Photographic film

Last updated
Undeveloped 35 mm, ISO 125/22deg, black and white negative film Undeveloped film.png
Undeveloped 35 mm, ISO 125/22°, black and white negative film

Photographic film is a strip or sheet of transparent plastic film base coated on one side with a gelatin emulsion containing microscopically small light-sensitive silver halide crystals. The sizes and other characteristics of the crystals determine the sensitivity, contrast, and resolution of the film. [1]

Plastic material of a wide range of synthetic or semi-synthetic organic solids

Plastic is material consisting of any of a wide range of synthetic or semi-synthetic organic compounds that are malleable and so can be molded into solid objects.

Film base

A film base is a transparent substrate which acts as a support medium for the photosensitive emulsion that lies atop it. Despite the numerous layers and coatings associated with the emulsion layer, the base generally accounts for the vast majority of the thickness of any given film stock. Historically there have been three major types of film base in use: nitrocellulose, cellulose acetate, and polyester.

Gelatin mixture of peptides and proteins derived from connective tissues of animals

Gelatin or gelatine is a translucent, colorless, flavorless food ingredient, derived from collagen taken from animal body parts. Brittle when dry and gummy when moist, it is also called hydrolyzed collagen, collagen hydrolysate, gelatine hydrolysate, hydrolyzed gelatine, and collagen peptides. It is commonly used as a gelling agent in food, medications, drug and vitamin capsules, photographic films and papers, and cosmetics.


The emulsion will gradually darken if left exposed to light, but the process is too slow and incomplete to be of any practical use. Instead, a very short exposure to the image formed by a camera lens is used to produce only a very slight chemical change, proportional to the amount of light absorbed by each crystal. This creates an invisible latent image in the emulsion, which can be chemically developed into a visible photograph. In addition to visible light, all films are sensitive to ultraviolet light, X-rays and gamma rays, and high-energy particles. Unmodified silver halide crystals are sensitive only to the blue part of the visible spectrum, producing unnatural-looking renditions of some colored subjects. This problem was resolved with the discovery that certain dyes, called sensitizing dyes, when adsorbed onto the silver halide crystals made them respond to other colors as well. First orthochromatic (sensitive to blue and green) and finally panchromatic (sensitive to all visible colors) films were developed. Panchromatic film renders all colors in shades of gray approximately matching their subjective brightness. By similar techniques, special-purpose films can be made sensitive to the infrared (IR) region of the spectrum. [2]

Exposure (photography) amount of light captured by a camera

In photography, exposure is the amount of light per unit area reaching a photographic film or electronic image sensor, as determined by shutter speed, lens aperture and scene luminance. Exposure is measured in lux seconds, and can be computed from exposure value (EV) and scene luminance in a specified region.

Camera Optical device for recording images

A camera is an optical instrument to capture still images or to record moving images, which are stored in a physical medium such as in a digital system or on photographic film. A camera consists of a lens which focuses light from the scene, and a camera body which holds the image capture mechanism.

Latent image An invisible image produced by the exposure of a photosensitive material to light.

A latent image is an invisible image produced by the exposure to light of a photosensitive material such as photographic film. When photographic film is developed, the area that was exposed darkens and forms a visible image. In the early days of photography, the nature of the invisible change in the silver halide crystals of the film's emulsion coating was unknown, so the image was said to be "latent" until the film was treated with photographic developer.

In black-and-white photographic film, there is usually one layer of silver halide crystals. When the exposed silver halide grains are developed, the silver halide crystals are converted to metallic silver, which blocks light and appears as the black part of the film negative. Color film has at least three sensitive layers, incorporating different combinations of sensitizing dyes. Typically the blue-sensitive layer is on top, followed by a yellow filter layer to stop any remaining blue light from affecting the layers below. Next comes a green-and-blue sensitive layer, and a red-and-blue sensitive layer, which record the green and red images respectively. During development, the exposed silver halide crystals are converted to metallic silver, just as with black-and-white film. But in a color film, the by-products of the development reaction simultaneously combine with chemicals known as color couplers that are included either in the film itself or in the developer solution to form colored dyes. Because the by-products are created in direct proportion to the amount of exposure and development, the dye clouds formed are also in proportion to the exposure and development. Following development, the silver is converted back to silver halide crystals in the bleach step. It is removed from the film during the process of fixing the image on the film with a solution of ammonium thiosulfate or sodium thiosulfate (hypo or fixer). [3] Fixing leaves behind only the formed color dyes, which combine to make up the colored visible image. Later color films, like Kodacolor II, have as many as 12 emulsion layers, [4] with upwards of 20 different chemicals in each layer.

Negative (photography) Image on photographic film

In photography, a negative is an image, usually on a strip or sheet of transparent plastic film, in which the lightest areas of the photographed subject appear darkest and the darkest areas appear lightest. This reversed order occurs because the extremely light-sensitive chemicals a camera film must use to capture an image quickly enough for ordinary picture-taking are darkened, rather than bleached, by exposure to light and subsequent photographic processing.

