Muḥammad ibn Mūsā al-Khwārizmī | |
---|---|
محمد بن موسى خوارزمی | |
Born | c. 780 |
Died | c. 850 [1] [2] (aged ~70) Abbasid Caliphate |
Occupation | Head of the House of Wisdom in Baghdad (appt. c. 820) |
Academic work | |
Era | Islamic Golden Age |
Main interests | |
Notable works |
|
Notable ideas | Treatises on algebra and the Hindu–Arabic numeral system |
Influenced | Abu Kamil of Egypt [3] |
Muhammad ibn Musa al-Khwarizmi [note 1] (Persian : محمد بن موسى خوارزمی; c. 780 – c. 850), or simply al-Khwarizmi, was a Persian [6] polymath who produced vastly influential Arabic-language works in mathematics, astronomy, and geography. Around 820 CE, he was appointed as the astronomer and head of the House of Wisdom in Baghdad, the contemporary capital city of the Abbasid Caliphate.
His popularizing treatise on algebra, compiled between 813–833 as Al-Jabr (The Compendious Book on Calculation by Completion and Balancing), [7] : 171 presented the first systematic solution of linear and quadratic equations. One of his achievements in algebra was his demonstration of how to solve quadratic equations by completing the square, for which he provided geometric justifications. [8] : 14 Because al-Khwarizmi was the first person to treat algebra as an independent discipline and introduced the methods of "reduction" and "balancing" (the transposition of subtracted terms to the other side of an equation, that is, the cancellation of like terms on opposite sides of the equation), [9] he has been described as the father [10] [11] [12] or founder [13] [14] of algebra. The English term algebra comes from the short-hand title of his aforementioned treatise (الجبرAl-Jabr, transl. "completion" or "rejoining"). [15] His name gave rise to the English terms algorism and algorithm ; the Spanish, Italian, and Portuguese terms algoritmo; and the Spanish term guarismo [16] and Portuguese term algarismo, both meaning 'digit'. [17]
In the 12th century, Latin translations of al-Khwarizmi's textbook on Indian arithmetic (Algorithmo de Numero Indorum), which codified the various Indian numerals, introduced the decimal-based positional number system to the Western world. [18] Likewise, Al-Jabr, translated into Latin by the English scholar Robert of Chester in 1145, was used until the 16th century as the principal mathematical textbook of European universities. [19] [20] [21] [22]
Al-Khwarizmi revised Geography , the 2nd-century Greek-language treatise by the Roman polymath Claudius Ptolemy, listing the longitudes and latitudes of cities and localities. [23] : 9 He further produced a set of astronomical tables and wrote about calendric works, as well as the astrolabe and the sundial. [24] Al-Khwarizmi made important contributions to trigonometry, producing accurate sine and cosine tables and the first table of tangents.
Few details of al-Khwārizmī's life are known with certainty. Ibn al-Nadim gives his birthplace as Khwarazm, and he is generally thought to have come from this region. [25] [26] [27] Of Persian stock, [28] [25] [29] [30] [31] his name means 'from Khwarazm', a region that was part of Greater Iran, [32] and is now part of Turkmenistan and Uzbekistan. [33]
Al-Tabari gives his name as Muḥammad ibn Musá al-Khwārizmī al-Majūsī al-Quṭrubbullī (محمد بن موسى الخوارزميّ المجوسـيّ القطربّـليّ). The epithet al-Qutrubbulli could indicate he might instead have come from Qutrubbul (Qatrabbul), [34] near Baghdad. However, Roshdi Rashed denies this: [35]
There is no need to be an expert on the period or a philologist to see that al-Tabari's second citation should read "Muhammad ibn Mūsa al-Khwārizmī and al-Majūsi al-Qutrubbulli," and that there are two people (al-Khwārizmī and al-Majūsi al-Qutrubbulli) between whom the letter wa [Arabic 'و' for the conjunction 'and'] has been omitted in an early copy. This would not be worth mentioning if a series of errors concerning the personality of al-Khwārizmī, occasionally even the origins of his knowledge, had not been made. Recently, G.J. Toomer ... with naive confidence constructed an entire fantasy on the error which cannot be denied the merit of amusing the reader.
