Geodesy |
---|

The **geographic coordinate system** (**GCS**) is a spherical or ellipsoidal coordinate system for measuring and communicating positions directly on the Earth as latitude and longitude.^{ [1] } It is the simplest, oldest and most widely used of the various spatial reference systems that are in use, and forms the basis for most others. Although latitude and longitude form a coordinate tuple like a cartesian coordinate system, the geographic coordinate system is not cartesian because the measurements are angles and are not on a planar surface.^{ [2] }^{[ self-published source? ]}

- History
- Latitude and longitude
- Geodetic datum
- Length of a degree
- Alternate encodings
- See also
- Notes
- References
- Sources
- External links

A full GCS specification, such as those listed in the EPSG and ISO 19111 standards, also includes a choice of geodetic datum (including an Earth ellipsoid), as different datums will yield different latitude and longitude values for the same location.^{ [3] }

The invention of a geographic coordinate system is generally credited to Eratosthenes of Cyrene, who composed his now-lost * Geography * at the Library of Alexandria in the 3rd century BC.^{ [4] } A century later, Hipparchus of Nicaea improved on this system by determining latitude from stellar measurements rather than solar altitude and determining longitude by timings of lunar eclipses, rather than dead reckoning. In the 1st or 2nd century, Marinus of Tyre compiled an extensive gazetteer and mathematically plotted world map using coordinates measured east from a prime meridian at the westernmost known land, designated the Fortunate Isles, off the coast of western Africa around the Canary or Cape Verde Islands, and measured north or south of the island of Rhodes off Asia Minor. Ptolemy credited him with the full adoption of longitude and latitude, rather than measuring latitude in terms of the length of the midsummer day.^{ [5] }

Ptolemy's 2nd-century *Geography* used the same prime meridian but measured latitude from the Equator instead. After their work was translated into Arabic in the 9th century, Al-Khwārizmī's * Book of the Description of the Earth * corrected Marinus' and Ptolemy's errors regarding the length of the Mediterranean Sea,^{ [note 1] } causing medieval Arabic cartography to use a prime meridian around 10° east of Ptolemy's line. Mathematical cartography resumed in Europe following Maximus Planudes' recovery of Ptolemy's text a little before 1300; the text was translated into Latin at Florence by Jacobus Angelus around 1407.

In 1884, the United States hosted the International Meridian Conference, attended by representatives from twenty-five nations. Twenty-two of them agreed to adopt the longitude of the Royal Observatory in Greenwich, England as the zero-reference line. The Dominican Republic voted against the motion, while France and Brazil abstained.^{ [6] } France adopted Greenwich Mean Time in place of local determinations by the Paris Observatory in 1911.

The "latitude" (abbreviation: Lat., φ, or phi) of a point on Earth's surface is the angle between the equatorial plane and the straight line that passes through that point and through (or close to) the center of the Earth.^{ [note 2] } Lines joining points of the same latitude trace circles on the surface of Earth called parallels, as they are parallel to the Equator and to each other. The North Pole is 90° N; the South Pole is 90° S. The 0° parallel of latitude is designated the Equator, the fundamental plane of all geographic coordinate systems. The Equator divides the globe into Northern and Southern Hemispheres.

The "longitude" (abbreviation: Long., λ, or lambda) of a point on Earth's surface is the angle east or west of a reference meridian to another meridian that passes through that point. All meridians are halves of great ellipses (often called great circles), which converge at the North and South Poles. The meridian of the British Royal Observatory in Greenwich, in southeast London, England, is the international prime meridian, although some organizations—such as the French Institut national de l'information géographique et forestière—continue to use other meridians for internal purposes. The prime meridian determines the proper Eastern and Western Hemispheres, although maps often divide these hemispheres further west in order to keep the Old World on a single side. The antipodal meridian of Greenwich is both 180°W and 180°E. This is not to be conflated with the International Date Line, which diverges from it in several places for political and convenience reasons, including between far eastern Russia and the far western Aleutian Islands.

