Aperture

Last updated

Different apertures of a lens Lenses with different apertures.jpg
Different apertures of a lens
Aperture mechanism of Canon 50mm f/1.8 II lens, with five blades Aperture in Canon 50mm f1.8 II lens.jpg
Aperture mechanism of Canon 50mm f/1.8 II lens, with five blades
Definitions of Aperture in the 1707 Glossographia Anglicana Nova ApertureDefn1707.png
Definitions of Aperture in the 1707 Glossographia Anglicana Nova

In optics, an aperture is a hole or an opening through which light travels. More specifically, the aperture and focal length of an optical system determine the cone angle of a bundle of rays that come to a focus in the image plane.

Optics The branch of physics that studies light

Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

Light electromagnetic radiation in or near visible spectrum

Light is electromagnetic radiation within a certain portion of the electromagnetic spectrum. The word usually refers to visible light, which is the visible spectrum that is visible to the human eye and is responsible for the sense of sight. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), or 4.00 × 10−7 to 7.00 × 10−7 m, between the infrared and the ultraviolet. This wavelength means a frequency range of roughly 430–750 terahertz (THz).

The focal length of an optical system is a measure of how strongly the system converges or diverges light. For an optical system in air, it is the distance over which initially collimated (parallel) rays are brought to a focus. A system with a shorter focal length has greater optical power than one with a long focal length; that is, it bends the rays more sharply, bringing them to a focus in a shorter distance.

Contents

An optical system typically has many openings or structures that limit the ray bundles (ray bundles are also known as pencils of light). These structures may be the edge of a lens or mirror, or a ring or other fixture that holds an optical element in place, or may be a special element such as a diaphragm placed in the optical path to limit the light admitted by the system. In general, these structures are called stops, [2] and the aperture stop is the stop that primarily determines the ray cone angle and brightness at the image point.

Lens (optics) optical device which transmits and refracts light

A lens is a transmissive optical device that focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (elements), usually arranged along a common axis. Lenses are made from materials such as glass or plastic, and are ground and polished or molded to a desired shape. A lens can focus light to form an image, unlike a prism, which refracts light without focusing. Devices that similarly focus or disperse waves and radiation other than visible light are also called lenses, such as microwave lenses, electron lenses, acoustic lenses, or explosive lenses.

Mirror object that reflects light or sound

A mirror is an object that reflects light in such a way that, for incident light in some range of wavelengths, the reflected light preserves many or most of the detailed physical characteristics of the original light, called specular reflection. This is different from other light-reflecting objects that do not preserve much of the original wave signal other than color and diffuse reflected light, such as flat-white paint.

Diaphragm (optics) optics and photography

In optics, a diaphragm is a thin opaque structure with an opening (aperture) at its center. The role of the diaphragm is to stop the passage of light, except for the light passing through the aperture. Thus it is also called a stop. The diaphragm is placed in the light path of a lens or objective, and the size of the aperture regulates the amount of light that passes through the lens. The centre of the diaphragm's aperture coincides with the optical axis of the lens system.

In some contexts, especially in photography and astronomy, aperture refers to the diameter of the aperture stop rather than the physical stop or the opening itself. For example, in a telescope, the aperture stop is typically the edges of the objective lens or mirror (or of the mount that holds it). One then speaks of a telescope as having, for example, a 100-centimeter aperture. Note that the aperture stop is not necessarily the smallest stop in the system. Magnification and demagnification by lenses and other elements can cause a relatively large stop to be the aperture stop for the system. In astrophotography, the aperture may be given as a linear measure (for example in inches or mm) or as the dimensionless ratio between that measure and the focal length. In other photography, it is usually given as a ratio.

Photography Art, science and practice of creating durable images by recording light or other electromagnetic radiation

Photography is the art, application and practice of creating durable images by recording light or other electromagnetic radiation, either electronically by means of an image sensor, or chemically by means of a light-sensitive material such as photographic film. It is employed in many fields of science, manufacturing, and business, as well as its more direct uses for art, film and video production, recreational purposes, hobby, and mass communication.