On the other hand, David A. King affirms his nisba to Qutrubul, noting that he was called al-Khwārizmī al-Qutrubbulli because he was born just outside of Baghdad. [36]
Regarding al-Khwārizmī's religion, Toomer writes: [37]
Another epithet given to him by al-Ṭabarī, "al-Majūsī," would seem to indicate that he was an adherent of the old Zoroastrian religion. This would still have been possible at that time for a man of Iranian origin, but the pious preface to al-Khwārizmī's Algebra shows that he was an orthodox Muslim, so al-Ṭabarī's epithet could mean no more than that his forebears, and perhaps he in his youth, had been Zoroastrians.
Ibn al-Nadīm's Al-Fihrist includes a short biography on al-Khwārizmī together with a list of his books. Al-Khwārizmī accomplished most of his work between 813 and 833. After the Muslim conquest of Persia, Baghdad had become the centre of scientific studies and trade. Around 820 CE, he was appointed as the astronomer and head of the library of the House of Wisdom. [8] : 14 The House of Wisdom was established by the Abbasid Caliph al-Ma'mūn. Al-Khwārizmī studied sciences and mathematics, including the translation of Greek and Sanskrit scientific manuscripts. He was also a historian who is cited by the likes of al-Tabari and Ibn Abi Tahir. [38]
During the reign of al-Wathiq, he is said to have been involved in the first of two embassies to the Khazars. [39] Douglas Morton Dunlop suggests that Muḥammad ibn Mūsā al-Khwārizmī might have been the same person as Muḥammad ibn Mūsā ibn Shākir, the eldest of the three Banū Mūsā brothers. [40]
Al-Khwārizmī's contributions to mathematics, geography, astronomy, and cartography established the basis for innovation in algebra and trigonometry. His systematic approach to solving linear and quadratic equations led to algebra, a word derived from the title of his book on the subject, Al-Jabr. [41]
On the Calculation with Hindu Numerals, written about 820, was principally responsible for spreading the Hindu–Arabic numeral system throughout the Middle East and Europe. When the work was translated into Latin in the 12th century as Algoritmi de numero Indorum (Al-Khwarizmi on the Hindu art of reckoning), the term "algorithm" was introduced to the Western world. [42] [43] [44]
Some of his work was based on Persian and Babylonian astronomy, Indian numbers, and Greek mathematics.
Al-Khwārizmī systematized and corrected Ptolemy's data for Africa and the Middle East. Another major book was Kitab surat al-ard ("The Image of the Earth"; translated as Geography), presenting the coordinates of places based on those in the Geography of Ptolemy, but with improved values for the Mediterranean Sea, Asia, and Africa. [45]
He wrote on mechanical devices like the astrolabe [46] and sundial. [24] He assisted a project to determine the circumference of the Earth and in making a world map for al-Ma'mun, the caliph, overseeing 70 geographers. [47] When, in the 12th century, his works spread to Europe through Latin translations, it had a profound impact on the advance of mathematics in Europe. [48]
Al-Jabr (The Compendious Book on Calculation by Completion and Balancing, Arabic : الكتاب المختصر في حساب الجبر والمقابلةal-Kitāb al-mukhtaṣar fī ḥisāb al-jabr wal-muqābala) is a mathematical book written approximately 820 CE. It was written with the encouragement of Caliph al-Ma'mun as a popular work on calculation and is replete with examples and applications to a range of problems in trade, surveying and legal inheritance. [49] The term "algebra" is derived from the name of one of the basic operations with equations (al-jabr, meaning "restoration", referring to adding a number to both sides of the equation to consolidate or cancel terms) described in this book. The book was translated in Latin as Liber algebrae et almucabala by Robert of Chester (Segovia, 1145) hence "algebra", and by Gerard of Cremona. A unique Arabic copy is kept at Oxford and was translated in 1831 by F. Rosen. A Latin translation is kept in Cambridge. [50]
It provided an exhaustive account of solving polynomial equations up to the second degree, [51] and discussed the fundamental method of "reduction" and "balancing", referring to the transposition of terms to the other side of an equation, that is, the cancellation of like terms on opposite sides of the equation. [52]
Al-Khwārizmī's method of solving linear and quadratic equations worked by first reducing the equation to one of six standard forms (where b and c are positive integers)
by dividing out the coefficient of the square and using the two operations al-jabr (Arabic : الجبر "restoring" or "completion") and al-muqābala ("balancing"). Al-jabr is the process of removing negative units, roots and squares from the equation by adding the same quantity to each side. For example, x2 = 40x − 4x2 is reduced to 5x2 = 40x. Al-muqābala is the process of bringing quantities of the same type to the same side of the equation. For example, x2 + 14 = x + 5 is reduced to x2 + 9 = x.
