Zone System

Last updated

The Zone System is a photographic technique for determining optimal film exposure and development, formulated by Ansel Adams and Fred Archer. [1] Adams described the Zone System as "[...] not an invention of mine; it is a codification of the principles of sensitometry, worked out by Fred Archer and myself at the Art Center School in Los Angeles, around 1939–40." [2]

Contents

The technique is based on the late 19th-century sensitometry studies of Hurter and Driffield. The Zone System provides photographers with a systematic method of precisely defining the relationship between the way they visualize the photographic subject and the final results. Although it originated with black-and-white sheet film, the Zone System is also applicable to roll film, both black-and-white and color, negative and reversal, and to digital photography.

Principles

Visualization

An expressive image involves the arrangement and rendering of various scene elements according to the photographer's desire. Achieving the desired image involves image management (placement of the camera, choice of lens, and possibly the use of camera movements) and control of image values. The Zone System is concerned with the control of image values, ensuring that light and dark values are rendered as desired. Anticipation of the final result before making the exposure is known as visualization.

Exposure metering

Any scene of photographic interest contains elements of different luminance; consequently, the "exposure" actually is many different exposures. The exposure time is the same for all elements, but the image illuminance varies with the luminance of each subject element.

Exposure is often determined using a reflected-light [3] exposure meter. The earliest meters measured overall average luminance; meter calibration was established to give satisfactory exposures for typical outdoor scenes. However, if the part of a scene that is metered includes large areas of unusually high or low reflectance, or unusually large areas of highlight or shadow, the "effective" average reflectance [4] may differ substantially from that of a "typical" scene, and the rendering may not be as desired.

An averaging meter cannot distinguish between a subject of uniform luminance and one that consists of light and dark elements. When exposure is determined from average luminance measurements, the exposure of any given scene element depends on the relationship of its reflectance to the effective average reflectance. For example, a dark object of 4% reflectance would be given a different exposure in a scene of 20% effective average reflectance than it would be given in a scene of 12% reflectance. In a sunlit outdoor scene, the exposure for the dark object would also depend on whether the object was in sunlight or shade. Depending on the scene and the photographer's objective, any of the previous exposures might be acceptable. However, in some situations, the photographer might wish to specifically control the rendering of the dark object; with overall average metering, this is difficult if not impossible. When it is important to control the rendering of specific scene elements, alternative metering techniques may be required.

It is possible to make a meter reading of an individual scene element, but the exposure indicated by the meter will render that element as a medium gray; in the case of a dark object, that result is usually not what is desired. Even when metering individual scene elements, some adjustment of the indicated exposure is often needed if the metered scene element is to be rendered as visualized.

Exposure zones

In the Zone System, measurements are made of individual scene elements, and exposure is adjusted based on the photographer's knowledge of what is being metered: a photographer knows the difference between freshly fallen snow and a black horse, while a meter does not. Much has been written on the Zone System, but the concept is very simplerender light subjects as light, and dark subjects as dark, according to the photographer's visualization. The Zone System assigns numbers from 0 through 10 [5] to different brightness values, with 0 representing black, 5 middle gray, and 10 pure white; these values are known as zones. To make zones easily distinguishable from other quantities, Adams and Archer used Roman rather than Arabic numerals. Strictly speaking, zones refer to exposure, [6] with a Zone V exposure (the meter indication) resulting in a mid-tone rendering in the final image. Each zone differs from the preceding or following zone by a factor of two, so that a Zone I exposure is twice that of Zone 0, and so forth. A one-zone change is equal to one stop, [7] corresponding to standard aperture and shutter controls on a camera. Evaluating a scene is particularly easy with a meter that indicates in exposure value (EV), because a change of one EV is equal to a change of one zone.

Many small- and medium-format cameras include provision for exposure compensation; this feature works well with the Zone System, especially if the camera includes spot metering, but obtaining proper results requires careful metering of individual scene elements and making appropriate adjustments.

Zones, the physical world and the print

The relationship between the physical scene and the print is established by characteristics of the negative and the print. Exposure and development of the negative are usually determined so that a properly exposed negative will yield an acceptable print on a specific photographic paper.

Although zones directly relate to exposure, visualization relates to the final result. A black-and-white photographic print represents the visual world as a series of tones ranging from black to white. Imagine all of the tonal values that can appear in a print, represented as a continuous gradation from black to white:

Full Tonal Gradation

Related Research Articles

Gamma correction or gamma is a nonlinear operation used to encode and decode luminance or tristimulus values in video or still image systems. Gamma correction is, in the simplest cases, defined by the following power-law expression:

<span class="mw-page-title-main">Exposure (photography)</span> Amount of light captured by a camera

In photography, exposure is the amount of light per unit area reaching a frame of photographic film or the surface of an electronic image sensor. It is determined by shutter speed, lens F-number, and scene luminance. Exposure is measured in units of lux-seconds, and can be computed from exposure value (EV) and scene luminance in a specified region.

<span class="mw-page-title-main">Light meter</span> Device used to measure the amount of light

A light meter is a device used to measure the amount of light. In photography, an exposure meter is a light meter coupled to either a digital or analog calculator which displays the correct shutter speed and f-number for optimum exposure, given a certain lighting situation and film speed. Similarly, exposure meters are also used in the fields of cinematography and scenic design, in order to determine the optimum light level for a scene.

<span class="mw-page-title-main">Film speed</span> Measure of a photographic films sensitivity to light

Film speed is the measure of a photographic film's sensitivity to light, determined by sensitometry and measured on various numerical scales, the most recent being the ISO system introduced in 1974. A closely related system, also known as ISO, is used to describe the relationship between exposure and output image lightness in digital cameras. Prior to ISO, the most common systems were ASA in the United States and DIN in Europe.

