The ecliptic or ecliptic plane is the orbital plane of Earth around the Sun. [1] [2] [a] From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic against the background of stars. [3] The ecliptic is an important reference plane and is the basis of the ecliptic coordinate system.
The ecliptic is the apparent path of the Sun throughout the course of a year. [4]
Because Earth takes one year to orbit the Sun, the apparent position of the Sun takes one year to make a complete circuit of the ecliptic. With slightly more than 365 days in one year, the Sun moves a little less than 1° eastward [5] every day. This small difference in the Sun's position against the stars causes any particular spot on Earth's surface to catch up with (and stand directly north or south of) the Sun about four minutes later each day than it would if Earth did not orbit; a day on Earth is therefore 24 hours long rather than the approximately 23-hour 56-minute sidereal day. Again, this is a simplification, based on a hypothetical Earth that orbits at uniform speed around the Sun. The actual speed with which Earth orbits the Sun varies slightly during the year, so the speed with which the Sun seems to move along the ecliptic also varies. For example, the Sun is north of the celestial equator for about 185 days of each year, and south of it for about 180 days. [6] The variation of orbital speed accounts for part of the equation of time. [7]
Because of the movement of Earth around the Earth–Moon center of mass, the apparent path of the Sun wobbles slightly, with a period of about one month. Because of further perturbations by the other planets of the Solar System, the Earth–Moon barycenter wobbles slightly around a mean position in a complex fashion.
Because Earth's rotational axis is not perpendicular to its orbital plane, Earth's equatorial plane is not coplanar with the ecliptic plane, but is inclined to it by an angle of about 23.4°, which is known as the obliquity of the ecliptic. [8] If the equator is projected outward to the celestial sphere, forming the celestial equator, it crosses the ecliptic at two points known as the equinoxes. The Sun, in its apparent motion along the ecliptic, crosses the celestial equator at these points, one from south to north, the other from north to south. [5] The crossing from south to north is known as the March equinox, also known as the first point of Aries and the ascending node of the ecliptic on the celestial equator. [9] The crossing from north to south is the September equinox or descending node.
The orientation of Earth's axis and equator are not fixed in space, but rotate about the poles of the ecliptic with a period of about 26,000 years, a process known as lunisolar precession , as it is due mostly to the gravitational effect of the Moon and Sun on Earth's equatorial bulge. Likewise, the ecliptic itself is not fixed. The gravitational perturbations of the other bodies of the Solar System cause a much smaller motion of the plane of Earth's orbit, and hence of the ecliptic, known as planetary precession. The combined action of these two motions is called general precession, and changes the position of the equinoxes by about 50 arc seconds (about 0.014°) per year. [10]
Once again, this is a simplification. Periodic motions of the Moon and apparent periodic motions of the Sun (actually of Earth in its orbit) cause short-term small-amplitude periodic oscillations of Earth's axis, and hence the celestial equator, known as nutation. [11] This adds a periodic component to the position of the equinoxes; the positions of the celestial equator and (March) equinox with fully updated precession and nutation are called the true equator and equinox; the positions without nutation are the mean equator and equinox. [12]
Obliquity of the ecliptic is the term used by astronomers for the inclination of Earth's equator with respect to the ecliptic, or of Earth's rotation axis to a perpendicular to the ecliptic. It is about 23.4° and is currently decreasing 0.013 degrees (47 arcseconds) per hundred years because of planetary perturbations. [13]
The angular value of the obliquity is found by observation of the motions of Earth and other planets over many years. Astronomers produce new fundamental ephemerides as the accuracy of observation improves and as the understanding of the dynamics increases, and from these ephemerides various astronomical values, including the obliquity, are derived.