Kodacolor (still photography) Brand name of an Eastman Kodak film

In still photography, Kodak's Kodacolor brand has been associated with various color negative films since 1942. Kodak claims that Kodacolor was "the world's first true color negative film". More accurately, it was the first color negative film intended for making paper prints: in 1939, Agfa had introduced a 35 mm Agfacolor negative film for use by the German motion picture industry, in which the negative was used only for making positive projection prints on 35 mm film. There have been several varieties of Kodacolor negative film, including Kodacolor-X, Kodacolor VR and Kodacolor Gold.

History of film

The earliest practical photographic process was the daguerreotype; it was introduced in 1839 and did not use film. The light-sensitive chemicals were formed on the surface of a silver-plated copper sheet. [5] The calotype process produced paper negatives. [6] Beginning in the 1850s, thin glass plates coated with photographic emulsion became the standard material for use in the camera. Although fragile and relatively heavy, the glass used for photographic plates was of better optical quality than early transparent plastics and was, at first, less expensive. Glass plates continued to be used long after the introduction of film, and were used for astrophotography [7] and electron micrography until the early 2000s, when they were supplanted by digital recording methods. Ilford continues to manufacture glass plates for special scientific applications. [8]

Daguerreotype First commercially successful photographic process

The daguerreotype process, or daguerreotypy, was the first publicly available photographic process, widely used during the 1840s and 1850s.

Calotype early photographic process

Calotype or talbotype is an early photographic process introduced in 1841 by William Henry Fox Talbot, using paper coated with silver iodide. The term calotype comes from the Greek καλός (kalos), "beautiful", and τύπος (tupos), "impression".

Photographic emulsion is a light-sensitive colloid used in film-based photography. Most commonly, in silver-gelatin photography, it consists of silver halide crystals dispersed in gelatin. The emulsion is usually coated onto a substrate of glass, films, paper, or fabric.

The first flexible photographic roll film was sold by George Eastman in 1885, [9] but this original "film" was actually a coating on a paper base. As part of the processing, the image-bearing layer was stripped from the paper and attached to a sheet of hardened clear gelatin. The first transparent plastic roll film followed in 1889. [10] It was made from highly flammable nitrocellulose ("celluloid"), now usually called "nitrate film".

Nitrocellulose polymer

Nitrocellulose is a highly flammable compound formed by nitrating cellulose through exposure to nitric acid or another powerful nitrating agent. When used as a propellant or low-order explosive, it was originally known as guncotton.

Celluloid chemical compound

Celluloids are a class of compounds created from nitrocellulose and camphor, with added dyes and other agents. Generally considered the first thermoplastic, it was first created as Parkesine in 1856 and as Xylonite in 1869, before being registered as Celluloid in 1870. Celluloid is easily molded and shaped, and it was first widely used as an ivory replacement.

Although cellulose acetate or "safety film" had been introduced by Kodak in 1908, [11] at first it found only a few special applications as an alternative to the hazardous nitrate film, which had the advantages of being considerably tougher, slightly more transparent, and cheaper. The changeover was completed for X-ray films in 1933, but although safety film was always used for 16 mm and 8 mm home movies, nitrate film remained standard for theatrical 35 mm films until it was finally discontinued in 1951. [12]

Cellulose acetate chemical compound

Cellulose acetate is the acetate ester of cellulose. It was first prepared in 1865. Cellulose acetate is used as a film base in photography, as a component in some coatings, and as a frame material for eyeglasses; it is also used as a synthetic fiber in the manufacture of cigarette filters and playing cards. In photographic film, cellulose acetate replaced nitrate film in the 1950s, being far less flammable and cheaper to produce.

X-ray Röntgen radiation

X-rays make up X-radiation, a form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 0.01 to 10 nanometers, corresponding to frequencies in the range 30 petahertz to 30 exahertz (3×1016 Hz to 3×1019 Hz) and energies in the range 100 eV to 100 keV. X-ray wavelengths are shorter than those of UV rays and typically longer than those of gamma rays. In many languages, X-radiation is referred to as Röntgen radiation, after the German scientist Wilhelm Röntgen, who discovered it on November 8, 1895. He named it X-radiation to signify an unknown type of radiation. Spelling of X-ray(s) in the English language includes the variants x-ray(s), xray(s), and X ray(s).

