Geographic coordinate system

Last updated

Longitude lines are perpendicular to and latitude lines are parallel to the Equator FedStats Lat long.svg
Longitude lines are perpendicular to and latitude lines are parallel to the Equator

A geographic coordinate system (GCS) is a spherical or geodetic coordinate system for measuring and communicating positions directly on Earth as latitude and longitude. [1] It is the simplest, oldest and most widely used of the various spatial reference systems that are in use, and forms the basis for most others. Although latitude and longitude form a coordinate tuple like a cartesian coordinate system, the geographic coordinate system is not cartesian because the measurements are angles and are not on a planar surface. [2]

Contents

A full GCS specification, such as those listed in the EPSG and ISO 19111 standards, also includes a choice of geodetic datum (including an Earth ellipsoid), as different datums will yield different latitude and longitude values for the same location. [3]

History

The invention of a geographic coordinate system is generally credited to Eratosthenes of Cyrene, who composed his now-lost Geography at the Library of Alexandria in the 3rd century BC. [4] A century later, Hipparchus of Nicaea improved on this system by determining latitude from stellar measurements rather than solar altitude and determining longitude by timings of lunar eclipses, rather than dead reckoning. In the 1st or 2nd century, Marinus of Tyre compiled an extensive gazetteer and mathematically plotted world map using coordinates measured east from a prime meridian at the westernmost known land, designated the Fortunate Isles, off the coast of western Africa around the Canary or Cape Verde Islands, and measured north or south of the island of Rhodes off Asia Minor. Ptolemy credited him with the full adoption of longitude and latitude, rather than measuring latitude in terms of the length of the midsummer day. [5]

Ptolemy's 2nd-century Geography used the same prime meridian but measured latitude from the Equator instead. After their work was translated into Arabic in the 9th century, Al-Khwārizmī's Book of the Description of the Earth corrected Marinus' and Ptolemy's errors regarding the length of the Mediterranean Sea, [note 1] causing medieval Arabic cartography to use a prime meridian around 10° east of Ptolemy's line. Mathematical cartography resumed in Europe following Maximus Planudes' recovery of Ptolemy's text a little before 1300; the text was translated into Latin at Florence by Jacopo d'Angelo around 1407.

In 1884, the United States hosted the International Meridian Conference, attended by representatives from twenty-five nations. Twenty-two of them agreed to adopt the longitude of the Royal Observatory in Greenwich, England as the zero-reference line. The Dominican Republic voted against the motion, while France and Brazil abstained. [6] France adopted Greenwich Mean Time in place of local determinations by the Paris Observatory in 1911.

Latitude and longitude

Diagram of the latitude ph and longitude l angle measurements for a spherical model of the Earth. Latitude and longitude graticule on a sphere.svg
Diagram of the latitude ϕ and longitude λ angle measurements for a spherical model of the Earth.

The latitude ϕ of a point on Earth's surface is the angle between the equatorial plane and the straight line that passes through that point and through (or close to) the center of the Earth. [note 2] Lines joining points of the same latitude trace circles on the surface of Earth called parallels, as they are parallel to the Equator and to each other. The North Pole is 90° N; the South Pole is 90° S. The 0° parallel of latitude is designated the Equator, the fundamental plane of all geographic coordinate systems. The Equator divides the globe into Northern and Southern Hemispheres.

The longitude λ of a point on Earth's surface is the angle east or west of a reference meridian to another meridian that passes through that point. All meridians are halves of great ellipses (often called great circles), which converge at the North and South Poles. The meridian of the British Royal Observatory in Greenwich, in southeast London, England, is the international prime meridian, although some organizations—such as the French Institut national de l'information géographique et forestière —continue to use other meridians for internal purposes. The prime meridian determines the proper Eastern and Western Hemispheres, although maps often divide these hemispheres further west in order to keep the Old World on a single side. The antipodal meridian of Greenwich is both 180°W and 180°E. This is not to be conflated with the International Date Line, which diverges from it in several places for political and convenience reasons, including between far eastern Russia and the far western Aleutian Islands.

The combination of these two components specifies the position of any location on the surface of Earth, without consideration of altitude or depth. The visual grid on a map formed by lines of latitude and longitude is known as a graticule . [7] The origin/zero point of this system is located in the Gulf of Guinea about 625 km (390 mi) south of Tema, Ghana, a location often facetiously called Null Island.

