A planetary coordinate system (also referred to as planetographic, planetodetic, or planetocentric) [1] [2] is a generalization of the geographic, geodetic, and the geocentric coordinate systems for planets other than Earth. Similar coordinate systems are defined for other solid celestial bodies, such as in the selenographic coordinates for the Moon. The coordinate systems for almost all of the solid bodies in the Solar System were established by Merton E. Davies of the Rand Corporation, including Mercury, [3] [4] Venus, [5] Mars, [6] the four Galilean moons of Jupiter, [7] and Triton, the largest moon of Neptune. [8] A planetary datum is a generalization of geodetic datums for other planetary bodies, such as the Mars datum; it requires the specification of physical reference points or surfaces with fixed coordinates, such as a specific crater for the reference meridian or the best-fitting equigeopotential as zero-level surface. [9]
This section needs additional citations for verification .(January 2020) |
The longitude systems of most of those bodies with observable rigid surfaces have been defined by references to a surface feature such as a crater. The north pole is that pole of rotation that lies on the north side of the invariable plane of the Solar System (near the ecliptic). The location of the prime meridian as well as the position of the body's north pole on the celestial sphere may vary with time due to precession of the axis of rotation of the planet (or satellite). If the position angle of the body's prime meridian increases with time, the body has a direct (or prograde) rotation; otherwise the rotation is said to be retrograde.
In the absence of other information, the axis of rotation is assumed to be normal to the mean orbital plane; Mercury and most of the satellites are in this category. For many of the satellites, it is assumed that the rotation rate is equal to the mean orbital period. In the case of the giant planets, since their surface features are constantly changing and moving at various rates, the rotation of their magnetic fields is used as a reference instead. In the case of the Sun, even this criterion fails (because its magnetosphere is very complex and does not really rotate in a steady fashion), and an agreed-upon value for the rotation of its equator is used instead.
For planetographic longitude, west longitudes (i.e., longitudes measured positively to the west) are used when the rotation is prograde, and east longitudes (i.e., longitudes measured positively to the east) when the rotation is retrograde. In simpler terms, imagine a distant, non-orbiting observer viewing a planet as it rotates. Also suppose that this observer is within the plane of the planet's equator. A point on the Equator that passes directly in front of this observer later in time has a higher planetographic longitude than a point that did so earlier in time.
However, planetocentric longitude is always measured positively to the east, regardless of which way the planet rotates. East is defined as the counter-clockwise direction around the planet, as seen from above its north pole, and the north pole is whichever pole more closely aligns with the Earth's north pole. Longitudes traditionally have been written using "E" or "W" instead of "+" or "−" to indicate this polarity. For example, −91°, 91°W, +269° and 269°E all mean the same thing.
The modern standard for maps of Mars (since about 2002) is to use planetocentric coordinates. Guided by the works of historical astronomers, Merton E. Davies established the meridian of Mars at Airy-0 crater. [10] [11] For Mercury, the only other planet with a solid surface visible from Earth, a thermocentric coordinate is used: the prime meridian runs through the point on the equator where the planet is hottest (due to the planet's rotation and orbit, the Sun briefly retrogrades at noon at this point during perihelion, giving it more sunlight). By convention, this meridian is defined as exactly twenty degrees of longitude east of Hun Kal. [12] [13] [14]
Tidally-locked bodies have a natural reference longitude passing through the point nearest to their parent body: 0° the center of the primary-facing hemisphere, 90° the center of the leading hemisphere, 180° the center of the anti-primary hemisphere, and 270° the center of the trailing hemisphere. [15] However, libration due to non-circular orbits or axial tilts causes this point to move around any fixed point on the celestial body like an analemma.
This section needs expansion. You can help by adding to it. (May 2021) |
Planetographic latitude and planetocentric latitude may be similarly defined. The zero latitude plane (Equator) can be defined as orthogonal to the mean axis of rotation (poles of astronomical bodies). The reference surfaces for some planets (such as Earth and Mars) are ellipsoids of revolution for which the equatorial radius is larger than the polar radius, such that they are oblate spheroids.