Hurter and Driffield began pioneering work on the light sensitivity of photographic emulsions in 1876. Their work enabled the first quantitative measure of film speed to be devised. [13] They developed H&D curves, which are specific for each film and paper. These curves plot the photographic density against the log of the exposure, to determine sensitivity or speed of the emulsion and enabling correct exposure. [14]

Spectral sensitivity

Early photographic plates and films were usefully sensitive only to blue, violet and ultraviolet light. As a result, the relative tonal values in a scene registered roughly as they would appear if viewed through a piece of deep blue glass. Blue skies with interesting cloud formations photographed as a white blank. Any detail visible in masses of green foliage was due mainly to the colorless surface gloss. Bright yellows and reds appeared nearly black. Most skin tones came out unnaturally dark, and uneven or freckled complexions were exaggerated. Photographers sometimes compensated by adding in skies from separate negatives that had been exposed and processed to optimize the visibility of the clouds, by manually retouching their negatives to adjust problematic tonal values, and by heavily powdering the faces of their portrait sitters.

In 1873, Hermann Wilhelm Vogel discovered that the spectral sensitivity could be extended to green and yellow light by adding very small quantities of certain dyes to the emulsion. The instability of early sensitizing dyes and their tendency to rapidly cause fogging initially confined their use to the laboratory, but in 1883 the first commercially dye-sensitized plates appeared on the market. These early products, described as isochromatic or orthochromatic depending on the manufacturer, made possible a more accurate rendering of colored subject matter into a black-and-white image. Because they were still disproportionately sensitive to blue, the use of a yellow filter and a consequently longer exposure time were required to take full advantage of their extended sensitivity.

In 1894, the Lumière Brothers introduced their Lumière Panchromatic plate, which was made sensitive, although very unequally, to all colors including red. New and improved sensitizing dyes were developed, and in 1902 the much more evenly color-sensitive Perchromo panchromatic plate was being sold by the German manufacturer Perutz. The commercial availability of highly panchromatic black-and-white emulsions also accelerated the progress of practical color photography, which requires good sensitivity to all the colors of the spectrum for the red, green and blue channels of color information to all be captured with reasonable exposure times.

However, all of these were glass-based plate products. Panchromatic emulsions on a film base were not commercially available until the 1910s and did not come into general use until much later. Many photographers who did their own darkroom work preferred to go without the seeming luxury of sensitivity to red—a rare color in nature and uncommon even in man-made objects—rather than be forced to abandon the traditional red darkroom safelight and process their exposed film in complete darkness. Kodak's popular Verichrome black-and-white snapshot film, introduced in 1931, remained a red-insensitive orthochromatic product until 1956, when it was replaced by Verichrome Pan. Amateur darkroom enthusiasts then had to handle the undeveloped film by the sense of touch alone.


Experiments with color photography began almost as early as photography itself, but the three-color principle underlying all practical processes was not set forth until 1855, not demonstrated until 1861, and not generally accepted as "real" color photography until it had become an undeniable commercial reality in the early 20th century. Although color photographs of good quality were being made by the 1890s, they required special equipment, long exposures, complex printing or display procedures and highly specialized skills, so they were then exceedingly rare.

The first practical and commercially successful color "film" was the Lumière Autochrome, a glass plate product introduced in 1907. It was expensive and not sensitive enough for hand-held "snapshot" use. Film-based versions were introduced in the early 1930s and the sensitivity was later improved. These were "mosaic screen" additive color products, which used a simple layer of black-and-white emulsion in combination with a layer of microscopically small color filter elements. The resulting transparencies or "slides" were very dark because the color filter mosaic layer absorbed most of the light passing through. The last films of this type were discontinued in the 1950s, but Polachrome "instant" slide film, introduced in 1983, temporarily revived the technology.

"Color film" in the modern sense of a subtractive color product with a multi-layered emulsion was born with the introduction of Kodachrome for home movies in 1935 and as lengths of 35 mm film for still cameras in 1936, however it required a complex development process, with multiple dyeing steps as each color layer was processed separately. [15] 1936 also saw the launch of Agfa Color Neu, the first subtractive three color reversal film for movie and still camera use to incorporate color dye couplers, which could be processed at the same time by a single color developer. The film had some 278 patents. [16] The incorporation of color couplers formed the basis of subsequent colour film design, with the Agfa process initially adopted by Ferrania, Fuji and Konica and lasting until the late 70s/early 1980s in the West and 1990s in Eastern Europe. The process used dye-forming chemicals that terminated with sulfonic acid groups and had to be coated one layer at a time. It was a further innovation by Kodak, using dye-forming chemicals which terminated in 'fatty' tails which permitted multiple layers to coated at the same time in a single pass, reducing production time and cost that later became universally adopted along with the Kodak C-41 process.

Despite greater availability of color film after WWII during the next several decades, it remained much more expensive than black-and-white and required much more light, factors which combined the greater cost of processing and printing delayed its widespread adoption. Decreasing cost, increasing sensitivity and standardised processing gradually overcame these impediments. By the 1970s, color film predominated in the consumer market, while the use of black-and-white film was increasingly confined to photojournalism and fine art photography.

