Equatorial ring

Last updated
An equatorial ring Equatorial ring.png
An equatorial ring

An equatorial ring was an astronomical instrument used in the Hellenistic world to determine the exact moment of the spring and autumn equinoxes. Equatorial rings were placed before the temples in Alexandria, in Rhodes, and perhaps in other places, for calendar purposes.

Spring (season) one of the Earths four temperate seasons, occurring between winter and summer

Spring is one of the four temperate seasons, following winter and preceding summer. There are various technical definitions of spring, but local usage of the term varies according to local climate, cultures and customs. When it is spring in the Northern Hemisphere, it is autumn in the Southern Hemisphere and vice versa. At the spring equinox, days and nights are approximately twelve hours long, with day length increasing and night length decreasing as the season progresses.

Autumn one of the Earths four temperate seasons, occurring between summer and winter

Autumn, also known as fall in American English and sometimes in Canadian English, is one of the four temperate seasons. Autumn marks the transition from summer to winter, in September or March, when the duration of daylight becomes noticeably shorter and the temperature cools considerably. One of its main features is the shedding of leaves from deciduous trees.

Alexandria Metropolis in Egypt

Alexandria is the second-largest city in Egypt and a major economic centre, extending about 32 km (20 mi) along the coast of the Mediterranean Sea in the north central part of the country. Its low elevation on the Nile delta makes it highly vulnerable to rising sea levels. Alexandria is an important industrial center because of its natural gas and oil pipelines from Suez. Alexandria is also a popular tourist destination.

The easiest way to understand the use of an equatorial ring is to imagine a ring placed vertically in the east-west plane at the Earth's equator. At the time of the equinoxes, the Sun will rise precisely in the east, move across the zenith, and set precisely in the west. Throughout the day, the bottom half of the ring will be in the shadow cast by the top half of the ring. On other days of the year, the Sun passes to the north or south of the ring, and will illuminate the bottom half. For latitudes away from the equator, the ring merely needs to be placed at the correct angle in the equatorial plane. At the Earth's poles, the ring would be horizontal.

Equator Intersection of a spheres surface with the plane perpendicular to the spheres axis of rotation and midway between the poles

An equator of a rotating spheroid is its zeroth circle of latitude (parallel). It is the imaginary line on the spheroid's surface, equidistant from its poles, dividing it into northern and southern hemispheres. In other words, it is the intersection of the spheroid's surface with the plane perpendicular to its axis of rotation and midway between its geographical poles.

Sun Star at the centre of the Solar System

The Sun is the star at the center of the Solar System. It is a nearly perfect sphere of hot plasma, with internal convective motion that generates a magnetic field via a dynamo process. It is by far the most important source of energy for life on Earth. Its diameter is about 1.39 million kilometers, or 109 times that of Earth, and its mass is about 330,000 times that of Earth. It accounts for about 99.86% of the total mass of the Solar System. Roughly three quarters of the Sun's mass consists of hydrogen (~73%); the rest is mostly helium (~25%), with much smaller quantities of heavier elements, including oxygen, carbon, neon, and iron.

East one of the four cardinal directions

East is one of the four cardinal directions or points of the compass. It is the opposite direction from west.

The equatorial ring was about one to two cubits (45cm-90cm) in diameter. Because the Sun is not a point source of light, the width of the shadow on the bottom half of the ring is slightly less than the width of the ring. By waiting until the shadow was centered on the ring, the time of the equinox could be fixed to within an hour or so. If the equinox happened at night, or if the sky was cloudy, an interpolation could be made between two days' measurements.

Night part of the day when the Sun is not aloft

Night or nighttime is the period from sunset to sunrise in each twenty-four hours, when the Sun is below the horizon. However it can be defined differently and is subjective. Night can be defined as the time between bedtime and morning. There is no exact time for when night begins and ends. The start of night begins when evening ends, which is subjective, but is typically believed to end at astronomical sunset, which is when night may begin. There can be no precise definition in terms of clock time, but it is usually considered to start around 9 pm and to last to about 5 am. Since sunset and sunrise vary throughout the year there can be no precise definition in terms of clock time. Night and morning overlap when one considers morning to start past 12 am, which can be described as 'morning-night duality'.

The main disadvantage with the equatorial ring is that it needed to be aligned very precisely or false measurements could occur. Ptolemy mentions in the Almagest that one of the equatorial rings in use in Alexandria had shifted slightly, which meant that the instrument showed the equinox occurring twice on the same day. False readings can also be produced by atmospheric refraction of the Sun when it is close to the horizon.

