Kuwae

Last updated
Kuwae
ShepherdIslandsMap.png
Shepherd Islands and associated underwater volcanoes.
Highest point
Elevation –2 m (–6 ft)
avg less than
–400 m (–1,312 ft) [1] [2]
Listing List of volcanoes in Vanuatu
Coordinates 16°49′45″S168°32′10″E / 16.82917°S 168.53611°E / -16.82917; 168.53611 [1]
Geography
Kuwae
Location Shepherd Islands,
Vanuatu
Geology
Mountain type Caldera [1]
Volcanic arc New Hebrides arc [1]
Last eruption February to September 1974 [1]

Kuwae was a landmass that existed in the vicinity of Tongoa and was destroyed by volcanic eruption in fifteenth century, probably through caldera subsidence. The exact location of the caldera is debated. A submarine caldera, now known as Kuwae caldera that is located between the Epi and Tongoa islands, is a potential candidate. Kuwae caldera cuts through the flank of the Tavani Ruru volcano on Epi and the northwestern end of Tongoa. Another potential candidate is a proposed caldera between Tongoa and Tongariki.

Contents

The submarine volcano Karua, one of the most active volcanoes of Vanuatu, is near the northern rim of Kuwae caldera.

Caldera location and Kuwae landmass

In Tongoan folklore, Kuwae is a lost land in the vicinity of Tongoa and was destroyed by a massive volcanic eruption, probably associated with caldera subsidence. In the legend of Ti Tongoa Liseiriki, the young man in Tongoa escaped the eruption along the coast of Kuwae to Tongariki which became a remnant of submerged Kuwae. This implies that Tongoa and Tongariki were connected by Kuwae landmass before the eruption. A submerged caldera is proposed in southeast of Tongoa and part of its western rim is above sea-level to form islands of Ewose, Buninga, and Tongariki. These islands are also described to be fragments of old Kuwae landmass in the folklore, consistent with presence of caldera in this location. [3] [4] But a bathymetric survey of this area could not confirm the presence of a caldera. [5]

In 1994, bathymetry north of Tongoa revealed a large, 6 x 12 km, caldera between Tongoa and Epi, and it was named Kuwae caldera. [6] However, whether or not the Kuwae caldera was responsible for the disappearance of Kuwae landmass and fifteenth century eruption in the folklore is debated, because oral traditions clearly describe it being south of Tongoa. [7]

From which of these two calderas did the fifteenth century eruption derived from has not been definitely identified.

Eruptive history

Little is known about the pre-fifteenth century eruptive history of Kuwae volcano. Thick basalt and andesite lava flows and scoria agglomerates were produced from early effusive and strombolian eruptions over a long period of time. Oldest outcrop on Tongoa island is basalt dated to 73 thousand years ago. [8]

Fifteen-century eruption

The major ignimbritie eruption was preceded by a period of low-intensity hydromagmatic eruptions lasting months to years. These pre-climatic eruptions are similar to or less explosive than Surtseyan-style. Then the hydromagmatic phase was followed by major pyroclastic flows with gradually increasing eruptive temperature. Much of Tongoa and Epi islands are thickly blanketed with these pyroclastic flow deposits. The extent of pumice fall from this stage reached Tongariki island, and possibly southern end of Efaté Island. [9] Pyroclastic flow with thickness >1 m is reported some 50 km from the eruptive centre. However, no plinian deposit is observed during any phase of the eruption. [10] [11] [12]

Direct estimation of erupted magma volume based on field mapping of the deposits is impossible because the majority of the Kuwae ignimbrite was deposited in the sea. Further oceanographic surveys are needed to study the distribution of submarine ignimbrites and tephra fall deposits. [13] If assuming the entire Kuwae caldera was formed during this eruption, then caldera dimension (total caldera subsidence may have been as great as 0.8–1.1 km) shows that about 30–60 km3 (DRE) was erupted, making this eruption of one of the largest in the last 10,000 years. [11]

This assumption has been challenged by another team on the basis of that preserved ignimbrite indicates only small- to moderate-size eruption, implying that Kuwae caldera did not form through this eruption. The team also hinted that the eruptive source of ignimbrite may not at all be Kuwae caldera based on the direction of pyroclastic flows on Tongoa, which came from southeast. [7] Ongoing investigation by a team of volcanologists and anthropologists will try to resolve the debate around the nature of Kuwae eruption. [12]

The age of eruption and its association to the cataclysm in Tongoa folklore are established by radiocarbon dating of samples found in pyroclastic flows and the burial of Ti Tongoa Liseiriki. In the Tongoa folklore, Ti Tongoa Liseiriki survived the volcanic eruption and was the first to resettle. An analysis of the bone collagens of Ti Tongoa Liseiriki yields a date of 1475 ± 85 AD. [14] Ages of carbonized trunks killed by pyroclastic flows cluster around 1410–1450 AD. [6]

Early studies linked this eruption to a major sulfate spike in Antarctic ice cores. [10] The sulfate spike was initially dated to 1452 AD with uncertainty up to a few years, but 2012 revised ice core chronology re-dated this major Southern Hemispheric origin sulfate spike to 1458 AD with zero year uncertainty. [15] [16] The tephra occurred with the spike in ice core discards Kuwae as the source of tephra on geochemical basis. [17] The source of this spike has not been definitely identified, while Kuwae eruption remains a potential candidate.

