrounding region.

An example cross section of an anticline with a dike cutting through, with the map of its surface expression showing strike and dip information Anticline and a dike in cross section.png
An example cross section of an anticline with a dike cutting through, with the map of its surface expression showing strike and dip information

Cross sections are made by interpreting and extrapolating a broad range of information about a region's geological characteristics. This can include data from the surface, subsurface, and existing geologic maps. Analyzed data can include rock samples, structure orientation, boreholes, relationships between structures, seismic surveys, etc. [2] Because much of the extrapolated information cannot be directly observed, there is an inherent amount of uncertainty about the accuracy of the final product. [3] [4]

See also

Related Research Articles

<span class="mw-page-title-main">Earthquake</span> Sudden movement of the Earths crust

An earthquake is the shaking of the surface of the Earth resulting from a sudden release of energy in the Earth's lithosphere that creates seismic waves. Earthquakes can range in intensity, from those that are so weak that they cannot be felt, to those violent enough to propel objects and people into the air, damage critical infrastructure, and wreak destruction across entire cities. The seismic activity of an area is the frequency, type, and size of earthquakes experienced over a particular time. The seismicity at a particular location in the Earth is the average rate of seismic energy release per unit volume. The word tremor is also used for non-earthquake seismic rumbling.

Geology is a branch of natural science concerned with the Earth and other astronomical objects, the rocks of which they are composed, and the processes by which they change over time. Modern geology significantly overlaps all other Earth sciences, including hydrology. It is integrated with Earth system science and planetary science.

<span class="mw-page-title-main">Structural geology</span> Science of the description and interpretation of deformation in the Earths crust

Structural geology is the study of the three-dimensional distribution of rock units with respect to their deformational histories. The primary goal of structural geology is to use measurements of present-day rock geometries to uncover information about the history of deformation (strain) in the rocks, and ultimately, to understand the stress field that resulted in the observed strain and geometries. This understanding of the dynamics of the stress field can be linked to important events in the geologic past; a common goal is to understand the structural evolution of a particular area with respect to regionally widespread patterns of rock deformation due to plate tectonics.

<span class="mw-page-title-main">Sedimentary basin</span> Regions of long-term subsidence creating space for infilling by sediments

Sedimentary basins are region-scale depressions of the Earth's crust where subsidence has occurred and a thick sequence of sediments have accumulated to form a large three-dimensional body of sedimentary rock. They form when long-term subsidence creates a regional depression that provides accommodation space for accumulation of sediments. Over millions or tens or hundreds of millions of years the deposition of sediment, primarily gravity-driven transportation of water-borne eroded material, acts to fill the depression. As the sediments are buried, they are subject to increasing pressure and begin the processes of compaction and lithification that transform them into sedimentary rock.

<span class="mw-page-title-main">Fault (geology)</span> Fracture or discontinuity in rock across which there has been displacement

In geology, a fault is a planar fracture or discontinuity in a volume of rock across which there has been significant displacement as a result of rock-mass movements. Large faults within Earth's crust result from the action of plate tectonic forces, with the largest forming the boundaries between the plates, such as the megathrust faults of subduction zones or transform faults. Energy release associated with rapid movement on active faults is the cause of most earthquakes. Faults may also displace slowly, by aseismic creep.

<span class="mw-page-title-main">Kola Superdeep Borehole</span> Soviet scientific deep drilling project

The Kola Superdeep BoreholeSG-3 is the result of a scientific drilling project of the Soviet Union in the Pechengsky District, near the Russian border with Norway, on the Kola Peninsula. The project attempted to drill as deep as possible into the Earth's crust.

<span class="mw-page-title-main">Geologic map</span> Special-purpose map to show geological features

A geologic map or geological map is a special-purpose map made to show various geological features. Rock units or geologic strata are shown by color or symbols. Bedding planes and structural features such as faults, folds, are shown with strike and dip or trend and plunge symbols which give three-dimensional orientations features.