Geodetic datum

In order to use the theoretical definitions of latitude, longitude, and height to precisely measure actual locations on the physical earth, a geodetic datum must be used. A horizonal datum is used to precisely measure latitude and longitude, while a vertical datum is used to measure elevation or altitude. Both types of datum bind a mathematical model of the shape of the earth (usually a reference ellipsoid for a horizontal datum, and a more precise geoid for a vertical datum) to the earth. Traditionally, this binding was created by a network of control points, surveyed locations at which monuments are installed, and were only accurate for a region of the surface of the Earth. Some newer datums are bound to the center of mass of the Earth.

This combination of mathematical model and physical binding mean that anyone using the same datum will obtain the same location measurement for the same physical location. However, two different datums will usually yield different location measurements for the same physical location, which may appear to differ by as much as several hundred meters; this not because the location has moved, but because the reference system used to measure it has shifted. Because any spatial reference system or map projection is ultimately calculated from latitude and longitude, it is crucial that they clearly state the datum on which they are based. For example, a UTM coordinate based on WGS84 will be different than a UTM coordinate based on NAD27 for the same location. Converting coordinates from one datum to another requires a datum transformation such as a Helmert transformation, although in certain situations a simple translation may be sufficient. [8]

Datums may be global, meaning that they represent the whole Earth, or they may be local, meaning that they represent an ellipsoid best-fit to only a portion of the Earth. Examples of global datums include World Geodetic System (WGS 84, also known as EPSG:4326 [9] ), the default datum used for the Global Positioning System, [note 3] and the International Terrestrial Reference System and Frame (ITRF), used for estimating continental drift and crustal deformation. [10] The distance to Earth's center can be used both for very deep positions and for positions in space. [11]

Local datums chosen by a national cartographical organization include the North American Datum, the European ED50, and the British OSGB36. Given a location, the datum provides the latitude and longitude . In the United Kingdom there are three common latitude, longitude, and height systems in use. WGS 84 differs at Greenwich from the one used on published maps OSGB36 by approximately 112 m. The military system ED50, used by NATO, differs from about 120 m to 180 m. [11]

Points on the Earth's surface move relative to each other due to continental plate motion, subsidence, and diurnal Earth tidal movement caused by the Moon and the Sun. This daily movement can be as much as a meter. Continental movement can be up to 10 cm a year, or 10 m in a century. A weather system high-pressure area can cause a sinking of 5 mm. Scandinavia is rising by 1 cm a year as a result of the melting of the ice sheets of the last ice age, but neighboring Scotland is rising by only 0.2 cm. These changes are insignificant if a local datum is used, but are statistically significant if a global datum is used. [11]

Length of a degree

On the GRS 80 or WGS 84 spheroid at sea level at the Equator, one latitudinal second measures 30.715 m, one latitudinal minute is 1843 m and one latitudinal degree is 110.6 km. The circles of longitude, meridians, meet at the geographical poles, with the west–east width of a second naturally decreasing as latitude increases. On the Equator at sea level, one longitudinal second measures 30.92 m, a longitudinal minute is 1855 m and a longitudinal degree is 111.3 km. At 30° a longitudinal second is 26.76 m, at Greenwich (51°28′38″N) 19.22 m, and at 60° it is 15.42 m.

On the WGS 84 spheroid, the length in meters of a degree of latitude at latitude ϕ (that is, the number of meters you would have to travel along a north–south line to move 1 degree in latitude, when at latitude ϕ), is about

[12]

The returned measure of meters per degree latitude varies continuously with latitude.

Similarly, the length in meters of a degree of longitude can be calculated as

[12]

(Those coefficients can be improved, but as they stand the distance they give is correct within a centimeter.)

The formulae both return units of meters per degree.

An alternative method to estimate the length of a longitudinal degree at latitude is to assume a spherical Earth (to get the width per minute and second, divide by 60 and 3600, respectively):

where Earth's average meridional radius is 6,367,449 m. Since the Earth is an oblate spheroid, not spherical, that result can be off by several tenths of a percent; a better approximation of a longitudinal degree at latitude is

where Earth's equatorial radius equals 6,378,137 m and ; for the GRS 80 and WGS 84 spheroids, . ( is known as the reduced (or parametric) latitude). Aside from rounding, this is the exact distance along a parallel of latitude; getting the distance along the shortest route will be more work, but those two distances are always within 0.6 m of each other if the two points are one degree of longitude apart.