Recent activity

Since its most recent historic large eruption, Kuwae caldera has had several smaller eruptions ranging from 0 to 3 on the Volcanic Explosivity Index (VEI). The latest confirmed eruption occurred on 4 February 1974 ± 4 days. It had a VEI of 0, and was a submarine eruption that formed a new island. [1]

Islands have regularly formed in Kuwae caldera. [1] The 1897–1901 eruption built an island 1 km long and 15 m high. It disappeared within 6 months. The 1948–1949 eruption formed an island and built a cone 1.6 km in diameter and 100 m high. That island also lasted less than one year. All the islands have disappeared from wave action and caldera floor movements. In 1959, the island reappeared for a short time and again in 1971. The last structure remained an island until 1975. [18]

Activity at present at Kuwae is confined to intermittent fumarole activity, which stain the water yellow. Over the top of the volcano hydrogen sulfide bubbles reach the surface. [19]

See also

Related Research Articles

<span class="mw-page-title-main">Kikai Caldera</span> Mostly-submerged caldera in the Ōsumi Islands of Kagoshima Prefecture, Japan

Kikai Caldera is a massive, mostly submerged caldera up to 19 kilometres (12 mi) in diameter in the Ōsumi Islands of Kagoshima Prefecture, Japan.

<span class="mw-page-title-main">Aira Caldera</span> Large flooded coastal volcanic caldera in Japan

Aira Caldera is a gigantic volcanic caldera located on the southern end of Kyushu, Japan. It is believed to have been formed about 30,000 years ago with a succession of pyroclastic surges. It is currently the place of residence to over 900,000 people. The shores of Aira Caldera are home to rare flora and fauna, including Japanese bay tree and Japanese black pine. The caldera is home to Mount Sakurajima, and the Mount Kirishima group of stratovolcanoes lies to the north of the caldera. The most famous and active of this group is Shinmoedake.

<span class="mw-page-title-main">La Garita Caldera</span> Large caldera in the state of Colorado, U.S.

La Garita Caldera is a large caldera and extinct supervolcano in the San Juan volcanic field in the San Juan Mountains around the town of Creede in southwestern Colorado, United States. It is west of La Garita, Colorado. The eruption that created the La Garita Caldera is among the largest known volcanic eruptions in Earth's history, as well as being one of the most powerful known supervolcanic events.

<span class="mw-page-title-main">Gaua</span> Island in Vanuatu

Gaua is the largest and second most populous of the Banks Islands in Torba Province in northern Vanuatu. It covers 342 km2.

<span class="mw-page-title-main">Nemo Peak</span> Mountain in Russia

Nemo Peak is a stratovolcano located at the northern end of Onekotan Island, Kuril Islands, Russia. It is truncated by two nested calderas, with the cone of Nemo Peak itself rising in the southwest end of the youngest caldera and a crater lake partially filling the northeast part, named Ozero Chernoye.

<span class="mw-page-title-main">Phreatomagmatic eruption</span> Volcanic eruption involving both steam and magma

Phreatomagmatic eruptions are volcanic eruptions resulting from interaction between magma and water. They differ from exclusively magmatic eruptions and phreatic eruptions. Unlike phreatic eruptions, the products of phreatomagmatic eruptions contain juvenile (magmatic) clasts. It is common for a large explosive eruption to have magmatic and phreatomagmatic components.

<span class="mw-page-title-main">Taupō Volcano</span> Supervolcano in New Zealand

Lake Taupō, in the centre of New Zealand's North Island, fills the caldera of the Taupō Volcano, a large rhyolitic supervolcano. This huge volcano has produced two of the world's most powerful eruptions in geologically recent times.

<span class="mw-page-title-main">Timeline of volcanism on Earth</span>

This timeline of volcanism on Earth includes a list of major volcanic eruptions of approximately at least magnitude 6 on the Volcanic explosivity index (VEI) or equivalent sulfur dioxide emission during the Quaternary period. Other volcanic eruptions are also listed.