The combination of these two components specifies the position of any location on the surface of Earth, without consideration of altitude or depth. The visual grid on a map formed by lines of latitude and longitude is known as a * graticule *.^{ [7] } The origin/zero point of this system is located in the Gulf of Guinea about 625 km (390 mi) south of Tema, Ghana, a location often facetiously called Null Island.

In order to be unambiguous about the direction of "vertical" and the "horizontal" surface above which they are measuring, map-makers choose a reference ellipsoid with a given origin and orientation that best fits their need for the area to be mapped. They then choose the most appropriate mapping of the spherical coordinate system onto that ellipsoid, called a terrestrial reference system or geodetic datum.

Datums may be global, meaning that they represent the whole Earth, or they may be local, meaning that they represent an ellipsoid best-fit to only a portion of the Earth. Points on the Earth's surface move relative to each other due to continental plate motion, subsidence, and diurnal Earth tidal movement caused by the Moon and the Sun. This daily movement can be as much as a meter. Continental movement can be up to 10 cm a year, or 10 m in a century. A weather system high-pressure area can cause a sinking of 5 mm. Scandinavia is rising by 1 cm a year as a result of the melting of the ice sheets of the last ice age, but neighboring Scotland is rising by only 0.2 cm. These changes are insignificant if a local datum is used, but are statistically significant if a global datum is used.^{ [8] }

Examples of global datums include World Geodetic System (WGS 84, also known as EPSG:4326^{ [9] }), the default datum used for the Global Positioning System,^{ [note 3] } and the International Terrestrial Reference System and Frame (ITRF), used for estimating continental drift and crustal deformation.^{ [10] } The distance to Earth's center can be used both for very deep positions and for positions in space.^{ [8] }

Local datums chosen by a national cartographical organization include the North American Datum, the European ED50, and the British OSGB36. Given a location, the datum provides the latitude and longitude . In the United Kingdom there are three common latitude, longitude, and height systems in use. WGS 84 differs at Greenwich from the one used on published maps OSGB36 by approximately 112 m. The military system ED50, used by NATO, differs from about 120 m to 180 m.^{ [8] }

The latitude and longitude on a map made against a local datum may not be the same as one obtained from a GPS receiver. Converting coordinates from one datum to another requires a datum transformation such as a Helmert transformation, although in certain situations a simple translation may be sufficient.^{ [11] }

In popular GIS software, data projected in latitude/longitude is often represented as a *Geographic Coordinate System*. For example, data in latitude/longitude if the datum is the North American Datum of 1983 is denoted by 'GCS North American 1983'.

On the GRS80 or WGS84 spheroid at sea level at the Equator, one latitudinal second measures 30.715 meters, one latitudinal minute is 1843 meters and one latitudinal degree is 110.6 kilometers. The circles of longitude, meridians, meet at the geographical poles, with the west–east width of a second naturally decreasing as latitude increases. On the Equator at sea level, one longitudinal second measures 30.92 meters, a longitudinal minute is 1855 meters and a longitudinal degree is 111.3 kilometers. At 30° a longitudinal second is 26.76 meters, at Greenwich (51°28′38″N) 19.22 meters, and at 60° it is 15.42 meters.

On the WGS84 spheroid, the length in meters of a degree of latitude at latitude φ (that is, the number of meters you would have to travel along a north–south line to move 1 degree in latitude, when at latitude φ), is about

The returned measure of meters per degree latitude varies continuously with latitude.

Similarly, the length in meters of a degree of longitude can be calculated as

(Those coefficients can be improved, but as they stand the distance they give is correct within a centimeter.)

The formulae both return units of meters per degree.

An alternative method to estimate the length of a longitudinal degree at latitude is to assume a spherical Earth (to get the width per minute and second, divide by 60 and 3600, respectively):

where Earth's average meridional radius is 6,367,449 m. Since the Earth is an oblate spheroid, not spherical, that result can be off by several tenths of a percent; a better approximation of a longitudinal degree at latitude is

where Earth's equatorial radius equals *6,378,137 m* and ; for the GRS80 and WGS84 spheroids, b/a calculates to be 0.99664719. ( is known as the reduced (or parametric) latitude). Aside from rounding, this is the exact distance along a parallel of latitude; getting the distance along the shortest route will be more work, but those two distances are always within 0.6 meter of each other if the two points are one degree of longitude apart.