Astronomy Universe events since the Big Bang 13.8 billion years ago

Astronomy is a natural science that studies celestial objects and phenomena. It applies mathematics, physics, and chemistry in an effort to explain the origin of those objects and phenomena and their evolution. Objects of interest include planets, moons, stars, nebulae, galaxies, and comets; the phenomena also includes supernova explosions, gamma ray bursts, quasars, blazars, pulsars, and cosmic microwave background radiation. More generally, all phenomena that originate outside Earth's atmosphere are within the purview of astronomy. A branch of astronomy called cosmology is the study of the Universe as a whole.

Telescope Optical instrument that makes distant objects appear magnified

A telescope is an optical instrument that makes distant objects appear magnified by using an arrangement of lenses or curved mirrors and lenses, or various devices used to observe distant objects by their emission, absorption, or reflection of electromagnetic radiation. The first known practical telescopes were refracting telescopes invented in the Netherlands at the beginning of the 17th century, by using glass lenses. They were used for both terrestrial applications and astronomy.

Sometimes stops and diaphragms are called apertures, even when they are not the aperture stop of the system.

The word aperture is also used in other contexts to indicate a system which blocks off light outside a certain region. In astronomy, for example, a photometric aperture around a star usually corresponds to a circular window around the image of a star within which the light intensity is assumed. [3]

Photometry (astronomy) astronomy technique of measuring intensity of an astronomical objects emissions

Photometry, from Greek photo- ("light") and -metry ("measure"), is a technique used in astronomy that is concerned with measuring the flux or intensity of light radiated by astronomical objects. This light is measured through a telescope using a photometer, often made using electronic devices such as a CCD photometer or a photoelectric photometer that converts light into an electric current by the photoelectric effect. When calibrated against standard stars of known intensity and colour, photometers can measure the brightness or apparent magnitude of celestial objects.

Star An astronomical object consisting of a luminous spheroid of plasma held together by its own gravity

A star is an astronomical object consisting of a luminous spheroid of plasma held together by its own gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye from Earth during the night, appearing as a multitude of fixed luminous points in the sky due to their immense distance from Earth. Historically, the most prominent stars were grouped into constellations and asterisms, the brightest of which gained proper names. Astronomers have assembled star catalogues that identify the known stars and provide standardized stellar designations. However, most of the estimated 300 sextillion (3×1023) stars in the Universe are invisible to the naked eye from Earth, including all stars outside our galaxy, the Milky Way.

Application

The aperture stop is an important element in most optical designs. Its most obvious feature is that it limits the amount of light that can reach the image/film plane. This can be either unavoidable, as in a telescope where one wants to collect as much light as possible; or deliberate, to prevent saturation of a detector or overexposure of film. In both cases, the size of the aperture stop is constrained by things other than the amount of light admitted; however:

A film plane is the area inside any camera or image taking device with a lens and film or digital sensor upon which the lens creates the focused image. The film plane varies in distance from the lens focal point in cameras from different manufacturers. Thus each lens used has to be chosen carefully to assure that the image from the lens is focused on the exact place where the individual frame of film or digital sensor is positioned during exposure. It is sometimes marked on a camera body with the 'Φ' symbol where the vertical bar represents the exact location.

Depth of field Distance between the nearest and the furthest objects that are in focus in an image

For many cameras, depth of field (DOF) is the distance between the nearest and the furthest objects that are in acceptably sharp focus in an image. The depth of field can be calculated based on focal length, distance to subject, the acceptable circle of confusion size, and aperture. A particular depth of field may be chosen for technical or artistic purposes. Limitations of depth of field can sometimes be overcome with various techniques/equipment.

Vignetting

In photography and optics, vignetting (, UK also ; French: vignette) is a reduction of an image's brightness or saturation toward the periphery compared to the image center. The word vignette, from the same root as vine, originally referred to a decorative border in a book. Later, the word came to be used for a photographic portrait that is clear at the center and fades off toward the edges. A similar effect is visible in photographs of projected images or videos off a projection screen, resulting in a so-called "hotspot" effect.