Until 1983 the obliquity for any date was calculated from work of Newcomb, who analyzed positions of the planets until about 1895:
ε = 23°27′08.26″ − 46.845″ T − 0.0059″ T2 + 0.00181″ T3
where ε is the obliquity and T is tropical centuries from B1900.0 to the date in question. [15]
From 1984, the Jet Propulsion Laboratory's DE series of computer-generated ephemerides took over as the fundamental ephemeris of the Astronomical Almanac. Obliquity based on DE200, which analyzed observations from 1911 to 1979, was calculated:
ε = 23°26′21.45″ − 46.815″ T − 0.0006″ T2 + 0.00181″ T3
where hereafter T is Julian centuries from J2000.0. [16]
JPL's fundamental ephemerides have been continually updated. The Astronomical Almanac for 2010 specifies: [17]
ε = 23°26′21.406″ − 46.836769″ T − 0.0001831″ T2 + 0.00200340″ T3 − 0.576×10−6″ T4 − 4.34×10−8″ T5
These expressions for the obliquity are intended for high precision over a relatively short time span, perhaps several centuries. [18] J. Laskar computed an expression to order T10 good to 0.04″/1000 years over 10,000 years. [14]
All of these expressions are for the mean obliquity, that is, without the nutation of the equator included. The true or instantaneous obliquity includes the nutation. [19]
Top and side views of the plane of the ecliptic, showing planets Mercury, Venus, Earth, and Mars. Most of the planets orbit the Sun very nearly in the same plane in which Earth orbits, the ecliptic. | Five planets (Earth included) lined up along the ecliptic in July 2010, illustrating how the planets orbit the Sun in nearly the same plane. Photo taken at sunset, looking west over Surakarta, Java, Indonesia. |
Most of the major bodies of the Solar System orbit the Sun in nearly the same plane. This is likely due to the way in which the Solar System formed from a protoplanetary disk. Probably the closest current representation of the disk is known as the invariable plane of the Solar System. Earth's orbit, and hence, the ecliptic, is inclined a little more than 1° to the invariable plane, Jupiter's orbit is within a little more than ½° of it, and the other major planets are all within about 6°. Because of this, most Solar System bodies appear very close to the ecliptic in the sky.
The invariable plane is defined by the angular momentum of the entire Solar System, essentially the vector sum of all of the orbital and rotational angular momenta of all the bodies of the system; more than 60% of the total comes from the orbit of Jupiter. [20] That sum requires precise knowledge of every object in the system, making it a somewhat uncertain value. Because of the uncertainty regarding the exact location of the invariable plane, and because the ecliptic is well defined by the apparent motion of the Sun, the ecliptic is used as the reference plane of the Solar System both for precision and convenience. The only drawback of using the ecliptic instead of the invariable plane is that over geologic time scales, it will move against fixed reference points in the sky's distant background. [21] [22]
The ecliptic forms one of the two fundamental planes used as reference for positions on the celestial sphere, the other being the celestial equator. Perpendicular to the ecliptic are the ecliptic poles, the north ecliptic pole being the pole north of the equator. Of the two fundamental planes, the ecliptic is closer to unmoving against the background stars, its motion due to planetary precession being roughly 1/100 that of the celestial equator. [23]
Spherical coordinates, known as ecliptic longitude and latitude or celestial longitude and latitude, are used to specify positions of bodies on the celestial sphere with respect to the ecliptic. Longitude is measured positively eastward [5] 0° to 360° along the ecliptic from the March equinox, the same direction in which the Sun appears to move. Latitude is measured perpendicular to the ecliptic, to +90° northward or −90° southward to the poles of the ecliptic, the ecliptic itself being 0° latitude. For a complete spherical position, a distance parameter is also necessary. Different distance units are used for different objects. Within the Solar System, astronomical units are used, and for objects near Earth, Earth radii or kilometers are used. A corresponding right-handed rectangular coordinate system is also used occasionally; the x-axis is directed toward the March equinox, the y-axis 90° to the east, and the z-axis toward the north ecliptic pole; the astronomical unit is the unit of measure. Symbols for ecliptic coordinates are somewhat standardized; see the table. [24]
Spherical | Rectangular | |||
Longitude | Latitude | Distance | ||
Geocentric | λ | β | Δ | |
Heliocentric | l | b | r | x, y, z [note 1] |
|
Ecliptic coordinates are convenient for specifying positions of Solar System objects, as most of the planets' orbits have small inclinations to the ecliptic, and therefore always appear relatively close to it on the sky. Because Earth's orbit, and hence the ecliptic, moves very little, it is a relatively fixed reference with respect to the stars.
Because of the precessional motion of the equinox, the ecliptic coordinates of objects on the celestial sphere are continuously changing. Specifying a position in ecliptic coordinates requires specifying a particular equinox, that is, the equinox of a particular date, known as an epoch; the coordinates are referred to the direction of the equinox at that date. For instance, the Astronomical Almanac [27] lists the heliocentric position of Mars at 0h Terrestrial Time, 4 January 2010 as: longitude 118°09′15.8″, latitude +1°43′16.7″, true heliocentric distance 1.6302454 AU, mean equinox and ecliptic of date. This specifies the mean equinox of 4 January 2010 0h TT as above, without the addition of nutation.