<span class="mw-page-title-main">Geologic modelling</span> Applied science of creating computerized representations of portions of the Earths crust

Geologic modelling,geological modelling or geomodelling is the applied science of creating computerized representations of portions of the Earth's crust based on geophysical and geological observations made on and below the Earth surface. A geomodel is the numerical equivalent of a three-dimensional geological map complemented by a description of physical quantities in the domain of interest. Geomodelling is related to the concept of Shared Earth Model; which is a multidisciplinary, interoperable and updatable knowledge base about the subsurface.

Exploration geophysics is an applied branch of geophysics and economic geology, which uses physical methods at the surface of the Earth, such as seismic, gravitational, magnetic, electrical and electromagnetic, to measure the physical properties of the subsurface, along with the anomalies in those properties. It is most often used to detect or infer the presence and position of economically useful geological deposits, such as ore minerals; fossil fuels and other hydrocarbons; geothermal reservoirs; and groundwater reservoirs. It can also be used to detect the presence of unexploded ordnance.

<span class="mw-page-title-main">Strike and dip</span> Orientation of a geologic feature

In geology, strike and dip is a measurement convention used to describe the plane orientation or attitude of a planar geologic feature. A feature's strike is the azimuth of an imagined horizontal line across the plane, and its dip is the angle of inclination measured downward from horizontal. They are used together to measure and document a structure's characteristics for study or for use on a geologic map. A feature's orientation can also be represented by dip and dip direction, using the azimuth of the dip rather than the strike value. Linear features are similarly measured with trend and plunge, where "trend" is analogous to dip direction and "plunge" is the dip angle.

<span class="mw-page-title-main">Electrical resistivity tomography</span> A geophysical technique for imaging sub-surface structures

Electrical resistivity tomography (ERT) or electrical resistivity imaging (ERI) is a geophysical technique for imaging sub-surface structures from electrical resistivity measurements made at the surface, or by electrodes in one or more boreholes. If the electrodes are suspended in the boreholes, deeper sections can be investigated. It is closely related to the medical imaging technique electrical impedance tomography (EIT), and mathematically is the same inverse problem. In contrast to medical EIT, however, ERT is essentially a direct current method. A related geophysical method, induced polarization, measures the transient response and aims to determine the subsurface chargeability properties.

<span class="mw-page-title-main">Texture (geology)</span>

In geology, texture or rock microstructure refers to the relationship between the materials of which a rock is composed. The broadest textural classes are crystalline, fragmental, aphanitic, and glassy. The geometric aspects and relations amongst the component particles or crystals are referred to as the crystallographic texture or preferred orientation. Textures can be quantified in many ways. The most common parameter is the crystal size distribution. This creates the physical appearance or character of a rock, such as grain size, shape, arrangement, and other properties, at both the visible and microscopic scale.

Seismic migration is the process by which seismic events are geometrically re-located in either space or time to the location the event occurred in the subsurface rather than the location that it was recorded at the surface, thereby creating a more accurate image of the subsurface. This process is necessary to overcome the limitations of geophysical methods imposed by areas of complex geology, such as: faults, salt bodies, folding, etc.

First developed in 1985 by RockWare Inc, RockWorks is used by the mining, petroleum, and environmental industry for subsurface visualization, borehole database management as well as the creation of grids, solid models, calculating volumetric analysis, etc.

<span class="mw-page-title-main">Focal mechanism</span> Process that generates seismic waves in an earthquake

The focal mechanism of an earthquake describes the deformation in the source region that generates the seismic waves. In the case of a fault-related event, it refers to the orientation of the fault plane that slipped, and the slip vector and is also known as a fault-plane solution. Focal mechanisms are derived from a solution of the moment tensor for the earthquake, which itself is estimated by an analysis of observed seismic waveforms. The focal mechanism can be derived from observing the pattern of "first motions", whether the first arriving P waves break up or down. This method was used before waveforms were recorded and analysed digitally, and this method is still used for earthquakes too small for easy moment tensor solution. Focal mechanisms are now mainly derived using semi-automatic analysis of the recorded waveforms.