<span class="mw-page-title-main">Multi-exposure HDR capture</span> Technique to capture HDR images and videos

In photography and videography, multi-exposure HDR capture is a technique that creates high dynamic range (HDR) images by taking and combining multiple exposures of the same subject matter at different exposures. Combining multiple images in this way results in an image with a greater dynamic range than what would be possible by taking one single image. The technique can also be used to capture video by taking and combining multiple exposures for each frame of the video. The term "HDR" is used frequently to refer to the process of creating HDR images from multiple exposures. Many smartphones have an automated HDR feature that relies on computational imaging techniques to capture and combine multiple exposures.

<span class="mw-page-title-main">Exposure value</span> Measure of illuminance for a combination of a cameras shutter speed and f-number

In photography, exposure value (EV) is a number that represents a combination of a camera's shutter speed and f-number, such that all combinations that yield the same exposure have the same EV. Exposure value is also used to indicate an interval on the photographic exposure scale, with a difference of 1 EV corresponding to a standard power-of-2 exposure step, commonly referred to as a stop.

<span class="mw-page-title-main">Negative (photography)</span> Image on photographic film

In photography, a negative is an image, usually on a strip or sheet of transparent plastic film, in which the lightest areas of the photographed subject appear darkest and the darkest areas appear lightest. This reversed order occurs because the extremely light-sensitive chemicals a camera film must use to capture an image quickly enough for ordinary picture-taking are darkened, rather than bleached, by exposure to light and subsequent photographic processing.

<span class="mw-page-title-main">Color photography</span> Photography that reproduces colors

Color photography is photography that uses media capable of capturing and reproducing colors. By contrast, black-and-white or gray-monochrome photography records only a single channel of luminance (brightness) and uses media capable only of showing shades of gray.

<span class="mw-page-title-main">Combination printing</span> Creating one image from several negatives

Combination printing is a photographic technique of using the negatives of two or more images in conjunction with one another to create a single image.

In photography, the metering mode refers to the way in which a camera determines exposure. Cameras generally allow the user to select between spot, center-weighted average, or multi-zone metering modes. The different metering modes allow the user to select the most appropriate one for use in a variety of lighting conditions. In complex light situations professional photographers tend to switch to manual mode, rather than depending on a setting determined by the camera.

The science of photography is the use of chemistry and physics in all aspects of photography. This applies to the camera, its lenses, physical operation of the camera, electronic camera internals, and the process of developing film in order to take and develop pictures properly.

<span class="mw-page-title-main">Composition (visual arts)</span> Placement or arrangement of visual elements or ingredients in a work of art

The term composition means "putting together". It can be thought of as the organization of the elements of art according to the principles of art. Composition can apply to any work of art, from music through writing and into photography, that is arranged using conscious thought.

<span class="mw-page-title-main">Tone mapping</span> Image processing technique

Tone mapping is a technique used in image processing and computer graphics to map one set of colors to another to approximate the appearance of high-dynamic-range (HDR) images in a medium that has a more limited dynamic range. Print-outs, CRT or LCD monitors, and projectors all have a limited dynamic range that is inadequate to reproduce the full range of light intensities present in natural scenes. Tone mapping addresses the problem of strong contrast reduction from the scene radiance to the displayable range while preserving the image details and color appearance important to appreciate the original scene content.

APEX stands for Additive System of Photographic Exposure, which was proposed in the 1960 ASA standard for monochrome film speed, ASA PH2.5-1960, as a means of simplifying exposure computation.

Exposure compensation is a technique for adjusting the exposure indicated by a photographic exposure meter, in consideration of factors that may cause the indicated exposure to result in a less-than-optimal image. Factors considered may include unusual lighting distribution, variations within a camera system, filters, non-standard processing, or intended underexposure or overexposure. Cinematographers may also apply exposure compensation for changes in shutter angle or film speed, among other factors.

<span class="mw-page-title-main">Exposing to the right</span> Photographic technique

In digital photography, exposing to the right (ETTR) is the technique of adjusting the exposure of an image as high as possible at base ISO to collect the maximum amount of light and thus get the optimum performance out of the digital image sensor.

In the theory of photography, tone reproduction is the mapping of scene luminance and color to print reflectance or display luminance, with the aim of subjectively "properly" reproducing brightness and "brightness differences".

The following outline is provided as an overview of and topical guide to photography:

<span class="mw-page-title-main">Ray McSavaney</span>

Ray McSavaney was an American fine-art photographer based in Los Angeles, California. Throughout a spartan but active life, practicing classical Western black and white fine art photography, he made enduring photographs of buildings, bridges, and street scenes of the vast city, ancient ruins and panoramic vistas of the Southwest, and studio setups with varied floral subjects. He died from lymphoma in Los Angeles Veteran's Hospital. Warm tributes to his life and career by some of his close friends and colleagues appear in a ‘celebration of life’ memorial recounted in ‘View Camera’ magazine.

<i>Monolith, the Face of Half Dome</i> 1927 photograph by Ansel Adams

Monolith, the Face of Half Dome, Yosemite National Park, California is a black and white photograph taken by Ansel Adams in 1927 that depicts the western face of Half Dome in Yosemite, California. In the foreground of the photo, viewers are able to see the texture and detail of the rock as well as the background landscape of pine trees and the Tenaya Peak. Monolith was used by the Sierra Club as a visual aid for the environmental movement, and was the first photograph Adams made that was based on feelings, a concept he would come to define as visualization and prompt him to create the Zone System. The image stands as a testament to the intense relationship Adams had with the landscape of Yosemite, as his career was largely marked by photographing the park. Monolith has also physically endured the test of time as the original glass plate negative is still intact and printable. The photograph is a part of the portfolio Parmelian Prints of the High Sierras, released in 1927.