Because the orbit of the Moon is inclined only about 5.145° to the ecliptic and the Sun is always very near the ecliptic, eclipses always occur on or near it. Because of the inclination of the Moon's orbit, eclipses do not occur at every conjunction and opposition of the Sun and Moon, but only when the Moon is near an ascending or descending node at the same time it is at conjunction (new) or opposition (full). The ecliptic is so named because the ancients noted that eclipses only occur when the Moon is crossing it. [28]
ecliptic | equatorial | |
longitude | right ascension | |
March equinox | 0° | 0h |
June solstice | 90° | 6h |
September equinox | 180° | 12h |
December solstice | 270° | 18h |
The exact instants of equinoxes and solstices are the times when the apparent ecliptic longitude (including the effects of aberration and nutation) of the Sun is 0°, 90°, 180°, and 270°. Because of perturbations of Earth's orbit and anomalies of the calendar, the dates of these are not fixed. [29]
The ecliptic currently passes through the following thirteen constellations:
There are twelve constellations that are not on the ecliptic, but are close enough that the Moon and planets can occasionally appear in them. [31] [32]
The ecliptic forms the center of the zodiac, a celestial belt about 20° wide in latitude through which the Sun, Moon, and planets always appear to move. [33] Traditionally, this region is divided into 12 signs of 30° longitude, each of which approximates the Sun's motion in one month. [34] In ancient times, the signs corresponded roughly to 12 of the constellations that straddle the ecliptic. [35] These signs are sometimes still used in modern terminology. The "First Point of Aries" was named when the March equinox Sun was actually in the constellation Aries; it has since moved into Pisces because of precession of the equinoxes. [36]
astrology.
In astronomy, declination is one of the two angles that locate a point on the celestial sphere in the equatorial coordinate system, the other being hour angle. The declination angle is measured north (positive) or south (negative) of the celestial equator, along the hour circle passing through the point in question.
Right ascension is the angular distance of a particular point measured eastward along the celestial equator from the Sun at the March equinox to the point in question above the Earth. When paired with declination, these astronomical coordinates specify the location of a point on the celestial sphere in the equatorial coordinate system.
In astronomy and navigation, the celestial sphere is an abstract sphere that has an arbitrarily large radius and is concentric to Earth. All objects in the sky can be conceived as being projected upon the inner surface of the celestial sphere, which may be centered on Earth or the observer. If centered on the observer, half of the sphere would resemble a hemispherical screen over the observing location.
In astronomy, coordinate systems are used for specifying positions of celestial objects relative to a given reference frame, based on physical reference points available to a situated observer. Coordinate systems in astronomy can specify an object's relative position in three-dimensional space or plot merely by its direction on a celestial sphere, if the object's distance is unknown or trivial.
The equatorial coordinate system is a celestial coordinate system widely used to specify the positions of celestial objects. It may be implemented in spherical or rectangular coordinates, both defined by an origin at the centre of Earth, a fundamental plane consisting of the projection of Earth's equator onto the celestial sphere, a primary direction towards the March equinox, and a right-handed convention.
In astronomy, the ecliptic coordinate system is a celestial coordinate system commonly used for representing the apparent positions, orbits, and pole orientations of Solar System objects. Because most planets and many small Solar System bodies have orbits with only slight inclinations to the ecliptic, using it as the fundamental plane is convenient. The system's origin can be the center of either the Sun or Earth, its primary direction is towards the March equinox, and it has a right-hand convention. It may be implemented in spherical or rectangular coordinates.
Sidereal time is a system of timekeeping used especially by astronomers. Using sidereal time and the celestial coordinate system, it is easy to locate the positions of celestial objects in the night sky. Sidereal time is a "time scale that is based on Earth's rate of rotation measured relative to the fixed stars".
In astronomy, axial precession is a gravity-induced, slow, and continuous change in the orientation of an astronomical body's rotational axis. In the absence of precession, the astronomical body's orbit would show axial parallelism. In particular, axial precession can refer to the gradual shift in the orientation of Earth's axis of rotation in a cycle of approximately 26,000 years. This is similar to the precession of a spinning top, with the axis tracing out a pair of cones joined at their apices. The term "precession" typically refers only to this largest part of the motion; other changes in the alignment of Earth's axis—nutation and polar motion—are much smaller in magnitude.