In addition to an aperture stop, a photographic lens may have one or more field stops, which limit the system's field of view. When the field of view is limited by a field stop in the lens (rather than at the film or sensor) vignetting results; this is only a problem if the resulting field of view is less than was desired.

The biological pupil of the eye is its aperture in optics nomenclature; the iris is the diaphragm that serves as the aperture stop. Refraction in the cornea causes the effective aperture (the entrance pupil in optics parlance) to differ slightly from the physical pupil diameter. The entrance pupil is typically about 4 mm in diameter, although it can range from 2 mm (f/8.3) in a brightly lit place to 8 mm (f/2.1) in the dark.

In astronomy, the diameter of the aperture stop (called the aperture) is a critical parameter in the design of a telescope. Generally, one would want the aperture to be as large as possible, to collect the maximum amount of light from the distant objects being imaged. The size of the aperture is limited, however, in practice by considerations of cost and weight, as well as prevention of aberrations (as mentioned above).

Apertures are also used in laser energy control, close aperture z-scan technique, diffractions/patterns, and beam cleaning. [4] Laser applications include spatial filters, Q-switching, high intensity x-ray control.

In light microscopy, the word aperture may be used with reference to either the condenser (changes angle of light onto specimen field), field iris (changes area of illumination) or possibly objective lens (forms primary image). See Optical microscope.

In photography

The aperture stop of a photographic lens can be adjusted to control the amount of light reaching the film or image sensor. In combination with variation of shutter speed, the aperture size will regulate the film's or image sensor's degree of exposure to light. Typically, a fast shutter will require a larger aperture to ensure sufficient light exposure, and a slow shutter will require a smaller aperture to avoid excessive exposure.

Diagram of decreasing aperture sizes (increasing f-numbers) for "full stop" increments (factor of two aperture area per stop) Aperture diagram.svg
Diagram of decreasing aperture sizes (increasing f-numbers) for "full stop" increments (factor of two aperture area per stop)

A device called a diaphragm usually serves as the aperture stop, and controls the aperture. The diaphragm functions much like the iris of the eye  – it controls the effective diameter of the lens opening. Reducing the aperture size increases the depth of field, which describes the extent to which subject matter lying closer than or farther from the actual plane of focus appears to be in focus. In general, the smaller the aperture (the larger the f-number), the greater the distance from the plane of focus the subject matter may be while still appearing in focus.

The lens aperture is usually specified as an f-number, the ratio of focal length to effective aperture diameter. A lens typically has a set of marked "f-stops" that the f-number can be set to. A lower f-number denotes a greater aperture opening which allows more light to reach the film or image sensor. The photography term "one f-stop" refers to a factor of 2 (approx. 1.41) change in f-number, which in turn corresponds to a factor of 2 change in light intensity.

Aperture priority is a semi-automatic shooting mode used in cameras. It permits the photographer to select an aperture setting and let the camera decide the shutter speed and sometimes also ISO sensitivity for the correct exposure. This is also referred to as Aperture Priority Auto Exposure, A mode, AV mode (aperture-value mode), or semi-auto mode. [5]

Typical ranges of apertures used in photography are about f/2.8–f/22 or f/2–f/16, [6] covering six stops, which may be divided into wide, middle, and narrow of two stops each, roughly (using round numbers) f/2–f/4, f/4–f/8, and f/8–f/16 or (for a slower lens) f/2.8–f/5.6, f/5.6–f/11, and f/11–f/22. These are not sharp divisions, and ranges for specific lenses vary.

Maximum and minimum apertures

The specifications for a given lens typically include the maximum and minimum aperture sizes, for example, f/1.4–f/22. In this case, f/1.4 is the maximum aperture (the widest opening), and f/22 is the minimum aperture (the smallest opening). The maximum aperture opening tends to be of most interest and is always included when describing a lens. This value is also known as the lens "speed", as it affects the exposure time. The aperture is proportional to the square root of the light admitted, and thus inversely proportional to the square root of required exposure time, such that an aperture of f/2 allows for exposure times one quarter that of f/4.