<span class="mw-page-title-main">946 eruption of Paektu Mountain</span> Major volcanic eruption in Korea

The 946 eruption of Paektu Mountain, a stratovolcano on the border of North Korea and China also known as Changbaishan, occurred in late 946 CE. This event is known as the Millennium Eruption or Tianchi eruption. It is one of the most powerful volcanic eruptions in recorded history; classified at least a VEI 6.

<span class="mw-page-title-main">Kurile Lake</span> Caldera lake in the Kamchatka peninsula, Russia

Kurile Lake is a caldera and crater lake in Kamchatka, Russia. It is also known as Kurilskoye Lake or Kuril Lake. It is part of the Eastern Volcanic Zone of Kamchatka which, together with the Sredinny Range, forms one of the volcanic belts of Kamchatka. These volcanoes form from the subduction of the Pacific Plate beneath the Okhotsk Plate and the Asian Plate.

There are two large sulfate spikes caused by mystery volcanic eruptions in the mid-1400s: the 1452/1453 mystery eruption and 1458 mystery eruption. Before 2012, the date of 1458 sulfate spike was incorrectly assigned to be 1452 because previous ice core work had poor time resolution. The exact location of this eruption is uncertain, but possible candidates include the submerged caldera of Kuwae in the Coral Sea, Mount Reclus and Tofua caldera. The eruption is believed to have been VEI-7.

Laika or Laïka is a small uninhabited island in the Pacific Ocean, a part of the Shepherd Islands archipelago in the Shefa Province of Vanuatu.

<span class="mw-page-title-main">Tefala (Vanuatu)</span> Uninhabited island in the country of Vanuatu

Tefala is a small uninhabited island in the Pacific Ocean, belonging to the Shefa Province of Vanuatu.

Fatumiala is a small island in the Pacific Ocean, a part of the Shefa Province of Vanuatu.

The 1452/1453 mystery eruption is an unidentified volcanic event that triggered the first large sulfate spike in the 1450s, succeeded by another spike in 1458 caused by another mysterious eruption. The eruption caused a severe volcanic winter leading to one of strongest cooling events in the Northern Hemisphere. This date also coincides with a substantial intensification of the Little Ice Age.

<span class="mw-page-title-main">Mangakino caldera complex</span> A volcanic caldera in New Zealand

The Mangakino caldera complex is the westernmost and one of oldest extinct rhyolitic caldera volcanoes in the Taupō Volcanic Zone of New Zealand's North Island. It produced about a million years ago in the Kidnappers eruption of 1,200 km3 (287.9 cu mi), the most widespread ignimbrite deposits on Earth being over 45,000 km2 (17,000 sq mi) and was closely followed in time by the smaller 200 km3 (48.0 cu mi) Rocky Hill eruption. The Kidnappers eruption had a estimated VEI of 8 and has been assigned a total eruption volume of 2,760 km3 (662.2 cu mi).

<span class="mw-page-title-main">Cascade Volcanic Arc calderas</span>

The Cascade Volcanic Arc is a chain of volcanoes stretching from southern British Columbia down to northern California. Within the arc there is a variety of stratovolcanoes like Mount Rainier and broad shield volcanoes like Medicine Lake. But calderas are very rare in the Cascades, with very few forming over the 39 million year lifespan of the arc.

<span class="mw-page-title-main">East Epi (volcano)</span> Submarine volcano in Vanuatu

East of the Vanuatu island of Epi can be found a series of active underwater volcanic cones and a caldera which last erupted in 2023. These series of submarine volcanoes are generally referred as East Epi, and the 3 bigger cones have specific names, from west to east, Epi-A, Epi-B and Epi-C. All of these cones have had intermittent activity in this and the last century.