Ptolemy 2nd-century Greco-Egyptian writer and astronomer

Claudius Ptolemy was a Greco-Roman mathematician, astronomer, geographer and astrologer. He lived in the city of Alexandria in the Roman province of Egypt, wrote in Koine Greek, and held Roman citizenship. The 14th-century astronomer Theodore Meliteniotes gave his birthplace as the prominent Greek city Ptolemais Hermiou in the Thebaid. This attestation is quite late, however, and, according to Gerald Toomer, the translator of his Almagest into English, there is no reason to suppose he ever lived anywhere other than Alexandria. He died there around AD 168.

<i>Almagest</i> astronomical treatise

The Almagest is a 2nd-century Greek-language mathematical and astronomical treatise on the apparent motions of the stars and planetary paths, written by Claudius Ptolemy. One of the most influential scientific texts of all time, its geocentric model was accepted for more than 1200 years from its origin in Hellenistic Alexandria, in the medieval Byzantine and Islamic worlds, and in Western Europe through the Middle Ages and early Renaissance until Copernicus.

Atmospheric refraction deviation of light or other electromagnetic wave from a straight line as it passes through the atmosphere

Atmospheric refraction is the deviation of light or other electromagnetic wave from a straight line as it passes through the atmosphere due to the variation in air density as a function of height. This refraction is due to the velocity of light through air, decreasing with increased density. Atmospheric refraction near the ground produces mirages. Such refraction can also raise or lower, or stretch or shorten, the images of distant objects without involving mirages. Turbulent air can make distant objects appear to twinkle or shimmer. The term also applies to the refraction of sound. Atmospheric refraction is considered in measuring the position of both celestial and terrestrial objects.

Equatorial rings can also be found on armillary spheres and equatorial sundials.

Armillary sphere A model of objects in the sky consisting of a framework of rings

An armillary sphere is a model of objects in the sky, consisting of a spherical framework of rings, centred on Earth or the Sun, that represent lines of celestial longitude and latitude and other astronomically important features, such as the ecliptic. As such, it differs from a celestial globe, which is a smooth sphere whose principal purpose is to map the constellations. It was invented separately in ancient Greece and ancient China, with later use in the Islamic world and Medieval Europe.

Related Research Articles

Ecliptic apparent path of the Sun on the celestial sphere

The ecliptic is the mean plane of the apparent path in the Earth's sky that the Sun follows over the course of one year; it is the basis of the ecliptic coordinate system. This plane of reference is coplanar with Earth's orbit around the Sun. The ecliptic is not normally noticeable from Earth's surface because the planet's rotation carries the observer through the daily cycles of sunrise and sunset, which obscure the Sun's apparent motion against the background of stars during the year.

Equinox astronomical event where the Sun is directly above the Earths equator

An equinox is commonly regarded as the instant of time when the plane of Earth's equator passes through the center of the Sun. This occurs twice each year: around 20 March and 23 September. In other words, it is the moment at which the center of the visible Sun is directly above the Equator.

Hipparchus ancient Greek scholar

Hipparchus of Nicaea was a Greek astronomer, geographer, and mathematician. He is considered the founder of trigonometry but is most famous for his incidental discovery of precession of the equinoxes.

Right ascension Astronomical equivalent of longitude

Right ascension is the angular distance of a particular point measured eastward along the celestial equator from the Sun at the March equinox to the point above the earth in question. When paired with declination, these astronomical coordinates specify the direction of a point on the celestial sphere in the equatorial coordinate system.

A solstice is an event occurring when the Sun appears to reach its most northerly or southerly excursion relative to the celestial equator on the celestial sphere. Two solstices occur annually, around June 21 and December 21. The seasons of the year are determined by reference to both the solstices and the equinoxes.

Celestial sphere imaginary sphere of arbitrarily large radius, concentric with the observer

In astronomy and navigation, the celestial sphere is an abstract sphere that has an arbitrarily large radius and is concentric to Earth. All objects in the sky can be conceived as being projected upon the inner surface of the celestial sphere, which may be centered on Earth or the observer. If centered on the observer, half of the sphere would resemble a hemispherical screen over the observing location.

Equatorial coordinate system A celestial coordinate system used to specify the positions of celestial objects

The equatorial coordinate system is a celestial coordinate system widely used to specify the positions of celestial objects. It may be implemented in spherical or rectangular coordinates, both defined by an origin at the centre of Earth, a fundamental plane consisting of the projection of Earth's equator onto the celestial sphere, a primary direction towards the vernal equinox, and a right-handed convention.

Ecliptic coordinate system celestial coordinate system used for representing the positions of Solar System objects

The ecliptic coordinate system is a celestial coordinate system commonly used for representing the apparent positions and orbits of Solar System objects. Because most planets and many small Solar System bodies have orbits with slight inclinations to the ecliptic, using it as the fundamental plane is convenient. The system's origin can be the center of either the Sun or Earth, its primary direction is towards the vernal (northward) equinox, and it has a right-hand convention. It may be implemented in spherical or rectangular coordinates.

