Linear referencing

Last updated
A station number written on a silt fence at a construction site Station number on a silt fence, Floyd County, GA.jpg
A station number written on a silt fence at a construction site

Linear referencing, also called linear reference system or linear referencing system (LRS), is a method of spatial referencing in engineering and construction, in which the locations of physical features along a linear element are described in terms of measurements from a fixed point, such as a milestone along a road. Each feature is located by either a point (e.g. a signpost) or a line (e.g. a no-passing zone). If a segment of the linear element or route is changed, only those locations on the changed segment need to be updated. Linear referencing is suitable for management of data related to linear features like roads, railways, oil and gas transmission pipelines, power and data transmission lines, and rivers.

Contents

Motivation

A system for identifying the location of pipeline features and characteristics is by measuring distance from the start of the pipeline. An example linear reference address is: Engineering Station 1145 + 86 on pipeline Alpha = 114,586 feet from the start of the pipeline. With a reroute, cumulative stationing might not be the same as engineering stationing, because of the addition of the extra pipeline. Linear referencing systems compute the differences to resolve this dilemma.

Linear referencing is one of a family of methods of expressing location. Coordinates such as latitude and longitude are another member of the family, as are landmark references such as "5 km south of Ayers Rock." Linear referencing has traditionally been the expression of choice in engineering applications such as road and pipeline maintenance. One can more realistically dispatch a worker to a bridge 12.7 km along a road from a reference point, rather than to a pair of coordinates or a landmark. The road serves as the reference frame, just as the earth serves as the reference frame for latitude and longitude.

Benefits

Linear referencing can be used to define points along a linear feature with just a small amount of information such as the name of a road and the distance and bearing from a landmark along the road. This information can be communicated concisely via plaintext. For example: "State route 4, 20 feet east of mile marker 187." Giving a latitude and longitude coordinate to a work crew is not meaningful unless the coordinate is plotted on a map. Often work crews work in remote areas without wireless connectivity which makes on-line digital maps not practical, and the relatively higher effort of providing offline maps or printed maps is not as economical as simply stating locations as offsets, or ranges of offsets, along a linear feature.

Linear referencing systems can also be made to be both very precise and very accurate at a much lower cost than is needed to collect latitude and longitude coordinates with high accuracy, especially when the goal is sub-meter accuracy. This is highly dependent upon the width of the linear feature, its centerline, and the visibility of the landmarks and markers that are used to define linear reference offsets.

Often, roads are created by engineers using CAD tools that have no geospatial reference at all, and LRS is the preferred method of defining data for linear features.

Limitations

Consequently, a major limitation of linear referencing is that specifying points that are not on a linear feature is troublesome and error-prone, though not entirely impossible. Consider for example a ski lodge located 100 meters to the right of the road, traveling north. The linear referencing system can be extended by specifying a lateral offset, but the absolute location (i.e. coordinates) of the lodge cannot be determined unless coordinates are specified for the road; that process is prone to error particularly on curved roads.

Another major drawback of linear referencing is that a modification in the alignment of a road (e.g. constructing a bypass around a town) changes the measurements that reference all downstream points. The system requires an extensive network of reference stations, and constant maintenance. In an era of mobile maps and GPS, this maintenance overhead for linear referencing systems challenges its long-term viability. (But see below for US Federal Highway Administration requirement that all State DOTs use LRS.)

Nonetheless, travel along a road is a linear experience, and at the very least, linear referencing will continue to have a conversational role. Linear referencing systems are recognized by the US Federal government as a valuable tool for specifying right of way data, and are now actually required for the States. Therefore, it is not likely to see LRS usage decline any time soon.

Applications

ARNOLD: US Federal Requirements for Highways

The US Federal Highway Administration is pushing states to move closer to standardization of LRS data with the ARNOLD requirement. To wit:

"On August 7, 2012, FHWA announced that the HPMS is expanding the requirement for State Departments of Transportation (DOTs) to submit their LRS to include all public roads. This requirement will be referred to as the All Road Network of Linear Referenced Data (ARNOLD)". [1]

The ARNOLD requirement sets the stage for systems that utilize both LRS and coordinates. Both systems are useful in different contexts, and while using latitude and longitude is becoming very popular due to the availability of practical and affordable devices for capturing and displaying global coordinate data, the use of LRS has widely been adopted for planning, engineering, and maintenance.

Supported platforms

Linear referencing is supported for example by several Geographic Information System software, including:

See also

Related Research Articles

<span class="mw-page-title-main">Geographic information system</span> System to capture, manage, and present geographic data

A geographic information system (GIS) consists of integrated computer hardware and software that store, manage, analyze, edit, output, and visualize geographic data. Much of this often happens within a spatial database; however, this is not essential to meet the definition of a GIS. In a broader sense, one may consider such a system also to include human users and support staff, procedures and workflows, the body of knowledge of relevant concepts and methods, and institutional organizations.