Vertical position can be expressed with respect to a given vertical datum, by means of physical quantities analogous to the topographical geocentric distance (compared to a constant nominal Earth radius or the varying geocentric radius of the reference ellipsoid surface) or altitude/elevation (above and below the geoid). [16]
The areoid (the geoid of Mars) [17] has been measured using flight paths of satellite missions such as Mariner 9 and Viking. The main departures from the ellipsoid expected of an ideal fluid are from the Tharsis volcanic plateau, a continent-size region of elevated terrain, and its antipodes. [18]
The selenoid (the geoid of the Moon) has been measured gravimetrically by the GRAIL twin satellites. [19]
Reference ellipsoids are also useful for defining geodetic coordinates and mapping other planetary bodies including planets, their satellites, asteroids and comet nuclei. Some well observed bodies such as the Moon and Mars now have quite precise reference ellipsoids.
For rigid-surface nearly-spherical bodies, which includes all the rocky planets and many moons, ellipsoids are defined in terms of the axis of rotation and the mean surface height excluding any atmosphere. Mars is actually egg shaped, where its north and south polar radii differ by approximately 6 km (4 miles), however this difference is small enough that the average polar radius is used to define its ellipsoid. The Earth's Moon is effectively spherical, having almost no bulge at its equator. Where possible, a fixed observable surface feature is used when defining a reference meridian.
For gaseous planets like Jupiter, an effective surface for an ellipsoid is chosen as the equal-pressure boundary of one bar. Since they have no permanent observable features, the choices of prime meridians are made according to mathematical rules.
For the WGS84 ellipsoid to model Earth, the defining values are [20]
from which one derives
so that the difference of the major and minor semi-axes is 21.385 km (13 mi). This is only 0.335% of the major axis, so a representation of Earth on a computer screen would be sized as 300 pixels by 299 pixels. This is rather indistinguishable from a sphere shown as 300 pix by 300 pix. Thus illustrations typically greatly exaggerate the flattening to highlight the concept of any planet's oblateness.
Other f values in the Solar System are 1⁄16 for Jupiter, 1⁄10 for Saturn, and 1⁄900 for the Moon. The flattening of the Sun is about 9×10−6.
In 1687, Isaac Newton published the Principia in which he included a proof that a rotating self-gravitating fluid body in equilibrium takes the form of an oblate ellipsoid of revolution (a spheroid). [21] The amount of flattening depends on the density and the balance of gravitational force and centrifugal force.
Body | Diameter (km) | Equatorial bulge (km) | Flattening ratio | Rotation period (h) | Density (kg/m3) | Deviation from | ||
---|---|---|---|---|---|---|---|---|
Equatorial | Polar | |||||||
Earth | 12,756.2 | 12,713.6 | 42.6 | 1 : 299.4 | 23.936 | 5515 | 1 : 232 | −23% |
Mars | 6,792.4 | 6,752.4 | 40 | 1 : 170 | 24.632 | 3933 | 1 : 175 | +3% |
Ceres | 964.3 | 891.8 | 72.5 | 1 : 13.3 | 9.074 | 2162 | 1 : 13.1 | −2% |
Jupiter | 142,984 | 133,708 | 9,276 | 1 : 15.41 | 9.925 | 1326 | 1 : 9.59 | −38% |
Saturn | 120,536 | 108,728 | 11,808 | 1 : 10.21 | 10.56 | 687 | 1 : 5.62 | −45% |
Uranus | 51,118 | 49,946 | 1,172 | 1 : 43.62 | 17.24 | 1270 | 1 : 27.71 | −36% |
Neptune | 49,528 | 48,682 | 846 | 1 : 58.54 | 16.11 | 1638 | 1 : 31.22 | −47% |
Generally any celestial body that is rotating (and that is sufficiently massive to draw itself into spherical or near spherical shape) will have an equatorial bulge matching its rotation rate. With 11808 km Saturn is the planet with the largest equatorial bulge in our Solar System.