Sidereal time time standard

Sidereal time is a timekeeping system that astronomers use to locate celestial objects. Using sidereal time, it is possible to easily point a telescope to the proper coordinates in the night sky. Briefly, sidereal time is a "time scale that is based on Earth's rate of rotation measured relative to the fixed stars".

Axial precession gravity-induced, slow, and continuous change in the orientation of an astronomical bodys rotational axis

In astronomy, axial precession is a gravity-induced, slow, and continuous change in the orientation of an astronomical body's rotational axis. In particular, it can refer to the gradual shift in the orientation of Earth's axis of rotation in a cycle of approximately 25,772 years. This is similar to the precession of a spinning-top, with the axis tracing out a pair of cones joined at their apices. The term "precession" typically refers only to this largest part of the motion; other changes in the alignment of Earth's axis—nutation and polar motion—are much smaller in magnitude.

Sundial device that tells the time of day by the apparent position of the Sun in the sky

A sundial is a device that tells the time of day when there is sunlight by the apparent position of the Sun in the sky. In the narrowest sense of the word, it consists of a flat plate and a gnomon, which casts a shadow onto the dial. As the Sun appears to move across the sky, the shadow aligns with different hour-lines, which are marked on the dial to indicate the time of day. The style is the time-telling edge of the gnomon, though a single point or nodus may be used. The gnomon casts a broad shadow; the shadow of the style shows the time. The gnomon may be a rod, wire, or elaborately decorated metal casting. The style must be parallel to the axis of the Earth's rotation for the sundial to be accurate throughout the year. The style's angle from horizontal is equal to the sundial's geographical latitude.

Transit of Deimos from Mars

A transit of Deimos across the Sun as seen from Mars occurs when Deimos passes directly between the Sun and a point on the surface of Mars, obscuring a small part of the Sun's disc for an observer on Mars. During a transit, Deimos can be seen from Mars as a small dark spot rapidly moving across the Sun's face.

Astronomy on Mars

In many cases astronomical phenomena viewed from the planet Mars are the same or similar to those seen from Earth but sometimes they can be quite different. For example, because the atmosphere of Mars does not contain an ozone layer, it is also possible to make UV observations from the surface of Mars.

Spherical astronomy or positional astronomy is the branch of astronomy that is used to determine the location of objects on the celestial sphere, as seen at a particular date, time, and location on Earth. It relies on the mathematical methods of spherical geometry and the measurements of astrometry.

Daytime period on any given point of the planets surface during which it experiences natural illumination from sunlight

On Earth, daytime is roughly the period of the day during which any given point in the world experiences natural illumination from especially direct sunlight. Daytime occurs when the Sun appears above the local horizon, that is, anywhere on the globe's hemisphere facing the Sun. During daytime, an observer sees indirect sunlight while in the shade, which includes cloud cover. 'Day' is sometimes used instead of 'daytime', in this case 'day' will mean 'the period of light between dawn and nightfall; the interval from sunrise to sunset', which is synonymous with daytime. However, in this context, in order to be clear "daytime" should be used distinguish it from "day" which typically refers to a 24-hour period.

Sun path

Sun path, sometimes also called day arc, refers to the daily and seasonal arc-like path that the Sun appears to follow across the sky as the Earth rotates and orbits the Sun. The Sun's path affects the length of daytime experienced and amount of daylight received along a certain latitude during a given season.

Earth-centered inertial

Earth-centered inertial (ECI) coordinate frames have their origins at the center of mass of Earth and do not rotate with respect to the stars. ECI frames are called inertial, in contrast to the Earth-centered, Earth-fixed (ECEF) frames, which remain fixed with respect to Earth's surface in its rotation. It is convenient to represent the positions and velocities of terrestrial objects in ECEF coordinates or with latitude, longitude, and altitude. However, for objects in space, the equations of motion that describe orbital motion are simpler in a non-rotating frame such as ECI. The ECI frame is also useful for specifying the direction toward celestial objects.

Gamma (eclipse) parameter of an eclipse that describes how centrally the shadow of the Moon or Earth strikes the other

Gamma of an eclipse describes how centrally the shadow of the Moon or Earth strikes the other body. This distance, measured at the moment when the axis of the shadow cone passes closest to the center of the Earth or Moon, is stated as a fraction of the equatorial radius of the Earth or Moon.

Astronomical rings type of sundial

Astronomical rings, also known as Gemma's rings, are an early astronomical instrument. The instrument consists of three rings, each representing the celestial equator, declination, and the meridian.

References