In astronomy, axial tilt, also known as obliquity, is the angle between an object's rotational axis and its orbital axis, which is the line perpendicular to its orbital plane; equivalently, it is the angle between its equatorial plane and orbital plane. It differs from orbital inclination.
Solar time is a calculation of the passage of time based on the position of the Sun in the sky. The fundamental unit of solar time is the day, based on the synodic rotation period. Traditionally, there are three types of time reckoning based on astronomical observations: apparent solar time and mean solar time, and sidereal time, which is based on the apparent motions of stars other than the Sun.
Spherical astronomy, or positional astronomy, is a branch of observational astronomy used to locate astronomical objects on the celestial sphere, as seen at a particular date, time, and location on Earth. It relies on the mathematical methods of spherical trigonometry and the measurements of astrometry.
A lunar standstill or lunistice is when the Moon reaches its furthest north or furthest south point during the course of a month. The declination at lunar standstill varies in a cycle 18.6 years long between 18.134° and 28.725°, due to lunar precession. These extremes are called the minor and major lunar standstills.
The Moon orbits Earth in the prograde direction and completes one revolution relative to the Vernal Equinox and the stars in about 27.32 days and one revolution relative to the Sun in about 29.53 days. Earth and the Moon orbit about their barycentre, which lies about 4,670 km from Earth's centre, forming a satellite system called the Earth–Moon system. On average, the distance to the Moon is about 384,400 km (238,900 mi) from Earth's centre, which corresponds to about 60 Earth radii or 1.282 light-seconds.
The Astronomical Almanac is an almanac published by the United Kingdom Hydrographic Office; it also includes data supplied by many scientists from around the world. On page vii, the listed major contributors to its various Sections are: H.M Nautical Almanac Office, United Kingdom Hydrographic Office; the Nautical Almanac Office, United States Naval Observatory; the Jet Propulsion Laboratory, California Institute of Technology; the IAU Standards Of Fundamental Astronomy (SOFA) initiative; the Institut de Mécanique Céleste et des Calcul des Éphémerides, Paris Observatory; and the Minor Planet Center, Cambridge, Massachusetts.
In astronomy, an equinox is either of two places on the celestial sphere at which the ecliptic intersects the celestial equator. Although there are two such intersections, the equinox associated with the Sun's ascending node is used as the conventional origin of celestial coordinate systems and referred to simply as "the equinox". In contrast to the common usage of spring/vernal and autumnal equinoxes, the celestial coordinate system equinox is a direction in space rather than a moment in time.
Earth-centered inertial (ECI) coordinate frames have their origins at the center of mass of Earth and are fixed with respect to the stars. "I" in "ECI" stands for inertial, in contrast to the "Earth-centered – Earth-fixed" (ECEF) frames, which remains fixed with respect to Earth's surface in its rotation, and then rotates with respect to stars.
A tropical year or solar year is the time that the Sun takes to return to the same position in the sky – as viewed from the Earth or another celestial body of the Solar System – thus completing a full cycle of astronomical seasons. For example, it is the time from vernal equinox to the next vernal equinox, or from summer solstice to the next summer solstice. It is the type of year used by tropical solar calendars.
This glossary of astronomy is a list of definitions of terms and concepts relevant to astronomy and cosmology, their sub-disciplines, and related fields. Astronomy is concerned with the study of celestial objects and phenomena that originate outside the atmosphere of Earth. The field of astronomy features an extensive vocabulary and a significant amount of jargon.
The position of the Sun in the sky is a function of both the time and the geographic location of observation on Earth's surface. As Earth orbits the Sun over the course of a year, the Sun appears to move with respect to the fixed stars on the celestial sphere, along a circular path called the ecliptic.
Astronomical nutation is a phenomenon which causes the orientation of the axis of rotation of a spinning astronomical object to vary over time. It is caused by the gravitational forces of other nearby bodies acting upon the spinning object. Although they are caused by the same effect operating over different timescales, astronomers usually make a distinction between precession, which is a steady long-term change in the axis of rotation, and nutation, which is the combined effect of similar shorter-term variations.