Latitude | City | Degree | Minute | Second | ±0.0001° |
---|---|---|---|---|---|

60° | Saint Petersburg | 55.80 km | 0.930 km | 15.50 m | 5.58 m |

51° 28′ 38″ N | Greenwich | 69.47 km | 1.158 km | 19.30 m | 6.95 m |

45° | Bordeaux | 78.85 km | 1.31 km | 21.90 m | 7.89 m |

30° | New Orleans | 96.49 km | 1.61 km | 26.80 m | 9.65 m |

0° | Quito | 111.3 km | 1.855 km | 30.92 m | 11.13 m |

Like any series of multiple-digit numbers, latitude-longitude pairs can be challenging to communicate and remember. Therefore, alternative schemes have been developed for encoding GCS coordinates into alphanumeric strings or words:

- the Maidenhead Locator System, popular with radio operators.
- the World Geographic Reference System (GEOREF), developed for global military operations, replaced by the current Global Area Reference System (GARS).
- Open Location Code or "Plus Codes", developed by Google and released into the public domain.
- Geohash, a public domain system based on the Morton Z-order curve.
- What3words, a proprietary system that encodes GCS coordinates as pseudorandom sets of words by dividing the coordinates into three numbers and looking up words in an indexed dictionary.
- Military Grid Reference System is the geocoordinate standard used by NATO militaries for locating points on Earth.

- Decimal degrees – Angular measurements, typically for latitude and longitude
- Geographical distance – Distance measured along the surface of the earth
- Geographic information system – System to capture, manage and present geographic data
- Geo URI scheme
- ISO 6709, standard representation of geographic point location by coordinates
- Linear referencing
- Primary direction – Celestial coordinate system
- Planetary coordinate system
- Spatial reference system – System to specify locations on Earth
- Jan Smits (2015). Mathematical data for bibliographic descriptions of cartographic materials and spatial data.
*Geographical co-ordinates*. ICA Commission on Map Projections.

- ↑ The pair had accurate absolute distances within the Mediterranean but underestimated the circumference of the Earth, causing their degree measurements to overstate its length west from Rhodes or Alexandria, respectively.
- ↑ Alternative versions of latitude and longitude include geocentric coordinates, which measure with respect to Earth's center; geodetic coordinates, which model Earth as an ellipsoid; and geographic coordinates, which measure with respect to a plumb line at the location for which coordinates are given.
- ↑ WGS 84 is the default datum used in most GPS equipment, but other datums can be selected.

In geography, **latitude** is a coordinate that specifies the north–south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from –90° at the south pole to 90° at the north pole, with 0° at the Equator. Lines of constant latitude, or *parallels*, run east–west as circles parallel to the equator. Latitude and *longitude* are used together as a coordinate pair to specify a location on the surface of the Earth.

**Earth radius** is the distance from the center of Earth to a point on or near its surface. Approximating the figure of Earth by an Earth spheroid, the radius ranges from a maximum of nearly 6,378 km (3,963 mi) to a minimum of nearly 6,357 km (3,950 mi).

A **projected coordinate system**, also known as a **projected coordinate reference system**, a **planar coordinate system**, or **grid reference system**, is a type of spatial reference system that represents locations on the Earth using cartesian coordinates (*x*,*y*) on a planar surface created by a particular map projection. Each projected coordinate system, such as "Universal Transverse Mercator WGS 84 Zone 26N," is defined by a choice of map projection, a choice of geodetic datum to bind the coordinate system to real locations on the earth, an origin point, and a choice of unit of measure. Hundreds of projected coordinate systems have been specified for various purposes in various regions.

The **World Geodetic System** (**WGS**) is a standard for use in cartography, geodesy, and satellite navigation including GPS. This standard includes the definition of the coordinate system's fundamental and derived constants, the normal gravity Earth Gravitational Model (EGM), a description of the associated World Magnetic Model (WMM), and a current list of local datum transformations.