The aperture range of a 50mm Minolta lens, f/1.4-f/16 16 minolta 50mm.jpg
The aperture range of a 50mm Minolta lens, f/1.4–f/16

Lenses with apertures opening f/2.8 or wider are referred to as "fast" lenses, although the specific point has changed over time (for example, in the early 20th century aperture openings wider than f/6 were considered fast[ citation needed ]). The fastest lenses for the common 35 mm film format in general production have apertures of f/1.2 or f/1.4, with more at f/1.8 and f/2.0, and many at f/2.8 or slower; f/1.0 is unusual, though sees some use. When comparing "fast" lenses, the image format used must be considered. Lenses designed for a small format such as half frame or APS-C need to project a much smaller image circle than a lens used for large format photography. Thus the optical elements built into the lens can be far smaller and cheaper.

In exceptional circumstances lenses can have even wider apertures with f-numbers smaller than 1.0; see lens speed: fast lenses for a detailed list. For instance, both the current Leica Noctilux-M 50mm ASPH and a 1960s-era Canon 50mm rangefinder lens have a maximum aperture of f/0.95. [7] Cheaper alternatives have appeared in recent years, such as the Cosina Voigtländer 17.5mm f/0.95, 25mm f/0.95 and 42.5mm f/0.95 manual focus lenses for the Micro Four-Thirds System. [8] [9] [10]

Professional lenses for some movie cameras have f-numbers as small as f/0.75. Stanley Kubrick's film Barry Lyndon has scenes shot by candlelight with a NASA/Zeiss 50mm f/0.7, [11] the fastest lens in film history. Beyond the expense, these lenses have limited application due to the correspondingly shallower depth of field – the scene must either be shallow, shot from a distance, or will be significantly defocused, though this may be the desired effect.

Zoom lenses typically have a maximum relative aperture (minimum f-number) of f/2.8 to f/6.3 through their range. High-end lenses will have a constant aperture, such as f/2.8 or f/4, which means that the relative aperture will stay the same throughout the zoom range. A more typical consumer zoom will have a variable maximum relative aperture since it is harder and more expensive to keep the maximum relative aperture proportional to the focal length at long focal lengths; f/3.5 to f/5.6 is an example of a common variable aperture range in a consumer zoom lens.

By contrast, the minimum aperture does not depend on the focal length – it is limited by how narrowly the aperture closes, not the lens design – and is instead generally chosen based on practicality: very small apertures have lower sharpness due to diffraction, while the added depth of field is not generally useful, and thus there is generally little benefit in using such apertures. Accordingly, DSLR lens typically have minimum aperture of f/16, f/22, or f/32, while large format may go down to f/64, as reflected in the name of Group f/64. Depth of field is a significant concern in macro photography, however, and there one sees smaller apertures. For example, the Canon MP-E 65mm can have effective aperture (due to magnification) as small as f/96. The pinhole optic for Lensbaby creative lenses has an aperture of just f/177. [12]

Aperture area

The amount of light captured by a lens is proportional to the area of the aperture, equal to:

Where the two equivalent forms are related via the f-number N = f / D, with focal length f and aperture diameter D.

The focal length value is not required when comparing two lenses of the same focal length; a value of 1 can be used instead, and the other factors can be dropped as well, leaving area proportion to the reciprocal square of the f-number N.

If two cameras of different format sizes and focal lengths have the same angle of view, and the same aperture area, they gather the same amount of light from the scene. In that case, the relative focal-plane illuminance, however, would depend only on the f-number N, so it is less in the camera with the larger format, longer focal length, and higher f-number. This assumes both lenses have identical transmissivity.

