Almucantar

Last updated
The celestial sphere with the zenith and almucantar marked in red, the horizon in green, and the path of a star or the Sun in blue. Almucantarat (it).svg
The celestial sphere with the zenith and almucantar marked in red, the horizon in green, and the path of a star or the Sun in blue.

An almucantar (also spelled almucantarat or almacantara) is a circle on the celestial sphere parallel to the horizon. Two stars that lie on the same almucantar have the same altitude.

Contents

The term was introduced into European astronomy by monastic astronomer Hermann Contractus of Reichenau, Latinized from the Arabic word al-muqanṭarah ("the almucantar, sundial", plural: al-muqanṭarāt), derived from qanṭarah ("arch, bridge") [1] [2]

Almucantar staff

An almucantar staff is an instrument chiefly used to determine the time of sunrise and sunset, in order to find the amplitude and consequently the variations of the compass. Usually made of pear tree or boxwood, with an arch of 15° to 30°, [3] it is an example of a backstaff.

This is a drawing of an almucantar staff. There are three vanes - the horizon vane (A), the shadow vane (B) and the sighting vane (C). Almucantar-staff.png
This is a drawing of an almucantar staff. There are three vanes - the horizon vane (A), the shadow vane (B) and the sighting vane (C).

The sun casts that shadow of a vane (B in the adjacent image) on a horizon vane (A). The horizon vane has a slit or hole to allow the observer to see the horizon in the distance. The observer aligns the horizon and shadow so they show at the same point on the horizon vane and sets the sighting vane (C) to align his line of sight with the horizon. The altitude of the sun is the angle between the shadow vane and the sighting vane (B-A-C).

Solar almucantar

The almucantar plane that contains the Sun is used to characterize multiple scattering of aerosols. Measurements are carried out rapidly at several angles at both sides of the Sun using a spectroradiometer or a photometer. There are several models to obtain aerosol properties from the solar almucantar. The most relevant were developed by Oleg Dubovik and used in the NASA AERONET network and by Teruyuki Nakajima (named SkyRad.pack). [4]

See also

Related Research Articles

<span class="mw-page-title-main">Sextant</span> Tool for angle measurement

A sextant is a doubly reflecting navigation instrument that measures the angular distance between two visible objects. The primary use of a sextant is to measure the angle between an astronomical object and the horizon for the purposes of celestial navigation.

<span class="mw-page-title-main">Azimuth</span> Horizontal angle from north or other reference cardinal direction

An azimuth is the horizontal angle from a cardinal direction, most commonly north, in a local or observer-centric spherical coordinate system.

<span class="mw-page-title-main">Zenith</span> Imaginary point directly above a particular location, on the imaginary celestial sphere

The zenith is the imaginary point on the celestial sphere directly "above" a particular location. "Above" means in the vertical direction opposite to the gravity direction at that location (nadir). The zenith is the "highest" point on the celestial sphere.

<span class="mw-page-title-main">Sundial</span> Device that tells the time of day by the apparent position of the Sun in the sky

A sundial is a horological device that tells the time of day when direct sunlight shines by the apparent position of the Sun in the sky. In the narrowest sense of the word, it consists of a flat plate and a gnomon, which casts a shadow onto the dial. As the Sun appears to move through the sky, the shadow aligns with different hour-lines, which are marked on the dial to indicate the time of day. The style is the time-telling edge of the gnomon, though a single point or nodus may be used. The gnomon casts a broad shadow; the shadow of the style shows the time. The gnomon may be a rod, wire, or elaborately decorated metal casting. The style must be parallel to the axis of the Earth's rotation for the sundial to be accurate throughout the year. The style's angle from horizontal is equal to the sundial's geographical latitude.

<span class="mw-page-title-main">Celestial navigation</span> Navigation using astronomical objects to determine position

Celestial navigation, also known as astronavigation, is the practice of position fixing using stars and other celestial bodies that enables a navigator to accurately determine their actual current physical position in space or on the surface of the Earth without relying solely on estimated positional calculations, commonly known as dead reckoning. Celestial navigation is performed without using satellite navigation or other similar modern electronic or digital positioning means.

<span class="mw-page-title-main">Sunrise</span> Time of day when the sun appears above the horizon

Sunrise is the moment when the upper rim of the Sun appears on the horizon in the morning. The term can also refer to the entire process of the solar disk crossing the horizon.

<span class="mw-page-title-main">Alidade</span> Device that allows one to sight a distant object

An alidade or a turning board is a device that allows one to sight a distant object and use the line of sight to perform a task. This task can be, for example, to triangulate a scale map on site using a plane table drawing of intersecting lines in the direction of the object from two or more points or to measure the angle and horizontal distance to the object from some reference point's polar measurement. Angles measured can be horizontal, vertical or in any chosen plane.

The backstaff is a navigational instrument that was used to measure the altitude of a celestial body, in particular the Sun or Moon. When observing the Sun, users kept the Sun to their back and observed the shadow cast by the upper vane on a horizon vane. It was invented by the English navigator John Davis, who described it in his book Seaman's Secrets in 1594.

<span class="mw-page-title-main">Atmospheric refraction</span> Deviation of light as it moves through the atmosphere

Atmospheric refraction is the deviation of light or other electromagnetic wave from a straight line as it passes through the atmosphere due to the variation in air density as a function of height. This refraction is due to the velocity of light through air decreasing with increased density. Atmospheric refraction near the ground produces mirages. Such refraction can also raise or lower, or stretch or shorten, the images of distant objects without involving mirages. Turbulent air can make distant objects appear to twinkle or shimmer. The term also applies to the refraction of sound. Atmospheric refraction is considered in measuring the position of both celestial and terrestrial objects.