Effect on lens and equipment design

Photographic lenses and equipment are designed around the film to be used. Although the earliest photographic materials were sensitive only to the blue-violet end of the spectrum, partially color-corrected achromatic lenses were normally used, so that when the photographer brought the visually brightest yellow rays to a sharp focus, the visually dimmest but photographically most active violet rays would be correctly focused, too. The introduction of orthochromatic emulsions required the whole range of colors from yellow to blue to be brought to an adequate focus. Most plates and films described as orthochromatic or isochromatic were practically insensitive to red, so the correct focus of red light was unimportant; a red window could be used to view the frame numbers on the paper backing of roll film, as any red light which leaked around the backing would not fog the film; and red lighting could be used in darkrooms. With the introduction of panchromatic film, the whole visible spectrum needed to be brought to an acceptably sharp focus. In all cases a color cast in the lens glass or faint colored reflections in the image were of no consequence as they would merely change the contrast a little. This was no longer acceptable when using color film. More highly corrected lenses for newer emulsions could be used with older emulsion types, but the converse was not true.

The progression of lens design for later emulsions is of practical importance when considering the use of old lenses, still often used on large-format equipment; a lens designed for orthochromatic film may have visible defects with a color emulsion; a lens for panchromatic film will be better but not as good as later designs.

The filters used were different for the different film types.

Film basics

Layers of 35mm color film: 1. Film base; 2. Subbing layer; 3. Red light sensitive layer; 4. Green light sensitive layer; 5. Yellow filter; 6. Blue light sensitive layer; 7. UV Filter; 8. Protective layer; 9. (Visible light exposing film). Photographic Film 135.svg
Layers of 35mm color film: 1. Film base; 2. Subbing layer; 3. Red light sensitive layer; 4. Green light sensitive layer; 5. Yellow filter; 6. Blue light sensitive layer; 7. UV Filter; 8. Protective layer; 9. (Visible light exposing film).

There are several types of photographic film, including:

In order to produce a usable image, the film needs to be exposed properly. The amount of exposure variation that a given film can tolerate, while still producing an acceptable level of quality, is called its exposure latitude. Color print film generally has greater exposure latitude than other types of film. Additionally, because print film must be printed to be viewed, after-the-fact corrections for imperfect exposure are possible during the printing process.

Plot of image density (D) vs. log exposure (H), yields a characteristic S-curve (H&D curve) for each type of film to determine its sensitivity. Changing the emulsion properties or the processing parameters will move the curve to the left or right. Changing the exposure will move along the curve, helping to determine what exposure is needed for a given film. Note the non-linear response at the far left ("toe") and right ("shoulder") of the curve. Foto-wiki-Balance-Film-Speed.svg
Plot of image density (D) vs. log exposure (H), yields a characteristic S-curve (H&D curve) for each type of film to determine its sensitivity. Changing the emulsion properties or the processing parameters will move the curve to the left or right. Changing the exposure will move along the curve, helping to determine what exposure is needed for a given film. Note the non-linear response at the far left ("toe") and right ("shoulder") of the curve.

The concentration of dyes or silver halide crystals remaining on the film after development is referred to as optical density, or simply density; the optical density is proportional to the logarithm of the optical transmission coefficient of the developed film. A dark image on the negative is of higher density than a more transparent image.

Most films are affected by the physics of silver grain activation (which sets a minimum amount of light required to expose a single grain) and by the statistics of random grain activation by photons. The film requires a minimum amount of light before it begins to expose, and then responds by progressive darkening over a wide dynamic range of exposure until all of the grains are exposed, and the film achieves (after development) its maximum optical density.

Over the active dynamic range of most films, the density of the developed film is proportional to the logarithm of the total amount of light to which the film was exposed, so the transmission coefficient of the developed film is proportional to a power of the reciprocal of the brightness of the original exposure. The plot of the density of the film image against the log of the exposure is known as an H&D curve. [14] This effect is due to the statistics of grain activation: as the film becomes progressively more exposed, each incident photon is less likely to impact a still-unexposed grain, yielding the logarithmic behavior. A simple, idealized statistical model yields the equation density = 1 - ( 1 - k) light, where light is proportional to the number of photons hitting a unit area of film, k is the probability of a single photon striking a grain (based on the size of the grains and how closely spaced they are), and density is the proportion of grains that have been hit by at least one photon. The relationship between density and log exposure is linear for photographic films except at the extreme ranges of maximum exposure (D-max) and minimum exposure (D-min) on an H&D curve, so the curve is characteristically S-shaped (as opposed to digital camera sensors which have a linear response through the effective exposure range). [21] The sensitivity (i.e., the ISO speed) of a film can be affected by changing the length or temperature of development, which would move the H&D curve to the left or right (see figure). [22] [23]

If parts of the image are exposed heavily enough to approach the maximum density possible for a print film, then they will begin losing the ability to show tonal variations in the final print. Usually those areas will be considered overexposed and will appear as featureless white on the print. Some subject matter is tolerant of very heavy exposure. For example, sources of brilliant light, such as a light bulb or the sun, generally appear best as a featureless white on the print.