The above discussion uses modern mathematical notation for the types of problems that the book discusses. However, in al-Khwārizmī's day, most of this notation had not yet been invented, so he had to use ordinary text to present problems and their solutions. For example, for one problem he writes, (from an 1831 translation)
If some one says: "You divide ten into two parts: multiply the one by itself; it will be equal to the other taken eighty-one times." Computation: You say, ten less a thing, multiplied by itself, is a hundred plus a square less twenty things, and this is equal to eighty-one things. Separate the twenty things from a hundred and a square, and add them to eighty-one. It will then be a hundred plus a square, which is equal to a hundred and one roots. Halve the roots; the moiety is fifty and a half. Multiply this by itself, it is two thousand five hundred and fifty and a quarter. Subtract from this one hundred; the remainder is two thousand four hundred and fifty and a quarter. Extract the root from this; it is forty-nine and a half. Subtract this from the moiety of the roots, which is fifty and a half. There remains one, and this is one of the two parts. [49]
In modern notation this process, with x the "thing" (شيءshayʾ) or "root", is given by the steps,
Let the roots of the equation be x = p and x = q. Then , and
So a root is given by
Several authors have published texts under the name of Kitāb al-jabr wal-muqābala, including Abū Ḥanīfa Dīnawarī, Abū Kāmil, Abū Muḥammad al-'Adlī, Abū Yūsuf al-Miṣṣīṣī, 'Abd al-Hamīd ibn Turk, Sind ibn 'Alī, Sahl ibn Bišr, and Sharaf al-Dīn al-Ṭūsī.
Solomon Gandz has described Al-Khwarizmi as the father of Algebra:
Al-Khwarizmi's algebra is regarded as the foundation and cornerstone of the sciences. In a sense, al-Khwarizmi is more entitled to be called "the father of algebra" than Diophantus because al-Khwarizmi is the first to teach algebra in an elementary form and for its own sake, Diophantus is primarily concerned with the theory of numbers. [53]
Victor J. Katz adds :
The first true algebra text which is still extant is the work on al-jabr and al-muqabala by Mohammad ibn Musa al-Khwarizmi, written in Baghdad around 825. [54]
John J. O'Connor and Edmund F. Robertson wrote in the MacTutor History of Mathematics Archive :
Perhaps one of the most significant advances made by Arabic mathematics began at this time with the work of al-Khwarizmi, namely the beginnings of algebra. It is important to understand just how significant this new idea was. It was a revolutionary move away from the Greek concept of mathematics which was essentially geometry. Algebra was a unifying theory which allowed rational numbers, irrational numbers, geometrical magnitudes, etc., to all be treated as "algebraic objects". It gave mathematics a whole new development path so much broader in concept to that which had existed before, and provided a vehicle for future development of the subject. Another important aspect of the introduction of algebraic ideas was that it allowed mathematics to be applied to itself in a way which had not happened before. [55]
Roshdi Rashed and Angela Armstrong write:
Al-Khwarizmi's text can be seen to be distinct not only from the Babylonian tablets, but also from Diophantus' Arithmetica . It no longer concerns a series of problems to be solved, but an exposition which starts with primitive terms in which the combinations must give all possible prototypes for equations, which henceforward explicitly constitute the true object of study. On the other hand, the idea of an equation for its own sake appears from the beginning and, one could say, in a generic manner, insofar as it does not simply emerge in the course of solving a problem, but is specifically called on to define an infinite class of problems. [56]
According to Swiss-American historian of mathematics, Florian Cajori, Al-Khwarizmi's algebra was different from the work of Indian mathematicians, for Indians had no rules like the restoration and reduction. [57] Regarding the dissimilarity and significance of Al-Khwarizmi's algebraic work from that of Indian Mathematician Brahmagupta, Carl B. Boyer wrote:
It is true that in two respects the work of al-Khowarizmi represented a retrogression from that of Diophantus. First, it is on a far more elementary level than that found in the Diophantine problems and, second, the algebra of al-Khowarizmi is thoroughly rhetorical, with none of the syncopation found in the Greek Arithmetica or in Brahmagupta's work. Even numbers were written out in words rather than symbols! It is quite unlikely that al-Khwarizmi knew of the work of Diophantus, but he must have been familiar with at least the astronomical and computational portions of Brahmagupta; yet neither al-Khwarizmi nor other Arabic scholars made use of syncopation or of negative numbers. Nevertheless, the Al-jabr comes closer to the elementary algebra of today than the works of either Diophantus or Brahmagupta, because the book is not concerned with difficult problems in indeterminant analysis but with a straight forward and elementary exposition of the solution of equations, especially that of second degree. The Arabs in general loved a good clear argument from premise to conclusion, as well as systematic organization – respects in which neither Diophantus nor the Hindus excelled. [58]
Al-Khwārizmī's second most influential work was on the subject of arithmetic, which survived in Latin translations but is lost in the original Arabic. His writings include the text kitāb al-ḥisāb al-hindī ('Book of Indian computation' [note 2] ), and perhaps a more elementary text, kitab al-jam' wa'l-tafriq al-ḥisāb al-hindī ('Addition and subtraction in Indian arithmetic'). [60] [61] These texts described algorithms on decimal numbers (Hindu–Arabic numerals) that could be carried out on a dust board. Called takht in Arabic (Latin: tabula), a board covered with a thin layer of dust or sand was employed for calculations, on which figures could be written with a stylus and easily erased and replaced when necessary. Al-Khwarizmi's algorithms were used for almost three centuries, until replaced by Al-Uqlidisi's algorithms that could be carried out with pen and paper. [62]
As part of 12th century wave of Arabic science flowing into Europe via translations, these texts proved to be revolutionary in Europe. [63] Al-Khwarizmi's Latinized name, Algorismus, turned into the name of method used for computations, and survives in the term "algorithm". It gradually replaced the previous abacus-based methods used in Europe. [64]
Four Latin texts providing adaptions of Al-Khwarizmi's methods have survived, even though none of them is believed to be a literal translation: [60]
Dixit Algorizmi ('Thus spake Al-Khwarizmi') is the starting phrase of a manuscript in the University of Cambridge library, which is generally referred to by its 1857 title Algoritmi de Numero Indorum. It is attributed to the Adelard of Bath, who had translated the astronomical tables in 1126. It is perhaps the closest to Al-Khwarizmi's own writings. [66]
Al-Khwarizmi's work on arithmetic was responsible for introducing the Arabic numerals, based on the Hindu–Arabic numeral system developed in Indian mathematics, to the Western world. The term "algorithm" is derived from the algorism, the technique of performing arithmetic with Hindu-Arabic numerals developed by al-Khwārizmī. Both "algorithm" and "algorism" are derived from the Latinized forms of al-Khwārizmī's name, Algoritmi and Algorismi, respectively. [67]
Al-Khwārizmī's Zīj as-Sindhind [37] (Arabic : زيج السند هند, "astronomical tables of Siddhanta " [68] ) is a work consisting of approximately 37 chapters on calendrical and astronomical calculations and 116 tables with calendrical, astronomical and astrological data, as well as a table of sine values. This is the first of many Arabic Zijes based on the Indian astronomical methods known as the sindhind. [69] The word Sindhind is a corruption of the Sanskrit Siddhānta, which is the usual designation of an astronomical textbook. In fact, the mean motions in the tables of al-Khwarizmi are derived from those in the "corrected Brahmasiddhanta" (Brahmasphutasiddhanta) of Brahmagupta. [70]
The work contains tables for the movements of the sun, the moon and the five planets known at the time. This work marked the turning point in Islamic astronomy. Hitherto, Muslim astronomers had adopted a primarily research approach to the field, translating works of others and learning already discovered knowledge.