Aperture control

Though as early as 1933 Torkel Korling had invented and patented for the Graflex large format reflex camera an automatic aperture control, [13] not all early 35mm single lens reflex cameras had the feature. With a small aperture, this darkened the viewfinder, making viewing, focusing, and composition difficult. [14] Korling's design enabled full-aperture viewing for accurate focus, closing to the pre-selected aperture opening when the shutter was fired and simultaneously synchronising the firing of a flash unit. From 1956 SLR camera manufacturers separately developed automatic aperture control (the Miranda T 'Pressure Automatic Diaphragm', and other solutions on the Exakta Varex IIa and Praktica FX2) allowing viewing at the lens's maximum aperture, stopping the lens down to the working aperture at the moment of exposure, and returning the lens to maximum aperture afterward. [15] The first SLR cameras with internal ("through-the-lens" or "TTL") meters (e.g., the Pentax Spotmatic) required that the lens be stopped down to the working aperture when taking a meter reading. Subsequent models soon incorporated mechanical coupling between the lens and the camera body, indicating the working aperture to the camera for exposure while allowing the lens to be at its maximum aperture for composition and focusing; [15] this feature became known as open-aperture metering.

For some lenses, including a few long telephotos, lenses mounted on bellows, and perspective-control and tilt/shift lenses, the mechanical linkage was impractical, [15] and automatic aperture control was not provided. Many such lenses incorporated a feature known as a "preset" aperture, [15] [16] which allows the lens to be set to working aperture and then quickly switched between working aperture and full aperture without looking at the aperture control. A typical operation might be to establish rough composition, set the working aperture for metering, return to full aperture for a final check of focus and composition, and focusing, and finally, return to working aperture just before exposure. Although slightly easier than stopped-down metering, operation is less convenient than automatic operation. Preset aperture controls have taken several forms; the most common has been the use of essentially two lens aperture rings, with one ring setting the aperture and the other serving as a limit stop when switching to working aperture. Examples of lenses with this type of preset aperture control are the Nikon PC Nikkor 28 mm f/3.5 and the SMC Pentax Shift 6×7 75 mm f/4.5. The Nikon PC Micro-Nikkor 85 mm f/2.8D lens incorporates a mechanical pushbutton that sets working aperture when pressed and restores full aperture when pressed a second time.

Canon EF lenses, introduced in 1987, [17] have electromagnetic diaphragms, [18] eliminating the need for a mechanical linkage between the camera and the lens, and allowing automatic aperture control with the Canon TS-E tilt/shift lenses. Nikon PC-E perspective-control lenses, [19] introduced in 2008, also have electromagnetic diaphragms, [20] a feature extended to their E-type range in 2013.

Optimal aperture

Optimal aperture depends both on optics (the depth of the scene versus diffraction), and on the performance of the lens.

Optically, as a lens is stopped down, the defocus blur at the Depth of Field (DOF) limits decreases but diffraction blur increases. The presence of these two opposing factors implies a point at which the combined blur spot is minimized (Gibson 1975, 64); at that point, the f-number is optimal for image sharpness, for this given depth of field [21]  – a wider aperture (lower f-number) causes more defocus, while a narrower aperture (higher f-number) causes more diffraction.

As a matter of performance, lenses often do not perform optimally when fully opened, and thus generally have better sharpness when stopped down some – note that this is sharpness in the plane of critical focus, setting aside issues of depth of field. Beyond a certain point, there is no further sharpness benefit to stopping down, and the diffraction begins to become significant. There is accordingly a sweet spot, generally in the f/4 f/8 range, depending on lens, where sharpness is optimal, though some lenses are designed to perform optimally when wide open. How significant this varies between lenses, and opinions differ on how much practical impact this has.

While optimal aperture can be determined mechanically, how much sharpness is required depends on how the image will be used – if the final image is viewed under normal conditions (e.g., an 8″×10″ image viewed at 10″), it may suffice to determine the f-number using criteria for minimum required sharpness, and there may be no practical benefit from further reducing the size of the blur spot. But this may not be true if the final image is viewed under more demanding conditions, e.g., a very large final image viewed at normal distance, or a portion of an image enlarged to normal size (Hansma 1996). Hansma also suggests that the final-image size may not be known when a photograph is taken, and obtaining the maximum practicable sharpness allows the decision to make a large final image to be made at a later time; see also critical sharpness.