<span class="mw-page-title-main">Jacob's staff</span> Measurement tool

The term Jacob's staff is used to refer to several things, also known as cross-staff, a ballastella, a fore-staff, a ballestilla, or a balestilha. In its most basic form, a Jacob's staff is a stick or pole with length markings; most staffs are much more complicated than that, and usually contain a number of measurement and stabilization features. The two most frequent uses are:

<span class="mw-page-title-main">Longitude by chronometer</span>

Longitude by chronometer is a method, in navigation, of determining longitude using a marine chronometer, which was developed by John Harrison during the first half of the eighteenth century. It is an astronomical method of calculating the longitude at which a position line, drawn from a sight by sextant of any celestial body, crosses the observer's assumed latitude. In order to calculate the position line, the time of the sight must be known so that the celestial position i.e. the Greenwich Hour Angle and Declination, of the observed celestial body is known. All that can be derived from a single sight is a single position line, which can be achieved at any time during daylight when both the sea horizon and the sun are visible. To achieve a fix, more than one celestial body and the sea horizon must be visible. This is usually only possible at dawn and dusk.

<span class="mw-page-title-main">AERONET</span> Network of ground-based sun photometers

AERONET - the AERONET is a network of ground-based sun photometers which measure atmospheric aerosol properties. The measurement system is a solar-powered CIMEL Electronique 318A spectral radiometer that measures Sun and sky radiances at a number of fixed wavelengths within the visible and near-infrared spectrum. There is one sea-based reading location aboard the E/V Nautilus, the exploration vessel operated by Dr. Robert Ballard and the Sea Research Foundation. Two readings per day are taken aboard the ship while it is in operation.

In astronomy, sextants are devices depicting a sixth of a circle, used primarily for measuring the position of stars. There are two types of astronomical sextants, mural instruments and frame-based instruments.

<span class="mw-page-title-main">Quadrant (instrument)</span> Navigation instrument

A quadrant is an instrument used to measure angles up to 90°. Different versions of this instrument could be used to calculate various readings, such as longitude, latitude, and time of day. Its earliest recorded usage was in ancient India in Rigvedic times by Rishi Atri to observe a solar eclipse. It was then proposed by Ptolemy as a better kind of astrolabe. Several different variations of the instrument were later produced by medieval Muslim astronomers. Mural quadrants were important astronomical instruments in 18th-century European observatories, establishing a use for positional astronomy.

<span class="mw-page-title-main">Elton's quadrant</span>

An Elton's quadrant is a derivative of the Davis quadrant. It adds an index arm and artificial horizon to the instrument, and was invented by English sea captain John Elton, who patented his design in 1728 and published details of the instrument in the Philosophical Transactions of the Royal Society in 1732.

<span class="mw-page-title-main">Sun path</span> Arc-like path that the Sun appears to follow across the sky

Sun path, sometimes also called day arc, refers to the daily and seasonal arc-like path that the Sun appears to follow across the sky as the Earth rotates and orbits the Sun. The Sun's path affects the length of daytime experienced and amount of daylight received along a certain latitude during a given season.

<span class="mw-page-title-main">Sine quadrant</span> Type of quadrant used by medieval Arabic astronomers

A sine quadrant, sometimes known as a "sinecal quadrant", was a type of quadrant used by medieval Arabic astronomers. The instrument could be used to measure celestial angles, tell time, find directions, perform trigonometric computations, and determine the apparent positions of any celestial object for any time. The name is derived from the Arabic rub meaning 'a quarter' and mujayyab meaning 'marked with sine'.

<span class="mw-page-title-main">Rayleigh sky model</span>

The Rayleigh sky model describes the observed polarization pattern of the daytime sky. Within the atmosphere, Rayleigh scattering of light by air molecules, water, dust, and aerosols causes the sky's light to have a defined polarization pattern. The same elastic scattering processes cause the sky to be blue. The polarization is characterized at each wavelength by its degree of polarization, and orientation.

<span class="mw-page-title-main">Azimuth compass</span> Nautical instrument

An azimuth compass is a nautical instrument used to measure the magnetic azimuth, the angle of the arc on the horizon between the direction of the Sun or some other celestial object and the magnetic north. This can be compared to the true azimuth obtained by astronomical observation to determine the magnetic declination, the amount by which the reading of a ship's compass must be adjusted to obtain an accurate reading. Azimuth compasses were important in the period before development of the reliable chronometers needed to determine a vessel's exact position from astronomical observations.

<span class="mw-page-title-main">Long distance observations</span> Observation of distant objects on Earths surface or terrestrial features

Long-distance observation is any visual observation, for sightseeing or photography, that targets all the objects, visible from the extremal distance with the possibility to see them closely. The long-distance observations can't cover:

References

  1. "almucantar" . Oxford English Dictionary (Online ed.). Oxford University Press.(Subscription or participating institution membership required.)
  2. "almucantar". Merriam-Webster.com Dictionary . Merriam-Webster.
  3. May, William Edward, A History of Marine Navigation, G. T. Foulis & Co. Ltd., Henley-on-Thames, Oxfordshire, 1973, ISBN   0-85429-143-1
  4. SkyRad.pack Archived 2015-03-12 at the Wayback Machine (in Japanese)

PD-icon.svg This article incorporates text from a publication now in the public domain :  Chambers, Ephraim, ed. (1728). Cyclopædia, or an Universal Dictionary of Arts and Sciences (1st ed.). James and John Knapton, et al.{{cite encyclopedia}}: Missing or empty |title= (help)