The original Arabic version (written c. 820) is lost, but a version by the Spanish astronomer Maslama al-Majriti (c. 1000) has survived in a Latin translation, presumably by Adelard of Bath (26 January 1126). [71] The four surviving manuscripts of the Latin translation are kept at the Bibliothèque publique (Chartres), the Bibliothèque Mazarine (Paris), the Biblioteca Nacional (Madrid) and the Bodleian Library (Oxford).
Al-Khwārizmī's Zīj as-Sindhind contained tables for the trigonometric functions of sines and cosine. [69] A related treatise on spherical trigonometry is attributed to him. [55]
Al-Khwārizmī produced accurate sine and cosine tables, and the first table of tangents. [72] [73]
Al-Khwārizmī's third major work is his Kitāb Ṣūrat al-Arḍ (Arabic : كتاب صورة الأرض, "Book of the Description of the Earth"), [74] also known as his Geography, which was finished in 833. It is a major reworking of Ptolemy's second-century Geography , consisting of a list of 2402 coordinates of cities and other geographical features following a general introduction. [75]
There is one surviving copy of Kitāb Ṣūrat al-Arḍ, which is kept at the Strasbourg University Library. [76] [77] A Latin translation is at the Biblioteca Nacional de España in Madrid. [78] The book opens with the list of latitudes and longitudes, in order of "weather zones", that is to say in blocks of latitudes and, in each weather zone, by order of longitude. As Paul Gallez notes, this system allows the deduction of many latitudes and longitudes where the only extant document is in such a bad condition, as to make it practically illegible. Neither the Arabic copy nor the Latin translation include the map of the world; however, Hubert Daunicht was able to reconstruct the missing map from the list of coordinates. Daunicht read the latitudes and longitudes of the coastal points in the manuscript, or deduced them from the context where they were not legible. He transferred the points onto graph paper and connected them with straight lines, obtaining an approximation of the coastline as it was on the original map. He did the same for the rivers and towns. [79]
Al-Khwārizmī corrected Ptolemy's gross overestimate for the length of the Mediterranean Sea [80] from the Canary Islands to the eastern shores of the Mediterranean; Ptolemy overestimated it at 63 degrees of longitude, while al-Khwārizmī almost correctly estimated it at nearly 50 degrees of longitude. He "depicted the Atlantic and Indian Oceans as open bodies of water, not land-locked seas as Ptolemy had done." [81] Al-Khwārizmī's Prime Meridian at the Fortunate Isles was thus around 10° east of the line used by Marinus and Ptolemy. Most medieval Muslim gazetteers continued to use al-Khwārizmī's prime meridian. [80]
Al-Khwārizmī wrote several other works including a treatise on the Hebrew calendar, titled Risāla fi istikhrāj ta'rīkh al-yahūd (Arabic : رسالة في إستخراج تأريخ اليهود, "Extraction of the Jewish Era"). It describes the Metonic cycle, a 19-year intercalation cycle; the rules for determining on what day of the week the first day of the month Tishrei shall fall; calculates the interval between the Anno Mundi or Jewish year and the Seleucid era; and gives rules for determining the mean longitude of the sun and the moon using the Hebrew calendar. Similar material is found in the works of Al-Bīrūnī and Maimonides. [37]
Ibn al-Nadim's Al-Fihrist, an index of Arabic books, mentions al-Khwārizmī's Kitāb al-Taʾrīkh (Arabic : كتاب التأريخ), a book of annals. No direct manuscript survives; however, a copy had reached Nusaybin by the 11th century, where its metropolitan bishop, Mar Elias bar Shinaya, found it. Elias's chronicle quotes it from "the death of the Prophet" through to 169 AH, at which point Elias's text itself hits a lacuna. [82]
Several Arabic manuscripts in Berlin, Istanbul, Tashkent, Cairo and Paris contain further material that surely or with some probability comes from al-Khwārizmī. The Istanbul manuscript contains a paper on sundials; the Fihrist credits al-Khwārizmī with Kitāb ar-Rukhāma(t) (Arabic : كتاب الرخامة). Other papers, such as one on the determination of the direction of Mecca, are on the spherical astronomy.
Two texts deserve special interest on the morning width (Ma'rifat sa'at al-mashriq fī kull balad) and the determination of the azimuth from a height (Ma'rifat al-samt min qibal al-irtifā'). He wrote two books on using and constructing astrolabes.