Equivalent aperture range

In digital photography, the 35mm-equivalent aperture range is sometimes considered to be more important than the actual f-number. Equivalent aperture is the f-number adjusted to correspond to the f-number of the same size absolute aperture diameter on a lens with a 35mm equivalent focal length. Smaller equivalent f-numbers are expected to lead to higher image quality based on more total light from the subject, as well as lead to reduced depth of field. For example, a Sony Cyber-shot DSC-RX10 uses a 1" sensor, 24–200 mm with maximum aperture constant along the zoom range; f/2.8 has equivalent aperture range f/7.6, which is a lower equivalent f-number than some other f/2.8 cameras with smaller sensors. [22]

In scanning or sampling

The terms scanning aperture and sampling aperture are often used to refer to the opening through which an image is sampled, or scanned, for example in a Drum scanner, an image sensor, or a television pickup apparatus. The sampling aperture can be a literal optical aperture, that is, a small opening in space, or it can be a time-domain aperture for sampling a signal waveform.

For example, film grain is quantified as graininess via a measurement of film density fluctuations as seen through a 0.048 mm sampling aperture.

See also

Related Research Articles

Single-lens reflex camera camera that typically uses a mirror and prism system

A single-lens reflex camera (SLR) is a camera that typically uses a mirror and prism system that permits the photographer to view through the lens and see exactly what will be captured. With twin lens reflex and rangefinder cameras, the viewed image could be significantly different from the final image. When the shutter button is pressed on most SLRs, the mirror flips out of the light path, allowing light to pass through to the light receptor and the image to be captured.

Camera Optical device for recording images

A camera is an optical instrument to capture still images or to record moving images, which are stored in a physical medium such as in a digital system or on photographic film. A camera consists of a lens which focuses light from the scene, and a camera body which holds the image capture mechanism.

Pinhole camera simple camera

A pinhole camera is a simple camera without a lens but with a tiny aperture, a pinhole – effectively a light-proof box with a small hole in one side. Light from a scene passes through the aperture and projects an inverted image on the opposite side of the box, which is known as the camera obscura effect.

View camera type of camera

A view camera is a large format camera in which the lens forms an inverted image on a ground glass screen directly at the plane of the film. The image viewed is exactly the same as the image on the film, which replaces the viewing screen during exposure.

Shutter speed

In photography, shutter speed or exposure time is the length of time when the film or digital sensor inside the camera is exposed to light, also when a camera's shutter is open when taking a photograph. The amount of light that reaches the film or image sensor is proportional to the exposure time. ​1500 of a second will let half as much light in as ​1250.

f-number A measure of lens speed

The f-number of an optical system is the ratio of the system's focal length to the diameter of the entrance pupil. It is a dimensionless number that is a quantitative measure of lens speed, and an important concept in photography. It is also known as the focal ratio, f-ratio, or f-stop. It is the reciprocal of the relative aperture. The f-number is commonly indicated using a hooked f with the format f/N, where N is the f-number.

Circle of confusion Blurry region in optics

In optics, a circle of confusion is an optical spot caused by a cone of light rays from a lens not coming to a perfect focus when imaging a point source. It is also known as disk of confusion, circle of indistinctness, blur circle, or blur spot.

Bokeh The aesthetic quality of the blur produced in the out-of-focus parts of an image produced by a lens

In photography, bokeh is the aesthetic quality of the blur produced in the out-of-focus parts of an image produced by a lens. Bokeh has been defined as "the way the lens renders out-of-focus points of light". Differences in lens aberrations and aperture shape cause some lens designs to blur the image in a way that is pleasing to the eye, while others produce blurring that is unpleasant or distracting . Bokeh occurs for parts of the scene that lie outside the depth of field. Photographers sometimes deliberately use a shallow focus technique to create images with prominent out-of-focus regions.

Camera lens optical lens or assembly of lenses used with a camera body and mechanism to make images of objects

A camera lens is an optical lens or assembly of lenses used in conjunction with a camera body and mechanism to make images of objects either on photographic film or on other media capable of storing an image chemically or electronically.

