A volcanic winter is a reduction in global temperatures caused by droplets of sulfuric acid obscuring the Sun and raising Earth's albedo (increasing the reflection of solar radiation) after a large, sulfur-rich, particularly explosive volcanic eruption. Climate effects are primarily dependent upon the amount of injection of SO2 and H2S into the stratosphere where they react with OH and H2O to form H2SO4 on a timescale of a week, and the resulting H2SO4 aerosols produce the dominant radiative effect. Volcanic stratospheric aerosols cool the surface by reflecting solar radiation and warm the stratosphere by absorbing terrestrial radiation for several years. Moreover, the cooling trend can be further extended by atmosphere–ice–ocean feedback mechanisms. These feedbacks can continue to maintain the cool climate long after the volcanic aerosols have dissipated.
An explosive volcanic eruption releases magma materials in the form of volcanic ash and gases into the atmosphere. While most volcanic ash settles to the ground within a few weeks after the eruption, impacting only the local area for a short duration, the emitted SO2 can lead to the formation of H2SO4 aerosols in the stratosphere. [1] [2] These aerosols can circle the hemisphere of the eruption source in a matter of weeks and persist with an e-folding decay time of about a year. As a result, they have a radiative impact that can last for several years. [3]
The subsequent dispersal of a volcanic cloud in the stratosphere and its impact on climate are strongly influenced by several factors, including the season of the eruption, [4] the latitude of the source volcano, [5] and the injection height. [6] If the SO2 injection height remains confined to the troposphere, the resulting H2SO4 aerosols have a residence time of only a few days due to efficient removal through precipitation. [6] The lifetime of H2SO4 aerosols resulting from extratropical eruptions is shorter compared to those from tropical eruptions, due to a longer transport path from the tropics to removal across the mid- or high-latitude tropopause, but extratropical eruptions strengthens the hemispheric climate impact by confining the aerosol to a single hemisphere. [5] Injections in the winter are also much less radiatively efficient than injections during the summer for high-latitude volcanic eruptions, when the removal of stratospheric aerosols in polar regions is enhanced. [4]
The sulfate aerosol interacts strongly with solar radiation through scattering, giving rise to remarkable atmospheric optical phenomena in the stratosphere. These phenomena include solar dimming, coronae or Bishop's rings, peculiar twilight coloration, and dark total lunar eclipses. [7] [8] Historical records that documented these atmospheric events are indications of volcanic winters and date back to periods preceding the Common Era. [9]
Surface temperature observations following historic eruptions show that there is no correlation between eruption size, as represented by the VEI or eruption volume, and the severity of the climate cooling. This is because eruption size does not correlate with the amount of SO2 emitted. [10]
It has been proposed that the cooling effects of volcanic eruptions can extend beyond the initial several years, lasting for decades to possibly even millennia. This prolonged impact is hypothesized to be a result of positive feedback mechanisms involving ice and ocean dynamics, even after the H2SO4 aerosols have dissipated. [11] [12] [13]
During the first few years following a volcanic eruption, the presence of H2SO4 aerosols can induce a significant cooling effect. This cooling can lead to a widespread lowering of snowline, enabling the rapid expansion of sea ice, ice caps and continental glacier. As a result, ocean temperatures decrease, and surface albedo increases, further reinforcing the expansion of sea ice, ice caps, and glacier. These processes create a strong positive feedback loop, allowing the cooling trend to persist over centennial-scale or even longer periods of time. [12]
It has been proposed that a cluster of closely spaced, large volcanic eruptions triggered or amplified the Little Ice Age, [14] Late Antique Little Ice Age, [15] stadials, [16] Younger Dryas, [17] Heinrich events, [18] and Dansgaard-Oeschger events [19] through the atmosphere-ice-ocean positive feedbacks.
The weathering of a sufficiently large volume of rapidly erupted volcanic materials has been proposed as an important factor in Earth's silicate weathering cycle, which operates on a timescale of tens of millions of years. [20] During this process, weathered silicate minerals react with carbon dioxide and water, resulting in the formation of magnesium carbonate and calcium carbonate. These carbonates are then removed from the atmosphere and sequestrated on the ocean floor. The eruption of a large volume of volcanic materials can enhance weathering processes, thereby lowering atmospheric CO2 levels and contributing to global temperature reduction.