Science in the medieval Islamic world was the science developed and practised during the Islamic Golden Age under the Abbasid Caliphate of Baghdad, the Umayyads of Córdoba, the Abbadids of Seville, the Samanids, the Ziyarids and the Buyids in Persia and beyond, spanning the period roughly between 786 and 1258. Islamic scientific achievements encompassed a wide range of subject areas, especially astronomy, mathematics, and medicine. Other subjects of scientific inquiry included alchemy and chemistry, botany and agronomy, geography and cartography, ophthalmology, pharmacology, physics, and zoology.
Abū Ḥanīfa Aḥmad ibn Dāwūd Dīnawarī was an Islamic Golden Age polymath: astronomer, agriculturist, botanist, metallurgist, geographer, mathematician, and historian.
Algorism is the technique of performing basic arithmetic by writing numbers in place value form and applying a set of memorized rules and facts to the digits. One who practices algorism is known as an algorist. This positional notation system has largely superseded earlier calculation systems that used a different set of symbols for each numerical magnitude, such as Roman numerals, and in some cases required a device such as an abacus.
Abū al-ʿAbbās Aḥmad ibn Muḥammad ibn Kathīr al-Farghānī also known as Alfraganus in the West, was an astronomer in the Abbasid court in Baghdad, and one of the most famous astronomers in the 9th century. Al-Farghani composed several works on astronomy and astronomical equipment that were widely distributed in Arabic and Latin and were influential to many scientists. His best known work, Kitāb fī Jawāmiʿ ʿIlm al-Nujūmi, was an extensive summary of Ptolemy's Almagest containing revised and more accurate experimental data. Christopher Columbus used Al Farghani's calculations for his voyages to America. In addition to making substantial contributions to astronomy, al-Farghani also worked as an engineer, supervising construction projects on rivers in Cairo, Egypt. The lunar crater Alfraganus is named after him.
Abū al-Wafāʾ Muḥammad ibn Muḥammad ibn Yaḥyā ibn Ismāʿīl ibn al-ʿAbbās al-Būzjānī or Abū al-Wafā Būzhjānī was a Persian mathematician and astronomer who worked in Baghdad. He made important innovations in spherical trigonometry, and his work on arithmetic for businessmen contains the first instance of using negative numbers in a medieval Islamic text.
Al-Jabr, also known as The Compendious Book on Calculation by Completion and Balancing, is an Arabic mathematical treatise on algebra written in Baghdad around 820 by the Persian polymath Al-Khwarizmi. It was a landmark work in the history of mathematics, with its title being the ultimate etymology of the word "algebra" itself, later borrowed into Medieval Latin as algebrāica.
Abū Bakr Muḥammad ibn al Ḥasan al-Karajī was a 10th-century Persian mathematician and engineer who flourished at Baghdad. He was born in Karaj, a city near Tehran. His three principal surviving works are mathematical: Al-Badi' fi'l-hisab, Al-Fakhri fi'l-jabr wa'l-muqabala, and Al-Kafi fi'l-hisab.
Arithmetica is an Ancient Greek text on mathematics written by the mathematician Diophantus in the 3rd century AD. It is a collection of 130 algebraic problems giving numerical solutions of determinate equations and indeterminate equations.
This timeline of science and engineering in the Muslim world covers the time period from the eighth century AD to the introduction of European science to the Muslim world in the nineteenth century. All year dates are given according to the Gregorian calendar except where noted.
Abū Kāmil Shujāʿ ibn Aslam ibn Muḥammad Ibn Shujāʿ was a prominent Egyptian mathematician during the Islamic Golden Age. He is considered the first mathematician to systematically use and accept irrational numbers as solutions and coefficients to equations. His mathematical techniques were later adopted by Fibonacci, thus allowing Abu Kamil an important part in introducing algebra to Europe.
Mathematics during the Golden Age of Islam, especially during the 9th and 10th centuries, was built upon syntheses of Greek mathematics and Indian mathematics. Important developments of the period include extension of the place-value system to include decimal fractions, the systematised study of algebra and advances in geometry and trigonometry.
The three brothers Abū Jaʿfar, Muḥammad ibn Mūsā ibn Shākir ; Abū al-Qāsim, Aḥmad ibn Mūsā ibn Shākir and Al-Ḥasan ibn Mūsā ibn Shākir, were Persian scholars who lived and worked in Baghdad. They are collectively known as the Banū Mūsā.