Macro photography photography genre and techniques of extreme close-up pictures

Macro photography, is extreme close-up photography, usually of very small subjects and living organisms like insects, in which the size of the subject in the photograph is greater than life size . By the original definition, a macro photograph is one in which the size of the subject on the negative or image sensor is life size or greater. However, in some uses it refers to a finished photograph of a subject at greater than life size.

In photography, stopping down refers to increasing the numerical f-stop number, which decreases the size (diameter) of the aperture of a lens, resulting in reducing the amount of light entering the iris of a lens.

The science of photography refers to the use of science, such as chemistry and physics, in all aspects of photography. This applies to the camera, its lenses, physical operation of the camera, electronic camera internals, and the process of developing film in order to take and develop pictures properly.

Neutral-density filter

In photography and optics, a neutral-density filter, or ND filter, is a filter that reduces or modifies the intensity of all wavelengths, or colors, of light equally, giving no changes in hue of color rendition. It can be a colorless (clear) or grey filter, and is denoted by Wratten number 96. The purpose of a standard photographic neutral-density filter is to reduce the amount of light entering the lens. Doing so allows the photographer to select combinations of aperture, exposure time and sensor sensitivity that would otherwise produce overexposed pictures. This is done to achieve effects such as a shallower depth of field or motion blur of a subject in a wider range of situations and atmospheric conditions.

M42 lens mount screw thread mounting standard for attaching lenses to 35 mm cameras

The M42 lens mount is a screw thread mounting standard for attaching lenses to 35 mm cameras, primarily single-lens reflex models. It is more accurately known as the M42 × 1 mm standard, which means that it is a metric screw thread of 42 mm diameter and 1 mm thread pitch. It was first used in Zeiss' Contax S of 1949; this East German branch of Zeiss also sold cameras under the Pentacon name; after merger with other East German photographic manufacturers, the name Praktica was used. M42 thread mount cameras first became well known under the Praktica brand, and thus the M42 mount is known as the Praktica thread mount. Since there were no proprietary elements to the M42 mount, many other manufacturers used it; this has led to it being called the Universal thread mount or Universal screw mount by many. The M42 mount was popularized in the United States by Pentax; thus, it is also known as the Pentax thread mount, despite the fact that Pentax did not originate it.

History of the single-lens reflex camera

The history of the single-lens reflex camera (SLR) begins with the use of a reflex mirror in a camera obscura described in 1676, but it took a long time for the design to succeed for photographic cameras: the first patent was granted in 1861, and the first cameras were produced in 1884 but while elegantly simple in concept, they were very complex in practice. One by one these complexities were overcome as optical and mechanical technology advanced, and in the 1960s the SLR camera became the preferred design for many high-end camera formats.

Nikkormat camera brand

Nikkormat was a brand of cameras produced by the Japanese optics company Nippon Kogaku K. K., as a consumer version of the professional Nikon brand. Nikkormat cameras, produced from 1965 until 1978, were simpler and more affordable than Nikon-branded cameras, but accepted the same lenses as the Nikon F series cameras.

The design of photographic lenses for use in still or cine cameras is intended to produce a lens that yields the most acceptable rendition of the subject being photographed within a range of constraints that include cost, weight and materials. For many other optical devices such as telescopes, microscopes and theodolites where the visual image is observed but often not recorded the design can often be significantly simpler than is the case in a camera where every image is captured on film or image sensor and can be subject to detailed scrutiny at a later stage. Photographic lenses also include those used in enlargers and projectors.

Sigma 8–16mm f/4.5–5.6 DC HSM lens

The Sigma 8–16mm lens is an enthusiast-level, ultra wide-angle rectilinear zoom lens made by Sigma Corporation specifically for use with APS-C small format digital SLRs. It is the first ultrawide rectilinear zoom lens with a minimum focal length of 8 mm, designed specifically for APS-C size image sensors. The lens was introduced at the February 2010 Photo Marketing Association International Convention and Trade Show. At its release it was the widest viewing angle focal length available commercially for APS-C cameras. It is part of Sigma's DC line of lenses, meaning it was designed to have an image circle tailored to work with APS-C format cameras. The lens has a constant length regardless of optical zoom and focus with inner lens tube elements responding to these parameters. The lens has hypersonic zoom autofocus.

