Dioptra

Last updated • 1 min readFrom Wikipedia, The Free Encyclopedia
Graphic reconstruction of the dioptra, by Venturi, in 1814. (An incorrect interpretation of Heron's description) Dioptra - ESP.jpg
Graphic reconstruction of the dioptra, by Venturi, in 1814. (An incorrect interpretation of Heron's description)

A dioptra (sometimes also named dioptre or diopter, from Greek : διόπτρα) is a classical astronomical and surveying instrument, dating from the 3rd century BC. The dioptra was a sighting tube or, alternatively, a rod with a sight at both ends, attached to a stand. If fitted with protractors, it could be used to measure angles.

Contents

Use

Greek astronomers used the dioptra to measure the positions of stars; both Euclid and Geminus refer to the dioptra in their astronomical works.

It continued in use as an effective surveying tool. Adapted to surveying, the dioptra is similar to the theodolite, or surveyor's transit, which dates to the sixteenth century. It is a more accurate version of the groma.

There is some speculation that it may have been used to build the Eupalinian aqueduct. Called "one of the greatest engineering achievements of ancient times," it is a tunnel 1,036 metres (3,399 ft) long, excavated through a mountain on the Greek island of Samos during the reign of Polycrates in the sixth century BC. Scholars disagree, however, whether the dioptra was available that early. [1]

An entire book about the construction and surveying usage of the dioptra is credited to Hero of Alexandria (also known as Heron; a brief description of the book is available online; see Lahanas link, below). Hero was "one of history’s most ingenious engineers and applied mathematicians."

The dioptra was used extensively on aqueduct building projects. Screw turns on several different parts of the instrument made it easy to calibrate for very precise measurements

The dioptra was replaced as a surveying instrument by the theodolite.

See also

Related Research Articles

<span class="mw-page-title-main">Hipparchus</span> 2nd-century BC Greek astronomer, geographer and mathematician

Hipparchus was a Greek astronomer, geographer, and mathematician. He is considered the founder of trigonometry, but is most famous for his incidental discovery of the precession of the equinoxes. Hipparchus was born in Nicaea, Bithynia, and probably died on the island of Rhodes, Greece. He is known to have been a working astronomer between 162 and 127 BC.

<span class="mw-page-title-main">History of astronomy</span>

The history of astronomy focuses on the contributions civilizations have made to further their understanding of the universe beyond earth's atmosphere. Astronomy is one of the oldest natural sciences, achieving a high level of success in the second half of the first millennium. Astronomy has origins in the religious, mythological, cosmological, calendrical, and astrological beliefs and practices of prehistory. Early astronomical records date back to the Babylonians around 1000 BCE. There is also astronomical evidence of interest from early Chinese, Central American and North European cultures.

<span class="mw-page-title-main">Surveying</span> Science of determining the positions of points and the distances and angles between them

Surveying or land surveying is the technique, profession, art, and science of determining the terrestrial two-dimensional or three-dimensional positions of points and the distances and angles between them. These points are usually on the surface of the Earth, and they are often used to establish maps and boundaries for ownership, locations, such as the designated positions of structural components for construction or the surface location of subsurface features, or other purposes required by government or civil law, such as property sales.

<span class="mw-page-title-main">Hero of Alexandria</span> 1st century AD Hellenistic mathematician and engineer

Hero of Alexandria was a Greek mathematician and engineer who was active in Alexandria in Egypt during the Roman era. He has been described as the greatest experimentalist of antiquity and a representative of the Hellenistic scientific tradition.

<span class="mw-page-title-main">Aristarchus of Samos</span> Greek astronomer and mathematician (c.310–c.230 BC)

Aristarchus of Samos was an ancient Greek astronomer and mathematician who presented the first known heliocentric model that placed the Sun at the center of the universe, with the Earth revolving around the Sun once a year and rotating about its axis once a day. He also supported the theory of Anaxagoras according to which the Sun was just another star.

<span class="mw-page-title-main">Triangulation</span> Method of determining a location

In trigonometry and geometry, triangulation is the process of determining the location of a point by forming triangles to the point from known points.

<span class="mw-page-title-main">Theodolite</span> Optical surveying instrument

A theodolite is a precision optical instrument for measuring angles between designated visible points in the horizontal and vertical planes. The traditional use has been for land surveying, but it is also used extensively for building and infrastructure construction, and some specialized applications such as meteorology and rocket launching.

<span class="mw-page-title-main">Alidade</span> Device that allows one to sight a distant object

An alidade or a turning board is a device that allows one to sight a distant object and use the line of sight to perform a task. This task can be, for example, to triangulate a scale map on site using a plane table drawing of intersecting lines in the direction of the object from two or more points or to measure the angle and horizontal distance to the object from some reference point's polar measurement. Angles measured can be horizontal, vertical or in any chosen plane.