Likewise, if part of an image receives less than the beginning threshold level of exposure, which depends upon the film's sensitivity to light—or speed—the film there will have no appreciable image density, and will appear on the print as a featureless black. Some photographers use their knowledge of these limits to determine the optimum exposure for a photograph; for one example, see the Zone System. Most automatic cameras instead try to achieve a particular average density.

Film speed

A roll of 400 speed Kodak 35mm film. Kodak-Max-400-35mm-Film.jpg
A roll of 400 speed Kodak 35mm film.

Film speed describes a film's threshold sensitivity to light. The international standard for rating film speed is the ISO#ISO scale, which combines both the ASA speed and the DIN speed in the format ASA/DIN. Using ISO convention film with an ASA speed of 400 would be labeled 400/27°. [24] A fourth naming standard is GOST, developed by the Russian standards authority. See the film speed article for a table of conversions between ASA, DIN, and GOST film speeds.

Common film speeds include ISO 25, 50, 64, 100, 160, 200, 400, 800, 1600, 3200, and 6400. Consumer print films are usually in the ISO 100 to ISO 800 range. Some films, like Kodak's Technical Pan, [25] are not ISO rated and therefore careful examination of the film's properties must be made by the photographer before exposure and development. ISO 25 film is very "slow", as it requires much more exposure to produce a usable image than "fast" ISO 800 film. Films of ISO 800 and greater are thus better suited to low-light situations and action shots (where the short exposure time limits the total light received). The benefit of slower film is that it usually has finer grain and better color rendition than fast film. Professional photographers of static subjects such as portraits or landscapes usually seek these qualities, and therefore require a tripod to stabilize the camera for a longer exposure. A professional photographing subjects such as rapidly moving sports or in low-light conditions will inevitably choose a faster film.

A film with a particular ISO rating can be push-processed, or "pushed", to behave like a film with a higher ISO, by developing for a longer amount of time or at a higher temperature than usual. [26] :160 More rarely, a film can be "pulled" to behave like a "slower" film. Pushing generally coarsens grain and increases contrast, reducing dynamic range, to the detriment of overall quality. Nevertheless, it can be a useful tradeoff in difficult shooting environments, if the alternative is no usable shot at all.

Special films

Instant photography, as popularized by Polaroid, uses a special type of camera and film that automates and integrates development, without the need of further equipment or chemicals. This process is carried out immediately after exposure, as opposed to regular film, which is developed afterwards and requires additional chemicals. See instant film.

Films can be made to record non-visible ultraviolet (UV) and infrared (IR) radiation. These films generally require special equipment; for example, most photographic lenses are made of glass and will therefore filter out most ultraviolet light. Instead, expensive lenses made of quartz must be used. Infrared films may be shot in standard cameras using an infrared band- or long-pass filters, although the infrared focal point must be compensated for.

Exposure and focusing are difficult when using UV or IR film with a camera and lens designed for visible light. The ISO standard for film speed only applies to visible light, so visual-spectrum light meters are nearly useless. Film manufacturers can supply suggested equivalent film speeds under different conditions, and recommend heavy bracketing (e.g., with a certain filter, assume ISO 25 under daylight and ISO 64 under tungsten lighting). This allows a light meter to be used to estimate an exposure. The focal point for IR is slightly farther away from the camera than visible light, and UV slightly closer; this must be compensated for when focusing. Apochromatic lenses are sometimes recommended due to their improved focusing across the spectrum.

Film optimized for detecting X-ray radiation is commonly used for medical radiography and industrial radiography by placing the subject between the film and a source of X-rays or gamma rays, without a lens, as if a translucent object were imaged by being placed between a light source and standard film. Unlike other types of film, X-ray film has a sensitive emulsion on both sides of the carrier material. This reduces the X-ray exposure for an acceptable image – a desirable feature in medical radiography. The film is usually placed in close contact with phosphor screen(s) and/or thin lead-foil screen(s), the combination having a higher sensitivity to X-rays.

Film optimized for detecting X-rays and gamma rays is sometimes used for radiation dosimetry.