References

  1. 1 2 3 4 5 6 7 "Kuwae". Global Volcanism Program . Smithsonian Institution . Retrieved 2015-10-31.
  2. Nemeth, K; Cronin, SJ; White, JDL (2007). "Kuwae caldera and climate confusion". The Open Geology Journal. 1 (1): 7–11. Bibcode:2007OGJ.....1....7N. doi: 10.2174/1874262900701010007 .
  3. Garanger, José (1972). Archéologie des Nouvelles-Hébrides. doi:10.4000/books.sdo.859. ISBN   978-2-85430-054-3.
  4. "Unnamed Volcano, Vanuatu | John Seach". volcanolive.com. Retrieved 2023-01-18.
  5. Eissen, Jean-Philippe; Robin, Claude; Mollard, Lucien; Ihilly, Claude; Seoule, S. (1991). "Rapport de la mission CALIS : calderas du Vanuatu (N.O. ALIS du 13 au 31 mai 1991) = CALIS cruise report : calderas of Vanuatu (R/V ALIS, 13 to 31 may 1991) : document de travail" (in French).
  6. 1 2 Monzier, Michel; Robin, Claude; Eissen, Jean-Philippe (January 1994). "Kuwae (≈ 1425 A.D.): the forgotten caldera". Journal of Volcanology and Geothermal Research. 59 (3): 207–218. Bibcode:1994JVGR...59..207M. doi:10.1016/0377-0273(94)90091-4.
  7. 1 2 Nemeth, Karoly; Cronin, Shane J.; White, James D.L. (26 December 2007). "Kuwae Caldera and Climate Confusion". The Open Geology Journal. 1 (1): 7–11. Bibcode:2007OGJ.....1....7N. doi: 10.2174/1874262900701010007 .
  8. Gorton, Michael Peter (1974). The geochemistry and geochronology of the New Hebrides (Thesis). doi:10.25911/5d6f9d5027a49. hdl:1885/140100. OCLC   12822851.
  9. Wirrmann, Denis; Eagar, Stephen H.; Harper, Margaret A.; Leroy, Éric; Sémah, Anne-Marie (December 2011). "First insights into mid-Holocene environmental change in central Vanuatu inferred from a terrestrial record from Emaotfer Swamp, Efaté Island". Quaternary Science Reviews. 30 (27–28): 3908–3924. Bibcode:2011QSRv...30.3908W. doi:10.1016/j.quascirev.2011.10.003.
  10. 1 2 Robin, Claude; Monzier, Michel; Eissen, Jean-Philippe (August 1994). "Formation of the mid-fifteenth century Kuwae caldera (Vanuatu) by an initial hydroclastic and subsequent ignimbritic eruption". Bulletin of Volcanology. 56 (3): 170–183. Bibcode:1994BVol...56..170R. doi:10.1007/BF00279602. S2CID   73704523.
  11. 1 2 Witter, J. B.; Self, S. (9 November 2006). "The Kuwae (Vanuatu) eruption of AD 1452: potential magnitude and volatile release". Bulletin of Volcanology. 69 (3): 301–318. doi:10.1007/s00445-006-0075-4. S2CID   129403009.
  12. 1 2 "Secrets of Kuwae begin to be revealed - CHL - ANU". chl.anu.edu.au. Retrieved 2023-01-18.[ permanent dead link ]
  13. Witter, Jeffrey B. (1997). Volatile Emissions and Potential Climatic Impact of the Great Kuwae (Vanuatu) Eruption of [Circa] 1452-3 A.D. (Thesis). ProQuest   2561564926.
  14. Garanger, José (1976). "Tradition orale et préhistoire en Océanie" [Oral tradition and prehistory in Oceania]. Cahiers ORSTOM Série Sciences Humaines (in French). 13 (2): 147–161.
  15. Cole-Dai, Jihong; Ferris, David G.; Lanciki, Alyson L.; Savarino, Joël; Thiemens, Mark H.; McConnell, Joseph R. (27 July 2013). "Two likely stratospheric volcanic eruptions in the 1450s C.E. found in a bipolar, subannually dated 800 year ice core record". Journal of Geophysical Research: Atmospheres. 118 (14): 7459–7466. Bibcode:2013JGRD..118.7459C. doi: 10.1002/jgrd.50587 . S2CID   129790360.
  16. Plummer, C. T.; Curran, M. A. J.; van Ommen, T. D.; Rasmussen, S. O.; Moy, A. D.; Vance, T. R.; Clausen, H. B.; Vinther, B. M.; Mayewski, P. A. (2 May 2012). "An independently dated 2000-yr volcanic record from Law Dome, East Antarctica, including a new perspective on the dating of the c. 1450s eruption of Kuwae, Vanuatu". doi: 10.5194/cpd-8-1567-2012 .{{cite journal}}: Cite journal requires |journal= (help)
  17. Hartman, Laura H.; Kurbatov, Andrei V.; Winski, Dominic A.; Cruz-Uribe, Alicia M.; Davies, Siwan M.; Dunbar, Nelia W.; Iverson, Nels A.; Aydin, Murat; Fegyveresi, John M.; Ferris, David G.; Fudge, T. J.; Osterberg, Erich C.; Hargreaves, Geoffrey M.; Yates, Martin G. (8 October 2019). "Volcanic glass properties from 1459 C.E. volcanic event in South Pole ice core dismiss Kuwae caldera as a potential source". Scientific Reports. 9 (1): 14437. Bibcode:2019NatSR...914437H. doi:10.1038/s41598-019-50939-x. PMC   6783439 . PMID   31595040.
  18. Vanuatu : îles de cendre et de corail
  19. Dossier

Further reading