<span class="mw-page-title-main">Reticle</span> Aim markings in optical devices, e.g. crosshairs

A reticle, or reticule also known as a graticule, is a pattern of fine lines or markings built into the eyepiece of an optical device such as a telescopic sight, spotting scope, theodolite, optical microscope or the screen of an oscilloscope, to provide measurement references during visual inspections. Today, engraved lines or embedded fibers may be replaced by a digital image superimposed on a screen or eyepiece. Both terms may be used to describe any set of patterns used for aiding visual measurements and calibrations, but in modern use reticle is most commonly used for weapon sights, while graticule is more widely used for non-weapon measuring instruments such as oscilloscope display, astronomic telescopes, microscopes and slides, surveying instruments and other similar devices.

<span class="mw-page-title-main">Ramsden surveying instruments</span>

The Ramsden surveying instruments are those constructed by Jesse Ramsden and used in high precision geodetic surveys carried out in the period 1784 to 1853. This includes the five great theodolites—great in name, great in size and great in accuracy—used in surveys of Britain and other parts of the world. Ramsden also provided the equipment used in the measurement of the many base lines of these surveys and also the zenith telescope used in latitude determinations.

<span class="mw-page-title-main">Digit (unit)</span>

The digit or finger is an ancient and obsolete non-SI unit of measurement of length. It was originally based on the breadth of a human finger. It was a fundamental unit of length in the Ancient Egyptian, Mesopotamian, Hebrew, Ancient Greek and Roman systems of measurement.

<span class="mw-page-title-main">Hero of Byzantium</span>

Hero of Byzantium, also Heron of Byzantium or sometimes Hero the Younger, is a name used to refer to the anonymous Byzantine author of two treatises, commonly known as Parangelmata Poliorcetica and Geodesia, composed in the mid-10th century and found in an 11th-century manuscript in the Vatican Library. The first is a poliorketikon, an illustrated manual of siegecraft; the second is a work in practical geometry and ballistics, which makes use of locations around Constantinople to illustrate its points. The manuscript consists of 58 folios and 38 colored illustrations.

<span class="mw-page-title-main">Tunnel of Eupalinos</span> UNESCO World Heritage Site in Greece

The Tunnel of Eupalinos or Eupalinian aqueduct is a tunnel of 1,036 m (3,399 ft) length running through Mount Kastro in Samos, Greece, built in the 6th century BC to serve as an aqueduct. The tunnel is the second known tunnel in history which was excavated from both ends, and the first with a geometry-based approach in doing so. Today it is a popular tourist attraction. The tunnel is inscribed on the UNESCO World Heritage List along with the nearby Pythagoreion and Heraion of Samos, and it was designated as an International Historic Civil Engineering Landmark in 2017.

<span class="mw-page-title-main">Eupalinos</span>

Eupalinos or Eupalinus of Megara was an ancient Greek engineer who built the Tunnel of Eupalinos on Samos Island in the 6th century BC.

<span class="mw-page-title-main">Mural instrument</span> Type of angle measuring device

A mural instrument is an angle measuring instrument mounted on or built into a wall. For astronomical purposes, these walls were oriented so they lie precisely on the meridian. A mural instrument that measured angles from 0 to 90 degrees was called a mural quadrant. They were utilized as astronomical devices in ancient Egypt and ancient Greece. Edmond Halley, due to the lack of an assistant and only one vertical wire in his transit, confined himself to the use of a mural quadrant built by George Graham after its erection in 1725 at the Royal Observatory, Greenwich. Bradley's first observation with that quadrant was made on 15 June 1742.

<span class="mw-page-title-main">Transit instrument</span> Small telescope used for precise astrometry

In astronomy, a transit instrument is a small telescope with extremely precisely graduated mount used for the precise observation of star positions. They were previously widely used in astronomical observatories and naval observatories to measure star positions in order to compile nautical almanacs for use by mariners for celestial navigation, and observe star transits to set extremely accurate clocks which were used to set marine chronometers carried on ships to determine longitude, and as primary time standards before atomic clocks. The instruments can be divided into three groups: meridian, zenith, and universal instruments.

<span class="mw-page-title-main">Gyrotheodolite</span> Surveying instrument

In surveying, a gyrotheodolite is an instrument composed of a gyrocompass mounted to a theodolite. It is used to determine the orientation of true north. It is the main instrument for orientation in mine surveying and in tunnel engineering, where astronomical star sights are not visible and GPS does not work.

References

  1. Apostol, Tom M. "The Tunnel of Samos" (PDF). caltech.edu. Retrieved 19 June 2011.

Further reading