Equatorial bulges should not be confused with equatorial ridges . Equatorial ridges are a feature of at least four of Saturn's moons: the large moon Iapetus and the tiny moons Atlas, Pan, and Daphnis. These ridges closely follow the moons' equators. The ridges appear to be unique to the Saturnian system, but it is uncertain whether the occurrences are related or a coincidence. The first three were discovered by the Cassini probe in 2005; the Daphnean ridge was discovered in 2017. The ridge on Iapetus is nearly 20 km wide, 13 km high and 1300 km long. The ridge on Atlas is proportionally even more remarkable given the moon's much smaller size, giving it a disk-like shape. Images of Pan show a structure similar to that of Atlas, while the one on Daphnis is less pronounced.
Small moons, asteroids, and comet nuclei frequently have irregular shapes. For some of these, such as Jupiter's Io, a scalene (triaxial) ellipsoid is a better fit than the oblate spheroid. For highly irregular bodies, the concept of a reference ellipsoid may have no useful value, so sometimes a spherical reference is used instead and points identified by planetocentric latitude and longitude. Even that can be problematic for non-convex bodies, such as Eros, in that latitude and longitude don't always uniquely identify a single surface location.
Smaller bodies (Io, Mimas, etc.) tend to be better approximated by triaxial ellipsoids; however, triaxial ellipsoids would render many computations more complicated, especially those related to map projections. Many projections would lose their elegant and popular properties. For this reason spherical reference surfaces are frequently used in mapping programs.
The ecliptic or ecliptic plane is the orbital plane of Earth around the Sun. From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic against the background of stars. The ecliptic is an important reference plane and is the basis of the ecliptic coordinate system.
Geodesy or geodetics is the science of measuring and representing the geometry, gravity, and spatial orientation of the Earth in temporally varying 3D. It is called planetary geodesy when studying other astronomical bodies, such as planets or circumplanetary systems. Geodesy is an earth science and many consider the study of Earth's shape and gravity to be central to that science. It is also a discipline of applied mathematics.
In geography, latitude is a coordinate that specifies the north–south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from −90° at the south pole to 90° at the north pole, with 0° at the Equator. Lines of constant latitude, or parallels, run east–west as circles parallel to the equator. Latitude and longitude are used together as a coordinate pair to specify a location on the surface of the Earth.
Longitude is a geographic coordinate that specifies the east–west position of a point on the surface of the Earth, or another celestial body. It is an angular measurement, usually expressed in degrees and denoted by the Greek letter lambda (λ). Meridians are imaginary semicircular lines running from pole to pole that connect points with the same longitude. The prime meridian defines 0° longitude; by convention the International Reference Meridian for the Earth passes near the Royal Observatory in Greenwich, south-east London on the island of Great Britain. Positive longitudes are east of the prime meridian, and negative ones are west.
In astronomy and navigation, the celestial sphere is an abstract sphere that has an arbitrarily large radius and is concentric to Earth. All objects in the sky can be conceived as being projected upon the inner surface of the celestial sphere, which may be centered on Earth or the observer. If centered on the observer, half of the sphere would resemble a hemispherical screen over the observing location.
A geographic coordinate system (GCS) is a spherical or geodetic coordinate system for measuring and communicating positions directly on Earth as latitude and longitude. It is the simplest, oldest and most widely used of the various spatial reference systems that are in use, and forms the basis for most others. Although latitude and longitude form a coordinate tuple like a cartesian coordinate system, the geographic coordinate system is not cartesian because the measurements are angles and are not on a planar surface.
The equatorial coordinate system is a celestial coordinate system widely used to specify the positions of celestial objects. It may be implemented in spherical or rectangular coordinates, both defined by an origin at the centre of Earth, a fundamental plane consisting of the projection of Earth's equator onto the celestial sphere, a primary direction towards the March equinox, and a right-handed convention.