Film has a number of disadvantages as a scientific detector: it is difficult to calibrate for photometry, it is not re-usable, it requires careful handling (including temperature and humidity control) for best calibration, and the film must physically be returned to the laboratory and processed. Against this, photographic film can be made with a higher spatial resolution than any other type of imaging detector, and, because of its logarithmic response to light, has a wider dynamic range than most digital detectors. For example, Agfa 10E56 holographic film has a resolution of over 4,000 lines/mm—equivalent to a pixel size of 0.125 micrometers—and an active dynamic range of over five orders of magnitude in brightness, compared to typical scientific CCDs that might have pixels of about 10 micrometers and a dynamic range of 3–4 orders of magnitude. [27] [ failed verification ]

Special films are used for the long exposures required by astrophotography. [28]


Film remained the dominant form of photography until the early 21st century, when advances in digital photography drew consumers to digital formats. The first consumer electronic camera, the Sony Mavica was released in 1981, the first digital camera, the Fuji DS-X released in 1989, [29] coupled with advances in software such as Adobe Photoshop which was released in 1989, improvements in consumer level digital color printers and increasingly widespread computers in households during the late 20th century facilitated uptake of digital photography by consumers. [21] Although modern photography is dominated by digital users, film continues to be used by enthusiasts. Film remains the preference of some photographers because of its distinctive "look". [lower-alpha 1]

Renewed interest in recent years

Despite the fact that digital cameras are by far the most commonly-used photographic tool and that the selection of available photographic films is much smaller than it once was, sales of photographic film have been on a steady upward trend. Kodak (which was under bankruptcy protection from January 2012 to September 2013) and other companies have noticed this upward trend, the president of Kodak Alaris' film, paper and photo chemical's division Dennis Olbrich stating that sales of their photographic films have been growing over the past 3 or 4 years. UK-based Ilford have confirmed this trend and conducted extensive research on this subject matter, their research showing that 60% of current film users had only started using film in the past five years and that 30% of current film users were under 35 years old. [32]

In 2013 Ferrania, a Italy-based film manufacturer which ceased production of photographic films between the years 2009 and 2010, was acquired by the new Film Ferrania S.R.L taking over the old company's manufacturing facilities, and re-employed some workers who had been laid off 3 years earlier when the company stopped production of film. In November of the same year, the company started a crowdfunding campaign with the goal of raising $250,000 to buy tooling and machines from the old factory, with the intention of putting some of the films that had been discontinued back into production, the campaign succeeded and in October 2014 was ended with over $320,000 being raised.

In February 2017, Film Ferrania unveiled their "P30" 80 ASA, Panchromatic black and white film, in 35mm format.

Kodak announced on January 5, 2017, that Ektachrome, one of Kodak's most well known transparency films that was discontinued between 2012 and 2013, would be reformulated and manufactured once again, in 35mm still and Super 8 motion picture film formats. [33]

Japan-based Fujifilm's instant film "Instax" cameras and paper have also proven to be very successful, and have replaced traditional photographic films as Fujifilm's main film products, while they continue to offer traditional photographic films in various formats and types. [34]

DX codes

135 Film Cartridge with DX barcode (top) and DX CAS code on the black and white grid below the barcode. The CAS code shows the ISO, number of exposures, exposure latitude (+3/-1 for print film). Dx135can.jpg
135 Film Cartridge with DX barcode (top) and DX CAS code on the black and white grid below the barcode. The CAS code shows the ISO, number of exposures, exposure latitude (+3/−1 for print film).
DX film edge barcode Dx-film-edge-barcode.jpg
DX film edge barcode

DX Encoding (Digital indeX), or DX coding was initially developed by Kodak in the 1980s, and eventually adapted by all camera and film manufacturers. [35] It provides information on both the film cassette and on the film regarding the type of film, number of exposures, speed (ISO/ASA rating) of the film. It consists of three types of identification. First is a barcode near the film opening of the cassette, identifying the manufacturer, film type and processing method (see image below left). This is used by photofinishing equipment during film processing. The second part is a barcode on the edge of the film (see image below right), used also during processing, which indicates the image film type, manufacturer, frame number and synchronizes the position of the frame. The third part of DX coding, known as the DX Camera Auto Sensing (CAS) code, consists of a series of 12 metal contacts on the film cassette, which beginning with cameras manufactured after 1985 could detect the type of film, number of exposures and ISO of the film, and use that information to automatically adjust the camera settings for the speed of the film. [35] [36] [37]

Common sizes of film

Source: [38]

Film DesignationFilm width (mm)Image size (mm)Number of imagesReasons
110 1613 × 1712/20Single perforations, cartridge loaded
APS/IX240 2417 × 3015/25/40

e.g., Kodak "Advantix", different aspect ratios possible, data recorded on magnetic strip, processed film remains in cartridge

126 3526 × 2612 or 20Single perforations, cartridge loaded, e.g., Kodak Instamatic camera
135 3524 × 36 (1.0 x 1.5 in.)12–36Double perforations, cassette loaded, "35 mm film"
127 4640 x 40 (also 40 x 30 or 608-16Unperforated, rolled in backing paper.
120 6245 × 6016 or 15Unperforated, rolled in backing paper. For medium format photography
60 × 6012
60 × 7010
60 × 908
220 6245 × 6032 or 31Same as 120, but rolled with no backing paper, allowing for double the number of images. Unperforated film with leader and trailer.
60 × 6024
60 × 7020
60 × 9016
Sheet film 2 ¼ x 3 ¼ to 20 x 24 in.1Individual sheets of film, notched in corner for identification, for large format photography
Disc film 10 × 8 mm15
Motion picture films 8  mm, 16  mm, 35  mm and 70  mmDouble perforations, cassette loaded