Longitudinal length equivalents at selected latitudes
LatitudeCityDegreeMinuteSecond0.0001°
60° Saint Petersburg 55.80 km0.930 km15.50 m5.58 m
51° 28′ 38″ N Greenwich 69.47 km1.158 km19.30 m6.95 m
45° Bordeaux 78.85 km1.31 km21.90 m7.89 m
30° New Orleans 96.49 km1.61 km26.80 m9.65 m
Quito 111.3 km1.855 km30.92 m11.13 m

Alternate encodings

Like any series of multiple-digit numbers, latitude-longitude pairs can be challenging to communicate and remember. Therefore, alternative schemes have been developed for encoding GCS coordinates into alphanumeric strings or words:

These are not distinct coordinate systems, only alternative methods for expressing latitude and longitude measurements.

See also

Notes

  1. The pair had accurate absolute distances within the Mediterranean but underestimated the circumference of the Earth, causing their degree measurements to overstate its length west from Rhodes or Alexandria, respectively.
  2. Alternative versions of latitude and longitude include geocentric coordinates, which measure with respect to Earth's center; geodetic coordinates, which model Earth as an ellipsoid; and geographic coordinates, which measure with respect to a plumb line at the location for which coordinates are given.
  3. WGS 84 is the default datum used in most GPS equipment, but other datums can be selected.

Related Research Articles

<span class="mw-page-title-main">Geodesy</span> Science of measuring the shape, orientation, and gravity of Earth

Geodesy or geodetics is the science of measuring and representing the geometry, gravity, and spatial orientation of the Earth in temporally varying 3D. It is called planetary geodesy when studying other astronomical bodies, such as planets or circumplanetary systems. Geodesy is an earth science and many consider the study of Earth's shape and gravity to be central to that science. It is also a discipline of applied mathematics.

<span class="mw-page-title-main">Latitude</span> Geographic coordinate specifying north–south position

In geography, latitude is a coordinate that specifies the north–south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from −90° at the south pole to 90° at the north pole, with 0° at the Equator. Lines of constant latitude, or parallels, run east–west as circles parallel to the equator. Latitude and longitude are used together as a coordinate pair to specify a location on the surface of the Earth.

<span class="mw-page-title-main">Longitude</span> Geographic coordinate that specifies the east-west position of a point on the Earths surface

Longitude is a geographic coordinate that specifies the east–west position of a point on the surface of the Earth, or another celestial body. It is an angular measurement, usually expressed in degrees and denoted by the Greek letter lambda (λ). Meridians are imaginary semicircular lines running from pole to pole that connect points with the same longitude. The prime meridian defines 0° longitude; by convention the International Reference Meridian for the Earth passes near the Royal Observatory in Greenwich, south-east London on the island of Great Britain. Positive longitudes are east of the prime meridian, and negative ones are west.

<span class="mw-page-title-main">Spherical coordinate system</span> Coordinates comprising a distance and two angles

In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a given point in space is specified by three real numbers: the radial distancer along the radial line connecting the point to the fixed point of origin; the polar angleθ between the radial line and a given polar axis; and the azimuthal angleφ as the angle of rotation of the radial line around the polar axis. (See graphic re the "physics convention".) Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates. The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle) is called the reference plane (sometimes fundamental plane).

<span class="mw-page-title-main">Astronomical coordinate systems</span> System for specifying positions of celestial objects

In astronomy, coordinate systems are used for specifying positions of celestial objects relative to a given reference frame, based on physical reference points available to a situated observer. Coordinate systems in astronomy can specify an object's relative position in three-dimensional space or plot merely by its direction on a celestial sphere, if the object's distance is unknown or trivial.

<span class="mw-page-title-main">Projected coordinate system</span> Cartesian geographic coordinate system

A projected coordinate system – also called a projected coordinate reference system, planar coordinate system, or grid reference system – is a type of spatial reference system that represents locations on Earth using Cartesian coordinates (x, y) on a planar surface created by a particular map projection. Each projected coordinate system, such as "Universal Transverse Mercator WGS 84 Zone 26N," is defined by a choice of map projection (with specific parameters), a choice of geodetic datum to bind the coordinate system to real locations on the earth, an origin point, and a choice of unit of measure. Hundreds of projected coordinate systems have been specified for various purposes in various regions.