<span class="mw-page-title-main">Olympic–Wallowa lineament</span> Geologic feature in Washington and Oregon, United States

The Olympic-Wallowa lineament (OWL) is a series of geologic structures oriented from northwest to southeast for 650 km (400 mi) across Washington and northeast Oregon in the United States, passing through the Seattle area and including notable features east of the Cascade Range such as the Yakima Fold Belt and Wallowa Mountains. It was first reported by cartographer Erwin Raisz in 1945 on a relief map of the continental United States. Some geologists have questioned the existence of a geological relationship between the individual structures along the lineament suggesting it is an optical illusion. The origin of this feature in its entirety is not well understood with multiple hypotheses on the subject. The Olympic-Wallowa lineament likely predates the Columbia River Basalt Group.

<span class="mw-page-title-main">Bedform</span> Geological feature resulting from the movement of bed material by fluid flow

A bedform is a geological feature that develops at the interface of fluid and a moveable bed, the result of bed material being moved by fluid flow. Examples include ripples and dunes on the bed of a river. Bedforms are often preserved in the rock record as a result of being present in a depositional setting. Bedforms are often characteristic to the flow parameters, and may be used to infer flow depth and velocity, and therefore the Froude number.

<span class="mw-page-title-main">Boring (earth)</span> Drilling a hole, tunnel, or well into the Earth

Boring is drilling a hole, tunnel, or well in the Earth. It is used for various applications in geology, agriculture, hydrology, civil engineering, and mineral exploration. Today, most Earth drilling serves one of the following purposes:

<span class="mw-page-title-main">Near-surface geophysics</span> Geophysics of first tens of meters below surface

Near-surface geophysics is the use of geophysical methods to investigate small-scale features in the shallow subsurface. It is closely related to applied geophysics or exploration geophysics. Methods used include seismic refraction and reflection, gravity, magnetic, electric, and electromagnetic methods. Many of these methods were developed for oil and mineral exploration but are now used for a great variety of applications, including archaeology, environmental science, forensic science, military intelligence, geotechnical investigation, treasure hunting, and hydrogeology. In addition to the practical applications, near-surface geophysics includes the study of biogeochemical cycles.

<span class="mw-page-title-main">Fault zone hydrogeology</span>

Fault zone hydrogeology is the study of how brittlely deformed rocks alter fluid flows in different lithological settings, such as clastic, igneous and carbonate rocks. Fluid movements, that can be quantified as permeability, can be facilitated or impeded due to the existence of a fault zone. This is because different mechanisms that deform rocks can alter porosity and permeability within a fault zone. Fluids involved in a fault system generally are groundwater and hydrocarbons.

References

  1. Stieglitz, Ronald D. (1988), "Cross-sections", General Geology, Encyclopedia of Earth Science, Dordrecht: Kluwer Academic Publishers, pp. 100–103, doi:10.1007/0-387-30844-x_21, ISBN   978-0-442-22499-8 , retrieved 2021-11-14
  2. 1 2 "The geological cross-sections. Institut Cartogràfic i Geològic de Catalunya". www.icgc.cat. Retrieved 2021-11-14.
  3. Randle, Charles H.; Bond, Clare E.; Lark, R. Murray; Monaghan, Alison A. (2018-04-24). "Can uncertainty in geological cross-section interpretations be quantified and predicted?". Geosphere. 14 (3): 1087–1100. Bibcode:2018Geosp..14.1087R. doi: 10.1130/GES01510.1 . ISSN   1553-040X.
  4. Lark, R. M.; Thorpe, S.; Kessler, H.; Mathers, S. J. (2014-07-17). "Expert modelling of a geological cross-section from boreholes: sources of uncertainty and their quantification" (PDF). Solid Earth Discussions. 6 (2): 1687. Bibcode:2014SolED...6.1687L. doi: 10.5194/sed-6-1687-2014 .