The rapid emplacement of mafic large igneous provinces has the potential to cause a swift decline in atmospheric CO2 content, leading to a multi-million-year-long icehouse climate. [21] [22] A notable example is the Sturtian glaciation, [lower-alpha 1] which is considered the most severe and widespread known glacial event in Earth's history. This glaciation is believed to have been caused by the weathering of erupted Franklin Large Igneous Province. [22] [23]
Tree-ring-based temperature reconstructions, historical records of dust veils, and ice cores studies have confirmed that some of the coldest years during the last five millennia were directly caused by massive volcanic injections of SO2. [24] [25]
Hemispheric temperature anomalies resulting from volcanic eruptions have primarily been reconstructed based on tree-ring data for the past two millennia. [lower-alpha 2] [27] [28] [29] [30] For earlier periods in the Holocene, the identification of frost rings that coincide with large ice core sulfate spikes serves as an indicator of severe volcanic winters. [lower-alpha 3] [31] The quantification of volcanic coolings further back in time during the Last Glacial Period is made possible by annually resolved δ18O records. [lower-alpha 4] [32] This is a non-exhaustive compilation of notable and consequential coolings that have been definitively attributed to volcanic aerosols, although the source volcanos of the aerosols are rarely identified.
Cooling episode (CE/BCE) | Volcanic eruptions | N.H. peak temperature anomaly | Notes | Ref. |
---|---|---|---|---|
1991–1993 | 1991 eruption of Mount Pinatubo | −0.5 K | [33] | |
1883–1886 | 1883 eruption of Krakatoa | −0.3 K | [34] | |
1809–1820 | 1808 mystery eruptions, 1815 eruption of Mount Tambora | −1.7 K | Year Without a Summer | [27] |
1453–1460 | 1452 N.H. mystery eruption, 1458 S.H. mystery eruption | −1.2 K | The attribution of the 1458 eruption to Kuwae Caldera remains controversial. | [27] |
1258–1260 | 1257 Samalas eruption | −1.3 K | The single largest sulfur injection of the Common Era. | [27] |
536–546 | 535 N.H. mystery eruptions, 540 tropical mystery eruption | −1.4 K | The first phase of Late Antique Little Ice Age. | [15] [27] |
−43–41 | Okmok II | −2–3 K | [35] |
During the Last Glacial Period, volcanic coolings comparable to the largest volcanic coolings during the Common Era (e.g. Tambora, Samalas) are inferred based on the magnitudes of δ18O anomalies. [36] In particular, in the period 12,000–32,000 years ago, the peak δ18O cooling anomaly of the eruptions exceeds the anomaly after the largest eruptions in the Common Era. [37] One Last Glacial Period eruption that have gained significant attention is the eruption of the Youngest Toba Tuff (YTT), which has sparked vigorous debates regarding its climate effects.
The eruption of YTT from Toba Caldera, 74,000 years ago, is regarded as the largest known Quaternary eruption [38] and two orders of magnitude greater than the magma volume of the largest historical eruption, Tambora. [39] The exceptional magnitude of this freaky eruption has prompted sustained debate as to its global and regional impact on climate.
Sulfate concentration and isotope measurements from polar ice cores taken around the time of 74,000 years BP have identified four atmospheric aerosol events that could potentially be attributed to YTT. [40] The calculated stratospheric sulfate loadings for these four events range from 219 to 535 million tonnes, which is 1 to 3 times greater than that of the Samalas eruption in 1257 CE. [41] Global climate models simulate peak global mean cooling of 2.3 to 4.1 K for this amount of erupted sulfate aerosols, and complete temperature recovery does not occur within 10 years. [42]
Empirical evidence for cooling induced by YTT, however, is mixed. YTT coincides with the onset of Greenland Stadial 20 (GS-20), which is characterized by a 1,500-year cooling period. [43] GS-20 is considered the most isotopically extreme [44] and coldest stadial, [45] as well as having the weakest Asian monsoon, [46] in the last 100,000 years. This timing has led some to speculate on the relation between YTT and GS-20. [47] [48] The stratigraphic position of YTT in relation to the GS-20 transition suggests that the stadial would have occurred without YTT, as the cooling was already underway. [49] [50] There is the possibility that YTT contributed to the extremity of GS-20. [50] [51] The South China Sea shows a 1 K cooling over 1,000 years following the deposition of YTT, [52] while the Arabian Sea shows no discernible impact. [53] In India and the Bay of Bengal, initial cooling and prolonged desiccation are observed above the YTT ash layer, [45] but it is argued that these environmental changes were already occurring prior to YTT. [54] Lake Malawi sediments do not provide evidence supporting a volcanic winter within a few years after the eruption of YTT, [55] [56] [57] but the resolution of the sediments is questioned due to sediment mixing. [58] Directly above the YTT layer in Lake Malawi, there is evidence of a 2,000-year-long megadrought and cooling period. [59] Greenland ice cores identify a 110-year period of accelerated cooling immediately following what is likely the YTT aerosol event. [60]
The enhanced weathering of continental flood basalts, which erupted just prior to the onset of the Sturtian glaciation at 717 million years ago, is recognized as the trigger for the most severe glaciation in Earth's history. [23] [22] [21] During this period, Earth's surface temperatures dropped below the freezing point of water everywhere, [61] and ice rapidly advanced from low latitudes to the equator, covering a worldwide extent. [62] This glaciation lasted almost 60 million years, from 717 to 659 million years ago. [63]