<span class="mw-page-title-main">Geographic coordinate system</span> System to specify locations on Earth

A geographic coordinate system (GCS) is a spherical or geodetic coordinate system for measuring and communicating positions directly on Earth as latitude and longitude. It is the simplest, oldest and most widely used of the various spatial reference systems that are in use, and forms the basis for most others. Although latitude and longitude form a coordinate tuple like a cartesian coordinate system, the geographic coordinate system is not cartesian because the measurements are angles and are not on a planar surface.

A world file is a six line plain text sidecar file used by geographic information systems (GIS) to georeference raster map images. The file specification was introduced by Esri.

<span class="mw-page-title-main">Projected coordinate system</span> Cartesian geographic coordinate system

A projected coordinate system – also called a projected coordinate reference system, planar coordinate system, or grid reference system – is a type of spatial reference system that represents locations on Earth using Cartesian coordinates (x, y) on a planar surface created by a particular map projection. Each projected coordinate system, such as "Universal Transverse Mercator WGS 84 Zone 26N," is defined by a choice of map projection (with specific parameters), a choice of geodetic datum to bind the coordinate system to real locations on the earth, an origin point, and a choice of unit of measure. Hundreds of projected coordinate systems have been specified for various purposes in various regions.

A GIS file format is a standard for encoding geographical information into a computer file, as a specialized type of file format for use in geographic information systems (GIS) and other geospatial applications. Since the 1970s, dozens of formats have been created based on various data models for various purposes. They have been created by government mapping agencies, GIS software vendors, standards bodies such as the Open Geospatial Consortium, informal user communities, and even individual developers.

<span class="mw-page-title-main">Geotagging</span> Act of associating geographic coordinates to digital media

Geotagging, or GeoTagging, is the process of adding geographical identification metadata to various media such as a geotagged photograph or video, websites, SMS messages, QR Codes or RSS feeds and is a form of geospatial metadata. This data usually consists of latitude and longitude coordinates, though they can also include altitude, bearing, distance, accuracy data, and place names, and perhaps a time stamp.

Address geocoding, or simply geocoding, is the process of taking a text-based description of a location, such as an address or the name of a place, and returning geographic coordinates, frequently latitude/longitude pair, to identify a location on the Earth's surface. Reverse geocoding, on the other hand, converts geographic coordinates to a description of a location, usually the name of a place or an addressable location. Geocoding relies on a computer representation of address points, the street / road network, together with postal and administrative boundaries.

<span class="mw-page-title-main">Shapefile</span> Geospatial vector data format

The shapefile format is a geospatial vector data format for geographic information system (GIS) software. It is developed and regulated by Esri as a mostly open specification for data interoperability among Esri and other GIS software products. The shapefile format can spatially describe vector features: points, lines, and polygons, representing, for example, water wells, rivers, and lakes. Each item usually has attributes that describe it, such as name or temperature.

MrSID is an acronym that stands for multiresolution seamless image database. It is a file format developed and patented by LizardTech for encoding of georeferenced raster graphics, such as orthophotos.

<span class="mw-page-title-main">Spatial reference system</span> System to specify locations on Earth

A spatial reference system (SRS) or coordinate reference system (CRS) is a framework used to precisely measure locations on the surface of Earth as coordinates. It is thus the application of the abstract mathematics of coordinate systems and analytic geometry to geographic space. A particular SRS specification comprises a choice of Earth ellipsoid, horizontal datum, map projection, origin point, and unit of measure. Thousands of coordinate systems have been specified for use around the world or in specific regions and for various purposes, necessitating transformations between different SRS.

<span class="mw-page-title-main">United States National Grid</span> Multi-purpose grid reference system used in the United States

The United States National Grid (USNG) is a multi-purpose location system of grid references used in the United States. It provides a nationally consistent "language of location", optimized for local applications, in a compact, user friendly format. It is similar in design to the national grid reference systems used in other countries. The USNG was adopted as a national standard by the Federal Geographic Data Committee (FGDC) of the US Government in 2001.

Georeferencing or georegistration is a type of coordinate transformation that binds a digital raster image or vector database that represents a geographic space to a spatial reference system, thus locating the digital data in the real world. It is thus the geographic form of image registration. The term can refer to the mathematical formulas used to perform the transformation, the metadata stored alongside or within the image file to specify the transformation, or the process of manually or automatically aligning the image to the real world to create such metadata. The most common result is that the image can be visually and analytically integrated with other geographic data in geographic information systems and remote sensing software.

In cartography and geographic information systems, rubbersheeting is a form of coordinate transformation that warps a vector dataset to match a known geographic space. This is most commonly needed when a dataset has systematic positional error, such as one digitized from a historical map of low accuracy. The mathematics and procedure are very similar to the georeferencing of raster images, and this term is occasionally used for that process as well, but image georegistration is an unambiguous term for the raster process.