In geodesy, **conversion** among different **geographic coordinate** systems is made necessary by the different geographic coordinate systems in use across the world and over time. Coordinate conversion is composed of a number of different types of conversion: format change of geographic coordinates, conversion of coordinate systems, or transformation to different geodetic datums. Geographic coordinate conversion has applications in cartography, surveying, navigation and geographic information systems.

The **transverse Mercator** map projection is an adaptation of the standard Mercator projection. The transverse version is widely used in national and international mapping systems around the world, including the Universal Transverse Mercator. When paired with a suitable geodetic datum, the transverse Mercator delivers high accuracy in zones less than a few degrees in east-west extent.

A **geodetic datum** or **geodetic system** is a global datum reference or reference frame for precisely representing the position of locations on Earth or other planetary bodies by means of *geodetic coordinates*. Datums are crucial to any technology or technique based on spatial location, including geodesy, navigation, surveying, geographic information systems, remote sensing, and cartography. A **horizontal datum** is used to measure a location across the Earth's surface, in latitude and longitude or another coordinate system; a *vertical datum* is used to measure the elevation or depth relative to a standard origin, such as mean sea level (MSL). Since the rise of the global positioning system (GPS), the ellipsoid and datum WGS 84 it uses has supplanted most others in many applications. The WGS 84 is intended for global use, unlike most earlier datums.

The **equirectangular projection**, and which includes the special case of the **plate carrée projection**, is a simple map projection attributed to Marinus of Tyre, who Ptolemy claims invented the projection about AD 100. The projection maps meridians to vertical straight lines of constant spacing, and circles of latitude to horizontal straight lines of constant spacing. The projection is neither equal area nor conformal. Because of the distortions introduced by this projection, it has little use in navigation or cadastral mapping and finds its main use in thematic mapping. In particular, the plate carrée has become a standard for global raster datasets, such as Celestia, NASA World Wind, the USGS Astrogeology Research Program, and Natural Earth, because of the particularly simple relationship between the position of an image pixel on the map and its corresponding geographic location on Earth or other spherical solar system bodies. In addition it is frequently used in panoramic photography to represent a spherical panoramic image.

**ED50** is a geodetic datum which was defined after World War II for the international connection of geodetic networks.

The **Universal Transverse Mercator** (**UTM**) is a map projection system for assigning coordinates to locations on the surface of the Earth. Like the traditional method of latitude and longitude, it is a horizontal position representation, which means it ignores altitude and treats the earth as a perfect ellipsoid. However, it differs from global latitude/longitude in that it divides earth into 60 zones and projects each to the plane as a basis for its coordinates. Specifying a location means specifying the zone and the *x*, *y* coordinate in that plane. The projection from spheroid to a UTM zone is some parameterization of the transverse Mercator projection. The parameters vary by nation or region or mapping system.

A **Lambert conformal conic projection** (**LCC**) is a conic map projection used for aeronautical charts, portions of the State Plane Coordinate System, and many national and regional mapping systems. It is one of seven projections introduced by Johann Heinrich Lambert in his 1772 publication *Anmerkungen und Zusätze zur Entwerfung der Land- und Himmelscharten*.

A **spatial reference system** (**SRS**) or **coordinate reference system** (**CRS**) is a framework used to precisely measure locations on the surface of the Earth as coordinates. It is thus the application of the abstract mathematics of coordinate systems and analytic geometry to geographic space. A particular SRS specification comprises a choice of Earth ellipsoid, horizontal datum, map projection, origin point, and unit of measure. Thousands of coordinate systems have been specified for use around the world or in specific regions and for various purposes, necessitating transformations between different SRS.

The **North American Datum** (**NAD**) is the horizontal datum now used to define the geodetic network in North America. A datum is a formal description of the shape of the Earth along with an "anchor" point for the coordinate system. In surveying, cartography, and land-use planning, two North American Datums are in use for making lateral or "horizontal" measurements: the North American Datum of 1927 (NAD 27) and the North American Datum of 1983 (NAD 83). Both are geodetic reference systems based on slightly different assumptions and measurements.