Geochronology dates the rapid emplacement of 5,000,000 km2 (1,900,000 sq mi) Franklin large igneous province just 1 million year before the onset of Sturtian glaciation. [23] Multiple large igneous provinces on the scale of 1,000,000 km2 (390,000 sq mi) were also emplaced on Rodinia between 850 and 720 million years ago. [64] [65] Weathering of massive amount of fresh mafic materials initiated runaway cooling and ice-albedo feedback after 1 million year. Chemical isotopic compositions show a massive flux of weathered freshly erupted materials entering the ocean, coinciding with the eruptions of large igneous provinces. [66] [67] Simulations demonstrate that the increased weatherability led to drop in atmospheric CO2 of the order of 1,320 ppm and an 8 K cooling of global temperatures, triggering the most extraordinary episode of climate change in the geologic record. [68]
The causes of the population bottleneck – a sharp decrease in a species' population, immediately followed by a period of great genetic divergence (differentiation) among survivors – is attributed to volcanic winters by some researchers. Such events may diminish populations to "levels low enough for evolutionary changes, which occur much faster in small populations, to produce rapid population differentiation". [69] With the Lake Toba bottleneck, many species showed massive effects of narrowing of the gene pool, and Toba may have reduced the human population to between 15,000 and 40,000, or even fewer. [69]
Nuclear winter is a severe and prolonged global climatic cooling effect that is hypothesized to occur after widespread firestorms following a large-scale nuclear war. The hypothesis is based on the fact that such fires can inject soot into the stratosphere, where it can block some direct sunlight from reaching the surface of the Earth. It is speculated that the resulting cooling would lead to widespread crop failure and famine. When developing computer models of nuclear-winter scenarios, researchers use the conventional bombing of Hamburg, and the Hiroshima firestorm in World War II as example cases where soot might have been injected into the stratosphere, alongside modern observations of natural, large-area wildfire-firestorms.
The Snowball Earth is a geohistorical hypothesis that proposes during one or more of Earth's icehouse climates, the planet's surface became nearly entirely frozen with no liquid oceanic or surface water exposed to the atmosphere. The most academically mentioned period of such a global ice age is believed to have occurred some time before 650 mya during the Cryogenian period, which included at least two large glacial periods, the Sturtian and Marinoan glaciations.
Climate variability includes all the variations in the climate that last longer than individual weather events, whereas the term climate change only refers to those variations that persist for a longer period of time, typically decades or more. Climate change may refer to any time in Earth's history, but the term is now commonly used to describe contemporary climate change, often popularly referred to as global warming. Since the Industrial Revolution, the climate has increasingly been affected by human activities.
Paleoclimatology is the scientific study of climates predating the invention of meteorological instruments, when no direct measurement data were available. As instrumental records only span a tiny part of Earth's history, the reconstruction of ancient climate is important to understand natural variation and the evolution of the current climate.
The Toba eruption was a supervolcanic eruption that occurred about 74,000 years ago during the Late Pleistocene at the site of present-day Lake Toba in Sumatra, Indonesia. It was the last in a series of at least four caldera-forming eruptions at this location, with the earlier known caldera having formed around 1.2 million years ago. This last eruption had an estimated VEI of 8, making it the largest-known explosive volcanic eruption in the Quaternary, and one of the largest known explosive eruptions in the Earth's history.
The volcanic winter of 536 was the most severe and protracted episode of climatic cooling in the Northern Hemisphere in the last 2,000 years. The volcanic winter was caused by at least three simultaneous eruptions of uncertain origin, with several possible locations proposed in various continents. Most contemporary accounts of the volcanic winter are from authors in Constantinople, the capital of the Eastern Roman Empire, although the impact of the cooler temperatures extended beyond Europe. Modern scholarship has determined that in early AD 536, an eruption ejected massive amounts of sulfate aerosols into the atmosphere, which reduced the solar radiation reaching the Earth's surface and cooled the atmosphere for several years. In March 536, Constantinople began experiencing darkened skies and lower temperatures.
The Cryogenian is a geologic period that lasted from 720 to 635 million years ago. It is the second of the three periods of the Neoproterozoic era, preceded by the Tonian and followed by the Ediacaran.
Eldgjá is a volcano and a canyon in Iceland. Eldgjá is part of the Katla volcano; it is a segment of a 40 kilometres (25 mi) long chain of volcanic craters and fissure vents that extends northeast away from Katla volcano almost to the Vatnajökull ice cap. This fissure experienced a major eruption around 939 CE, which was the largest effusive eruption in recent history. It covered about 780 square kilometres (300 sq mi) of land with 18.6 cubic kilometres (4.5 cu mi) of lava from two major lava flows.