ʿAbd al-Hamīd ibn Turk, known also as ʿAbd al-Hamīd ibn Wase ibn Turk al-Jili was a ninth-century Muslim mathematician. Not much is known about his life. The two records of him, one by Ibn Nadim and the other by al-Qifti are not identical. Al-Qifi mentions his name as ʿAbd al-Hamīd ibn Wase ibn Turk al-Jili. Jili means from Gilan. On the other hand, Ibn Nadim mentions his nisbah as khuttali (ختلی), which is a region located north of the Oxus and west of Badakhshan. In one of the two remaining manuscripts of his al-jabr wa al-muqabila, the recording of his nisbah is closer to al-Jili. David Pingree / Encyclopaedia Iranica states that he originally hailed from Khuttal or Gilan. He wrote a work on algebra entitled Logical Necessities in Mixed Equations, which is very similar to al-Khwarzimi's Al-Jabr and was published at around the same time as, or even possibly earlier than, Al-Jabr. Only a chapter called "Logical Necessities in Mixed Equations", on the solution of quadratic equations, has survived. The manuscript gives exactly the same geometric demonstration as is found in Al-Jabr, and in one case the same example as found in Al-Jabr, and even goes beyond Al-Jabr by giving a geometric proof that if the discriminant is negative then the quadratic equation has no solution. The similarity between these two works has led some historians to conclude that algebra may have been well developed by the time of al-Khwarizmi and 'Abd al-Hamid.
Algebra can essentially be considered as doing computations similar to those of arithmetic but with non-numerical mathematical objects. However, until the 19th century, algebra consisted essentially of the theory of equations. For example, the fundamental theorem of algebra belongs to the theory of equations and is not, nowadays, considered as belonging to algebra.
The following is a timeline of key developments of algebra:
During the High Middle Ages, the Islamic world was an important contributor to the global cultural scene, innovating and supplying information and ideas to Europe, via Al-Andalus, Sicily and the Crusader kingdoms in the Levant. These included Latin translations of the Greek Classics and of Arabic texts in astronomy, mathematics, science, and medicine. Translation of Arabic philosophical texts into Latin "led to the transformation of almost all philosophical disciplines in the medieval Latin world", with a particularly strong influence of Muslim philosophers being felt in natural philosophy, psychology and metaphysics. Other contributions included technological and scientific innovations via the Silk Road, including Chinese inventions such as paper, compass and gunpowder.
Abu al-Tayyib Sanad ibn Ali, also known as Sind ibn Ali, was a ninth-century astronomer, translator, mathematician and engineer during Islamic Golden Age who was employed at the court of the Abbasid caliph Al-Ma'mun. A later convert to Islam, Sanad's father was a learned astronomer who lived and worked in Baghdad.
The first true algebra text which is still extant is the work on al-jabr and al-muqabala by Mohammad ibn Musa al-Khwarizmi, written in Baghdad around 825.
Al-Khwarizmi is often considered the founder of algebra, and his name gave rise to the term algorithm.
"The Compendious Book on Calculation by Completion and Balancing" (Hisab al-Jabr wa H-Muqabala) on the development of the subject cannot be underestimated. Translated into Latin during the twelfth century, it remained the principal mathematics textbook in European universities until the sixteenth century
Take, for example, someone like Muhammad b. Musa al-Khwarizmi (fl. 850) may present a problem for the EIr, for although he was obviously of Persian descent, he lived and worked in Baghdad and was not known to have produced a single scientific work in Persian.
Persian mathematician Al-Khowarizmi
Near the beginning of this period the Persian scholar al-Khwarizmi (d. ca. 850) harmonized Greek and Indian findings to produce astronomical tables that formed the basis for later Eastern and Western research.
I mention another name of Khwarizmi to show that he didn't come from Central Asia. He came from Qutrubul, just outside Baghdad. He was born there, otherwise he wouldn't be called al-Qutrubulli. Many people say he came from Khwarazm, tsk-tsk.
That it came from Indian source is impossible, for Hindus had no rules like "restoration" and "reduction". They were never in the habit of making all terms in an equation positive, as is done in the process of "restoration.