AM/FM/GIS stands for Automated Mapping (AM), Facilities Management (FM), and Geographic Information Systems (GIS). It is a subset of GIS associated with public utilities like gas, electric, water and telecommunications. The term AM/FM/GIS mostly refers to GIS software that allows utility users to digitize, manage and analyze their utility network data. This data is stored in an underlying GIS database which also maintains the associations between the graphical entities and the attributes.

The following tables compare general and technical information for a number of GIS vector file format. Please see the individual products' articles for further information. Unless otherwise specified in footnotes, comparisons are based on the stable versions without any add-ons, extensions or external programs.

<span class="mw-page-title-main">Horizontal position representation</span>

A position representation is a set of parameters used to express a position relative to a reference frame. When representing positions relative to the Earth, it is often most convenient to represent vertical position separately, and to use some other parameters to represent horizontal position. There are also several applications where only the horizontal position is of interest, this might e.g. be the case for ships and ground vehicles/cars. It is a type of geographic coordinate system.

Geospatial PDF is a set of geospatial extensions to the Portable Document Format (PDF) 1.7 specification to include information that relates a region in the document page to a region in physical space — called georeferencing. A geospatial PDF can contain geometry such as points, lines, and polygons. These, for example, could represent building locations, road networks and city boundaries, respectively. The georeferencing metadata for geospatial PDF is most commonly encoded in one of two ways: the OGC best practice; and as Adobe's proposed geospatial extensions to ISO 32000. The specifications also allow geometry to have attributes, such as a name or identifying type.

Geographic information systems (GIS) play a constantly evolving role in geospatial intelligence (GEOINT) and United States national security. These technologies allow a user to efficiently manage, analyze, and produce geospatial data, to combine GEOINT with other forms of intelligence collection, and to perform highly developed analysis and visual production of geospatial data. Therefore, GIS produces up-to-date and more reliable GEOINT to reduce uncertainty for a decisionmaker. Since GIS programs are Web-enabled, a user can constantly work with a decision maker to solve their GEOINT and national security related problems from anywhere in the world. There are many types of GIS software used in GEOINT and national security, such as Google Earth, ERDAS IMAGINE, GeoNetwork opensource, and Esri ArcGIS.

<span class="mw-page-title-main">Web Mercator projection</span> Mercator variant map projection

Web Mercator, Google Web Mercator, Spherical Mercator, WGS 84 Web Mercator or WGS 84/Pseudo-Mercator is a variant of the Mercator map projection and is the de facto standard for Web mapping applications. It rose to prominence when Google Maps adopted it in 2005. It is used by virtually all major online map providers, including Google Maps, CARTO, Mapbox, Bing Maps, OpenStreetMap, Mapquest, Esri, and many others. Its official EPSG identifier is EPSG:3857, although others have been used historically.

A Geodatabase is a proprietary GIS file format developed in the late 1990s by Esri to represent, store, and organize spatial datasets within a geographic information system. A geodatabase is both a logical data model and the physical implementation of that logical model in several proprietary file formats released during the 2000s. The geodatabase design is based on the spatial database model for storing spatial data in relational and object-relational databases. Given the dominance of Esri in the GIS industry, the term "geodatabase" is used by some as a generic trademark for any spatial database, regardless of platform or design.

References

  1. "All Road Network of Linear Referenced Data (ARNOLD) Reference Manual" (PDF). Federal Highway Administration. Retrieved 15 November 2016.
  2. Intergraph. "An LRS Model Supporting Event Location Stability and Temporal Data Management" (PDF).
  3. Intergraph. "White Paper: An Automated Approach to Managing Components of a Linear Reference System Network and Event Data" (PDF).{{cite journal}}: Cite journal requires |journal= (help)
  4. Benefits "Smallworld Global Transmission Office".{{cite web}}: Check |url= value (help)
  5. Esri (24 February 2009). "ArcGIS 9.3: An overview of linear referencing". Esri. Retrieved 8 March 2011.
  6. Geomap Services (6 June 2011). "GEOMAP GIS 2012: Solution for linear referencing and dynamic segmentation over Autodesk, ESRI or MapInfo products". Geomap Services. Archived from the original on 25 April 2012. Retrieved 11 November 2011.
  7. Radim Blazek (March 2005). "Introducing the Linear Reference System in GRASS" (PDF). International Journal of Geoinformatics. 1 (3). Retrieved 2007-05-01.
  8. PostGIS team (2010). "PostGIS 1.5.2 Manual". Archived from the original on 24 December 2012. Retrieved 8 March 2011.
  9. "LRS Plugin for QGIS".

Further reading