The Marinoan glaciation, sometimes also known as the Varanger glaciation, was a period of worldwide glaciation. Its beginning is poorly constrained, but occurred no earlier than 654.5 Ma. It ended approximately 632.3 ± 5.9 Ma during the Cryogenian period. This glaciation possibly covered the entire planet, in an event called the Snowball Earth. The end of the glaciation was caused by volcanic release of carbon dioxide and dissolution of gas hydrates and may have been hastened by the release of methane from equatorial permafrost.
Stratospheric aerosol injection (SAI) is a proposed method of solar geoengineering to reduce global warming. This would introduce aerosols into the stratosphere to create a cooling effect via global dimming and increased albedo, which occurs naturally from volcanic winter. It appears that stratospheric aerosol injection, at a moderate intensity, could counter most changes to temperature and precipitation, take effect rapidly, have low direct implementation costs, and be reversible in its direct climatic effects. The Intergovernmental Panel on Climate Change concludes that it "is the most-researched [solar geoengineering] method that it could limit warming to below 1.5 °C (2.7 °F)." However, like other solar geoengineering approaches, stratospheric aerosol injection would do so imperfectly and other effects are possible, particularly if used in a suboptimal manner.
Tectonic–climatic interaction is the interrelationship between tectonic processes and the climate system. The tectonic processes in question include orogenesis, volcanism, and erosion, while relevant climatic processes include atmospheric circulation, orographic lift, monsoon circulation and the rain shadow effect. As the geological record of past climate changes over millions of years is sparse and poorly resolved, many questions remain unresolved regarding the nature of tectonic-climate interaction, although it is an area of active research by geologists and palaeoclimatologists.
The Sturtian glaciation was a worldwide glaciation during the Cryogenian Period when the Earth experienced repeated large-scale glaciations. As of January 2023, the Sturtian glaciation is thought to have lasted from c. 717 Ma to c. 660 Ma, a time span of approximately 57 million years. It is hypothesised to have been a Snowball Earth event, or contrastingly multiple regional glaciations, and is the longest and most severe known glacial event preserved in the geologic record after the much earlier Huronian glaciation.
The 1808 mystery eruption is one or potentially multiple unidentified volcanic eruptions that resulted in a significant rise in stratospheric sulfur aerosols, leading to a period of global cooling analogous to the Year Without a Summer in 1816.
The 946 eruption of Paektu Mountain, a stratovolcano on the border of North Korea and China also known as Changbaishan, occurred in late 946 CE. This event is known as the Millennium Eruption or Tianchi eruption. It is one of the most powerful volcanic eruptions in recorded history; classified at least a VEI 6.
The Late Antique Little Ice Age (LALIA) was a long-lasting Northern Hemispheric cooling period in the 6th and 7th centuries AD, during the period known as Late Antiquity. The period coincides with three large volcanic eruptions in 535/536, 539/540 and 547. The volcanic winter of 536 was the early phenomenon of the century-long global temperature decline. One study suggested a global cooling of 2 °C (3.6 °F).
In 1257, a catastrophic eruption occurred at Samalas, a volcano on the Indonesian island of Lombok. The event had a probable Volcanic Explosivity Index of 7, making it one of the largest volcanic eruptions during the Holocene epoch. It left behind a large caldera that contains Lake Segara Anak. Later volcanic activity created more volcanic centres in the caldera, including the Barujari cone, which remains active.
There are two large sulfate spikes caused by mystery volcanic eruptions in the mid-1400s: the 1452/1453 mystery eruption and 1458 mystery eruption. Before 2012, the date of 1458 sulfate spike was incorrectly assigned to be 1452 because previous ice core work had poor time resolution. The exact location of this eruption is uncertain, but possible candidates include the submerged caldera of Kuwae in the Coral Sea, Mount Reclus and Tofua caldera. The eruption is believed to have been VEI-7.
The 1452/1453 mystery eruption is an unidentified volcanic event that triggered the first large sulfate spike in the 1450s, succeeded by another spike in 1458 caused by another mysterious eruption. The eruption caused a severe volcanic winter leading to one of strongest cooling events in the Northern Hemisphere. This date also coincides with a substantial intensification of the Little Ice Age.
Stephen Self is a British volcanologist, best known for his work on large igneous provinces and on the global impacts of volcanic eruptions.
Georgiy L. Stenchikov is an applied mathematician and climate scientist focusing on studies of physical processes that govern the Earth's climate. He is a professor in the Department of Earth Science and Engineering at the King Abdullah University of Science and Technology in Saudi Arabia.