<span class="mw-page-title-main">World Geodetic System</span> Geodetic reference system

The World Geodetic System (WGS) is a standard used in cartography, geodesy, and satellite navigation including GPS. The current version, WGS 84, defines an Earth-centered, Earth-fixed coordinate system and a geodetic datum, and also describes the associated Earth Gravitational Model (EGM) and World Magnetic Model (WMM). The standard is published and maintained by the United States National Geospatial-Intelligence Agency.

In geodesy, conversion among different geographic coordinate systems is made necessary by the different geographic coordinate systems in use across the world and over time. Coordinate conversion is composed of a number of different types of conversion: format change of geographic coordinates, conversion of coordinate systems, or transformation to different geodetic datums. Geographic coordinate conversion has applications in cartography, surveying, navigation and geographic information systems.

<span class="mw-page-title-main">Geodetic datum</span> Reference frame for measuring location

A geodetic datum or geodetic system is a global datum reference or reference frame for unambiguously representing the position of locations on Earth by means of either geodetic coordinates or geocentric coordinates. Datums are crucial to any technology or technique based on spatial location, including geodesy, navigation, surveying, geographic information systems, remote sensing, and cartography. A horizontal datum is used to measure a horizontal position, across the Earth's surface, in latitude and longitude or another related coordinate system. A vertical datum is used to measure the elevation or depth relative to a standard origin, such as mean sea level (MSL). A three-dimensional datum enables the expression of both horizontal and vertical position components in a unified form. The concept can be generalized for other celestial bodies as in planetary datums.

<span class="mw-page-title-main">ED50</span> Reference frame for European geodesy

ED50 is a geodetic datum which was defined after World War II for the international connection of geodetic networks.

<span class="mw-page-title-main">Universal Transverse Mercator coordinate system</span> Map projection system

The Universal Transverse Mercator (UTM) is a map projection system for assigning coordinates to locations on the surface of the Earth. Like the traditional method of latitude and longitude, it is a horizontal position representation, which means it ignores altitude and treats the earth surface as a perfect ellipsoid. However, it differs from global latitude/longitude in that it divides earth into 60 zones and projects each to the plane as a basis for its coordinates. Specifying a location means specifying the zone and the x, y coordinate in that plane. The projection from spheroid to a UTM zone is some parameterization of the transverse Mercator projection. The parameters vary by nation or region or mapping system.

<span class="mw-page-title-main">Lambert conformal conic projection</span> Conic conformal map projection

A Lambert conformal conic projection (LCC) is a conic map projection used for aeronautical charts, portions of the State Plane Coordinate System, and many national and regional mapping systems. It is one of seven projections introduced by Johann Heinrich Lambert in his 1772 publication Anmerkungen und Zusätze zur Entwerfung der Land- und Himmelscharten.

<span class="mw-page-title-main">Spatial reference system</span> System to specify locations on Earth

A spatial reference system (SRS) or coordinate reference system (CRS) is a framework used to precisely measure locations on the surface of Earth as coordinates. It is thus the application of the abstract mathematics of coordinate systems and analytic geometry to geographic space. A particular SRS specification comprises a choice of Earth ellipsoid, horizontal datum, map projection, origin point, and unit of measure. Thousands of coordinate systems have been specified for use around the world or in specific regions and for various purposes, necessitating transformations between different SRS.

<span class="mw-page-title-main">Earth-centered, Earth-fixed coordinate system</span> 3-D coordinate system centered on the Earth

The Earth-centered, Earth-fixed coordinate system, also known as the geocentric coordinate system, is a cartesian spatial reference system that represents locations in the vicinity of the Earth as X, Y, and Z measurements from its center of mass. Its most common use is in tracking the orbits of satellites and in satellite navigation systems for measuring locations on the surface of the Earth, but it is also used in applications such as tracking crustal motion.

<span class="mw-page-title-main">Local tangent plane coordinates</span> Geographic local coordinate system

Local tangent plane coordinates (LTP) are part of a spatial reference system based on the tangent plane defined by the local vertical direction and the Earth's axis of rotation. They are also known as local ellipsoidal system, local geodetic coordinate system, local vertical, local horizontal coordinates (LVLH), or topocentric coordinates. It consists of three coordinates: one represents the position along the northern axis, one along the local eastern axis, and one represents the vertical position. Two right-handed variants exist: east, north, up (ENU) coordinates and north, east, down (NED) coordinates. They serve for representing state vectors that are commonly used in aviation and marine cybernetics.