References

  1. Thomas Blount, Glossographia Anglicana Nova: Or, A Dictionary, Interpreting Such Hard Words of whatever Language, as are at present used in the English Tongue, with their Etymologies, Definitions, &c. Also, The Terms of Divinity, Law, Physick, Mathematics, History, Agriculture, Logick, Metaphysicks, Grammar, Poetry, Musick, Heraldry, Architecture, Painting, War, and all other Arts and Sciences are herein explain'd, from the best Modern Authors, as, Sir Isaac Newton, Dr. Harris, Dr. Gregory, Mr. Lock, Mr. Evelyn, Mr. Dryden, Mr. Blunt, &c., London, 1707.
  2. "Exposure Stops in Photography - A Beginner's Guide". Photography Life. Retrieved 10 May 2019.
  3. Nicholas Eaton, Peter W. Draper & Alasdair Allan, Techniques of aperture photometry Archived 11 March 2007 at the Wayback Machine in PHOTOM – A Photometry Package, 20 August 2002
  4. Rashidian Vaziri, M R. "Role of the aperture in Z-scan experiments: A parametric study". Chinese Physics B. 24 (11). Bibcode:2015ChPhB..24k4206R. doi:10.1088/1674-1056/24/11/114206.
  5. "Aperture and shutter speed in digital cameras". elite-cameras.com. Archived from the original on 20 June 2006. Retrieved 20 June 2006. (original link no longer works, but page was saved by archive.org)
  6. What is... Aperture?
  7. Mahoney, John. "Leica's $11,000 Noctilux 50mm f/0.95 Lens Is a Nightvision Owl Eye For Your Camera". gizmodo.com. Retrieved 15 April 2018.
  8. "Voigtlander Nokton 17.5mm f/0.95 Lens for Micro Four BA175M B&H". www.bhphotovideo.com. Retrieved 15 April 2018.
  9. "Voigtlander BA259M2 Replacement for Voigtlander BA259M – B&H". www.bhphotovideo.com. Retrieved 15 April 2018.
  10. "Voigtlander Nokton 42.5mm f/0.95 Micro Four-Thirds Lens BA425M". www.bhphotovideo.com. Retrieved 15 April 2018.
  11. Ed DiGiulio (President, Cinema Products Corporation). "Two Special Lenses for Barry Lyndon"
  12. "Pinhole and Zone Plate Photography for SLR Cameras". Lensbaby Pinhole optic. Archived from the original on 1 May 2011.
  13. US patent 2,029,238 Camera Mechanism, Application June 4, 1933
  14. Shipman, Carl (1977). SLR Photographers Handbook. Tucson, AZ: HP Books. p. 53. ISBN   0-912656-59-X.
  15. 1 2 3 4 Sidney F. Ray. The geometry of image formation. In The Manual of Photography: Photographic and Digital Imaging, 9th ed, pp. 136–137. Ed. Ralph E. Jacobson, Sidney F. Ray, Geoffrey G. Atteridge, and Norman R. Axford. Oxford: Focal Press, 2000. ISBN   0-240-51574-9
  16. B. "Moose" Peterson. Nikon System Handbook. New York: Images Press, 1997, pp. 42–43. ISBN   0-929667-03-4
  17. Canon Camera Museum. Accessed 12 December 2008.
  18. EF Lens Work III: The Eyes of EOS. Tokyo: Canon Inc., 2003, pp. 190–191.
  19. Nikon USA web site Archived 12 December 2008 at the Wayback Machine . Accessed 12 December 2008.
  20. Nikon PC-E product comparison brochure Archived 17 December 2008 at the Wayback Machine (PDF). Accessed 12 December 2008.
  21. "Diffraction and Optimum Aperture – Format size and diffraction limitations on sharpness". www.bobatkins.com. Retrieved 15 April 2018.
  22. R Butler. "Sony Cyber-shot DSC RX10 First Impressions Review" . Retrieved 19 January 2014.