The **Earth-centered, Earth-fixed coordinate system**, also known as the **geocentric coordinate system**, is a cartesian spatial reference system that represents locations in the vicinity of the Earth as *X*, *Y*, and *Z* measurements from its center of mass. Its most common use is in tracking the orbits of satellites and in satellite navigation systems for measuring locations on the surface of the Earth, but it is also used in applications such as tracking crustal motion.

In geodesy and navigation, a **meridian arc** is the curve between two points on the Earth's surface having the same longitude. The term may refer either to a segment of the meridian, or to its length.

An **Earth ellipsoid** or **Earth spheroid** is a mathematical figure approximating the Earth's form, used as a reference frame for computations in geodesy, astronomy, and the geosciences. Various different ellipsoids have been used as approximations.

**Geodetic coordinates** are a type of curvilinear orthogonal coordinate system used in geodesy based on a *reference ellipsoid*. They include **geodetic latitude** (north/south) ϕ, *longitude* (east/west) λ, and **ellipsoidal height**h. The triad is also known as **Earth ellipsoidal coordinates**.

The **equidistant conic projection** is a conic map projection commonly used for maps of small countries as well as for larger regions such as the continental United States that are elongated east-to-west.

**Web Mercator**, **Google Web Mercator**, **Spherical Mercator**, **WGS 84 Web Mercator** or **WGS 84/Pseudo-Mercator** is a variant of the Mercator map projection and is the de facto standard for Web mapping applications. It rose to prominence when Google Maps adopted it in 2005. It is used by virtually all major online map providers, including Google Maps, CARTO, Mapbox, Bing Maps, OpenStreetMap, Mapquest, Esri, and many others. Its official EPSG identifier is EPSG:3857, although others have been used historically.

- ↑ Chang, Kang-tsung (2016).
*Introduction to Geographic Information Systems*(9th ed.). McGraw-Hill. p. 24. ISBN 978-1-259-92964-9. - ↑ Taylor, Chuck. "Locating a Point On the Earth". Archived from the original on 3 March 2016. Retrieved 4 March 2014.
- ↑ "Using the EPSG geodetic parameter dataset, Guidance Note 7-1".
*EPSG Geodetic Parameter Dataset*. Geomatic Solutions. Retrieved 15 December 2021. - ↑ McPhail, Cameron (2011),
*Reconstructing Eratosthenes' Map of the World*(PDF), Dunedin: University of Otago, pp. 20–24. - ↑ Evans, James (1998),
*The History and Practice of Ancient Astronomy*, Oxford, England: Oxford University Press, pp. 102–103, ISBN 9780199874453 . - ↑ Greenwich 2000 Limited (9 June 2011). "The International Meridian Conference". Wwp.millennium-dome.com. Archived from the original on 6 August 2012. Retrieved 31 October 2012.
- ↑ American Society of Civil Engineers (1 January 1994).
*Glossary of the Mapping Sciences*. ASCE Publications. p. 224. ISBN 9780784475706. - 1 2 3
*A guide to coordinate systems in Great Britain*(PDF), D00659 v3.6, Ordnance Survey, 2020, retrieved 17 December 2021 - ↑ "WGS 84: EPSG Projection -- Spatial Reference".
*spatialreference.org*. Retrieved 5 May 2020. - ↑ Bolstad, Paul (2012).
*GIS Fundamentals*(PDF) (5th ed.). Atlas books. p. 102. ISBN 978-0-9717647-3-6. - ↑ "Making maps compatible with GPS". Government of Ireland 1999. Archived from the original on 21 July 2011. Retrieved 15 April 2008.
- 1 2 Geographic Information Systems - Stackexchange

*Portions of this article are from Jason Harris' "Astroinfo" which is distributed with**KStars, a desktop planetarium for Linux/KDE. See The KDE Education Project - KStars*

- Media related to Geographic coordinate system at Wikimedia Commons

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.