<span class="mw-page-title-main">Earth ellipsoid</span> Geometric figure which approximates the Earths shape

An Earth ellipsoid or Earth spheroid is a mathematical figure approximating the Earth's form, used as a reference frame for computations in geodesy, astronomy, and the geosciences. Various different ellipsoids have been used as approximations.

<span class="mw-page-title-main">Geographical distance</span> Distance measured along the surface of the Earth

Geographical distance or geodetic distance is the distance measured along the surface of the Earth, or the shortest arch length.

<span class="mw-page-title-main">Geodetic coordinates</span> Geographic coordinate system

Geodetic coordinates are a type of curvilinear orthogonal coordinate system used in geodesy based on a reference ellipsoid. They include geodetic latitude (north/south) ϕ, longitude (east/west) λ, and ellipsoidal heighth. The triad is also known as Earth ellipsoidal coordinates.

Transverse Mercator projection has many implementations. Louis Krüger in 1912 developed one of his two implementations that expressed as a power series in the longitude difference from the central meridian. These series were recalculated by Lee in 1946, by Redfearn in 1948, and by Thomas in 1952. They are often referred to as the Redfearn series, or the Thomas series. This implementation is of great importance since it is widely used in the U.S. State Plane Coordinate System, in national and also international mapping systems, including the Universal Transverse Mercator coordinate system (UTM). They are also incorporated into the Geotrans coordinate converter made available by the United States National Geospatial-Intelligence Agency. When paired with a suitable geodetic datum, the series deliver high accuracy in zones less than a few degrees in east-west extent.

<span class="mw-page-title-main">Web Mercator projection</span> Mercator variant map projection

Web Mercator, Google Web Mercator, Spherical Mercator, WGS 84 Web Mercator or WGS 84/Pseudo-Mercator is a variant of the Mercator map projection and is the de facto standard for Web mapping applications. It rose to prominence when Google Maps adopted it in 2005. It is used by virtually all major online map providers, including Google Maps, CARTO, Mapbox, Bing Maps, OpenStreetMap, Mapquest, Esri, and many others. Its official EPSG identifier is EPSG:3857, although others have been used historically.

References

  1. Chang, Kang-tsung (2016). Introduction to Geographic Information Systems (9th ed.). McGraw-Hill. p. 24. ISBN   978-1-259-92964-9.
  2. DiBiase, David. "The Nature of Geographic Information". Archived from the original on 19 February 2024. Retrieved 18 February 2024.
  3. "Using the EPSG geodetic parameter dataset, Guidance Note 7-1". EPSG Geodetic Parameter Dataset. Geomatic Solutions. Archived from the original on 15 December 2021. Retrieved 15 December 2021.
  4. McPhail, Cameron (2011), Reconstructing Eratosthenes' Map of the World (PDF), Dunedin: University of Otago, pp. 20–24, archived (PDF) from the original on 2 April 2015, retrieved 14 March 2015.
  5. Evans, James (1998), The History and Practice of Ancient Astronomy, Oxford, England: Oxford University Press, pp. 102–103, ISBN   9780199874453, archived from the original on 17 March 2023, retrieved 5 May 2020.
  6. "The International Meridian Conference". Millennium Dome: The O2 in Greenwich. Greenwich 2000 Limited. 9 June 2011. Archived from the original on 6 August 2012. Retrieved 31 October 2012.
  7. American Society of Civil Engineers (1 January 1994). Glossary of the Mapping Sciences. ASCE Publications. p. 224. ISBN   9780784475706.
  8. "Making maps compatible with GPS". Government of Ireland 1999. Archived from the original on 21 July 2011. Retrieved 15 April 2008.
  9. "WGS 84: EPSG Projection -- Spatial Reference". spatialreference.org. Archived from the original on 13 May 2020. Retrieved 5 May 2020.
  10. Bolstad, Paul (2012). GIS Fundamentals (PDF) (5th ed.). Atlas books. p. 102. ISBN   978-0-9717647-3-6. Archived from the original (PDF) on 15 October 2020. Retrieved 27 January 2018.
  11. 1 2 3 A guide to coordinate systems in Great Britain (PDF), D00659 v3.6, Ordnance Survey, 2020, archived (PDF) from the original on 2 April 2020, retrieved 17 December 2021
  12. 1 2 Archived 29 June 2016 at the Wayback Machine Geographic Information Systems – Stackexchange

Sources