In production

MakeHeadquartersCoating PlantB&WB&WRCNCRComment
ADOX GermanyMarly, Switz--First production coating at Marly in 2018 (former Ilford Imaging test coater). Installing former Agfa (Leverkusen) coater at Bad Saarow, Germany. Also converts Agfa-Gevaert micro and aerial films for still camera use.
Agfa-Gevaert BelgiumMortsel---Business to business manufacturer of B&W aerial and micro films
Bergger FranceOut-sourced---B&W still film brand
Cinestill USAOut-sourced--Converts Kodak movie film (color and B&W) for still camera use.
FILM Ferrania ItalyFerrania, Liguria---B&W still film. Established using former Ferrania research coater.
Foma Bohemia Czech Rep.Hradec Králové--B&W still, movie film, X-Ray and Industrial films
Fujifilm JapanTokyo--Color still and B&W and Color instant films
Ilford UKMobberley, Cheshire---B&W still film
Inoviscoat GermanyMonheim am Rhein----Business to business. Still and industrial films. Established with former Agfa (Leverkusen) coater. Supplier to Polaroid.
Kodak USARochester, NY-B&W & Color still and movie films, Still film distribution by Kodak Alaris (UK)
Lomography AustriaOut-sourced-Products produced by Kodak and Foma Bohemia
Lucky ChinaBaoding, Hebei province---B&W still film
ORWO GermanyOut-sourced---B&W movie film
Polaroid Originals NetherlandsEnschede----B&W and color Instant film
ShanghaiChinaShanghai---B&W still film
Tasma RussiaKazan---Business-to-business manufacturer of aerial and industrial films

Key: B&W - Black and white negative, B&WR - Black and white reversal, CN - Color Negative, CR- Color Reversal.


See also


  1. The distinctive "look" of film-based photographs compared to digital images is likely due to a combination of factors, including (1) differences in spectral and tonal sensitivity (S-shaped density to exposure with film, vs. linear response curve for digital CCD sensors c.f. [30] ) (2) resolution (3) continuity of tone [31]

Related Research Articles

Film stock Medium used for recording motion pictures

Film stock is an analog medium that is used for recording motion pictures or animation. It is a strip or sheet of transparent plastic film base coated on one side with a gelatin emulsion containing microscopically small light-sensitive silver halide crystals. The sizes and other characteristics of the crystals determine the sensitivity, contrast and resolution of the film. The emulsion will gradually darken if left exposed to light, but the process is too slow and incomplete to be of any practical use. Instead, a very short exposure to the image formed by a camera lens is used to produce only a very slight chemical change, proportional to the amount of light absorbed by each crystal. This creates an invisible latent image in the emulsion, which can be chemically developed into a visible photograph. In addition to visible light, all films are sensitive to X-rays and high-energy particles. Most are at least slightly sensitive to invisible ultraviolet (UV) light. Some special-purpose films are sensitive into the infrared (IR) region of the spectrum.

The following list comprises significant milestones in the development of photography technology.

135 film Photographic film format

135 is photographic film in a film format used for still photography. It is a cartridge film with a film gauge of 35 mm (1.4 in), typically used for hand-held photography in 35 mm film cameras. Its engineering standard for the film is controlled by ISO 1007.

Kodachrome Brand name of an Eastman Kodak film

Kodachrome is the brand name for a color reversal film introduced by Eastman Kodak in 1935. It was one of the first successful color materials and was used for both cinematography and still photography. For many years Kodachrome was widely used for professional color photography, especially for images intended for publication in print media. Because of its complex processing requirements, the film was sold process-paid in the United States until 1954 when a legal ruling prohibited this. Elsewhere, this arrangement continued.

Photographic paper paper coated with a light-sensitive chemical formula, used for making photographic prints

Photographic paper is a paper coated with a light-sensitive chemical formula, used for making photographic prints. When photographic paper is exposed to light, it captures a latent image that is then developed to form a visible image; with most papers the image density from exposure can be sufficient to not require further development, aside from fixing and clearing, though latent exposure is also usually present. The light-sensitive layer of the paper is called the emulsion. The most common chemistry was based on silver salts but other alternatives have also been used.

Reversal film type of photographic film that produces a positive image on a transparent base

In photography, reversal film is a type of photographic film that produces a positive image on a transparent base. The film is processed to produce transparencies or diapositives instead of negatives and prints. Reversal film is produced in various sizes, from 35 mm roll film to 8×10 inch sheet film.