A prime meridian is an arbitrarily chosen meridian in a geographic coordinate system at which longitude is defined to be 0°. Together, a prime meridian and its anti-meridian form a great circle. This great circle divides a spheroid, like Earth, into two hemispheres: the Eastern Hemisphere and the Western Hemisphere. For Earth's prime meridian, various conventions have been used or advocated in different regions throughout history. Earth's current international standard prime meridian is the IERS Reference Meridian. It is derived, but differs slightly, from the Greenwich Meridian, the previous standard.
A spheroid, also known as an ellipsoid of revolution or rotational ellipsoid, is a quadric surface obtained by rotating an ellipse about one of its principal axes; in other words, an ellipsoid with two equal semi-diameters. A spheroid has circular symmetry.
An equatorial bulge is a difference between the equatorial and polar diameters of a planet, due to the centrifugal force exerted by the rotation about the body's axis. A rotating body tends to form an oblate spheroid rather than a sphere.
Earth radius is the distance from the center of Earth to a point on or near its surface. Approximating the figure of Earth by an Earth spheroid, the radius ranges from a maximum of nearly 6,378 km (3,963 mi) to a minimum of nearly 6,357 km (3,950 mi).
In geodesy, the figure of the Earth is the size and shape used to model planet Earth. The kind of figure depends on application, including the precision needed for the model. A spherical Earth is a well-known historical approximation that is satisfactory for geography, astronomy and many other purposes. Several models with greater accuracy have been developed so that coordinate systems can serve the precise needs of navigation, surveying, cadastre, land use, and various other concerns.
Areography, also known as the geography of Mars, is a subfield of planetary science that entails the delineation and characterization of regions on Mars. Areography is mainly focused on what is called physical geography on Earth; that is the distribution of physical features across Mars and their cartographic representations. In April 2023, The New York Times reported an updated global map of Mars based on images from the Hope spacecraft. A related, but much more detailed, global Mars map was released by NASA on 16 April 2023.
The selenographic coordinate system is used to refer to locations on the surface of Earth's moon. Any position on the lunar surface can be referenced by specifying two numerical values, which are comparable to the latitude and longitude of Earth. The longitude gives the position east or west of the Moon's prime meridian, which is the line passing from the lunar north pole through the point on the lunar surface directly facing Earth to the lunar south pole. This can be thought of as the midpoint of the visible Moon as seen from the Earth. The latitude gives the position north or south of the lunar equator. Both of these coordinates are given in degrees.
The Earth-centered, Earth-fixed coordinate system, also known as the geocentric coordinate system, is a cartesian spatial reference system that represents locations in the vicinity of the Earth as X, Y, and Z measurements from its center of mass. Its most common use is in tracking the orbits of satellites and in satellite navigation systems for measuring locations on the surface of the Earth, but it is also used in applications such as tracking crustal motion.
An Earth ellipsoid or Earth spheroid is a mathematical figure approximating the Earth's form, used as a reference frame for computations in geodesy, astronomy, and the geosciences. Various different ellipsoids have been used as approximations.
Hun Kal is a small crater on Mercury that serves as the reference point for the planet's system of longitude. The longitude of Hun Kal's center is defined as being 20° W, thus establishing the planet's prime meridian. The name "Hun Kal" means '20' in the language of the Maya.
The equator is a circle of latitude that divides a spheroid, such as Earth, into the Northern and Southern hemispheres. On Earth, the Equator is an imaginary line located at 0 degrees latitude, about 40,075 km (24,901 mi) in circumference, halfway between the North and South poles. The term can also be used for any other celestial body that is roughly spherical.
Geodetic coordinates are a type of curvilinear orthogonal coordinate system used in geodesy based on a reference ellipsoid. They include geodetic latitude (north/south) ϕ, longitude (east/west) λ, and ellipsoidal heighth. The triad is also known as Earth ellipsoidal coordinates.
This glossary of astronomy is a list of definitions of terms and concepts relevant to astronomy and cosmology, their sub-disciplines, and related fields. Astronomy is concerned with the study of celestial objects and phenomena that originate outside the atmosphere of Earth. The field of astronomy features an extensive vocabulary and a significant amount of jargon.