Photographic developer chemical that makes the latent image on the film or print visible

In the processing of photographic films, plates or papers, the photographic developer is one or more chemicals that convert the latent image to a visible image. Developing agents achieve this conversion by reducing the silver halides, which are pale-colored, into silver metal, which is black. The conversion occurs within the gelatine matrix. The special feature of photography is that the developer acts more quickly on those particles of silver halides that have been exposed to light. Paper left in developer will eventually reduce all the silver halides and turn black. Generally, the longer a developer is allowed to work, the darker the image.

Color photography that uses media capable of representing colors

Color photography is photography that uses media capable of reproducing colors. By contrast, black-and-white (monochrome) photography records only a single channel of luminance (brightness) and uses media capable only of showing shades of gray.

The gelatin silver process is the photographic process used with currently available black-and-white films and printing papers. A suspension of silver salts in gelatin is coated onto a support such as glass, flexible plastic or film, baryta paper, or resin-coated paper. These light-sensitive materials are stable under normal keeping conditions and are able to be exposed and processed even many years after their manufacture. This is in contrast to the collodion wet-plate process dominant from the 1850s–1880s, which had to be exposed and developed immediately after coating.

Photographic printing is the process of producing a final image on paper for viewing, using chemically sensitized paper. The paper is exposed to a photographic negative, a positive transparency , or a digital image file projected using an enlarger or digital exposure unit such as a LightJet printer. Alternatively, the negative or transparency may be placed atop the paper and directly exposed, creating a contact print. Photographs are more commonly printed on plain paper, for example by a color printer, but this is not considered "photographic printing".

C-41 is a chromogenic color print film developing process introduced by Kodak in 1972, superseding the C-22 process. C-41, also known as CN-16 by Fuji, CNK-4 by Konica, and AP-70 by AGFA, is the most popular film process in use, with most photofinishing labs devoting at least one machine to this development process.

Infrared photography

In infrared photography, the film or image sensor used is sensitive to infrared light. The part of the spectrum used is referred to as near-infrared to distinguish it from far-infrared, which is the domain of thermal imaging. Wavelengths used for photography range from about 700 nm to about 900 nm. Film is usually sensitive to visible light too, so an infrared-passing filter is used; this lets infrared (IR) light pass through to the camera, but blocks all or most of the visible light spectrum.

Panchromatic emulsion is a type of black-and-white photographic emulsion that is sensitive to all wavelengths of visible light.

Chromogenic refers to photographic processes that work by forming a conventional silver image and then replacing it with a dye image. Most films and papers used for color photography today are chromogenic.

A chromogenic print, also known as a silver halide print, or a dye coupler print, is a photographic print made from a color negative, transparency, or digital image, and developed using a chromogenic process. They are composed of three layers of gelatin, each containing an emulsion of silver halide, which is used as a light-sensitive material, and a different dye coupler of subtractive color which together, when developed, form a full-color image.

Color motion picture film

Color motion picture film refers both to unexposed color photographic film in a format suitable for use in a motion picture camera, and to finished motion picture film, ready for use in a projector, which bears images in color.

Duplitized film was a type of motion picture print film stock used for some two-color natural color processes. It was introduced by Eastman Kodak around 1913. The stock was of standard gauge and thickness, but it had a photographic emulsion coated on both sides of the film base instead of on one surface only.

In motion pictures, Kodak's Kodacolor brand was associated with an early lenticular color motion picture process, first introduced in 1928 for 16mm film. The process was based on the Keller-Dorian system of lenticular color photography.

Photographic hypersensitization refers to a set of processes that can be applied to photographic film or plates before exposing. One or more of these processes is often needed to make photographic materials work better in long exposures.


  1. Karlheinz Keller et al. "Photography" in Ullmann's Encyclopedia of Industrial Chemistry, 2005, Wiley-VCH, Weinheim. doi : 10.1002/14356007.a20_001
  2. Rogers, David (2007). The Chemistry of Photography: From Classical to Digital Technologies. Cambridge, UK: The Royal Society of Chemistry. ISBN   978-0-85404-273-9.
  3. Anchell, Steve (2008). The Darkroom Cookbook p.103-105. Elsevier, Oxford OX2 8DP, UK. ISBN   978-0-240-81055-3
  4. Osterman, Mark (2007). "Technical Evolution of Photography". In Peres, Michael (ed.). The Focal Encyclopedia of Photography (4th ed.). Oxford, UK: Focal Press. pp. 28 et. seq. ISBN   978-024080740-9.
  5. Lynne, Warren (2006). The Encyclopedia of 20th Century Photography. Routledge. pp. 515–520. ISBN   978-1-57958-393-4.
  6. "The Harvard College Observatory Astronomical Plate Stacks". SMITHSONIAN ASTROPHYSICAL OBSERVATORY. Archived from the original on 22 December 2015. Retrieved 16 December 2015.
  7. "Scientific Products". Ilford Photo. Archived from the original on 5 December 2015. Retrieved 16 December 2015.
  8. "1878-1929". Eastman Kodak. 2015. Archived from the original on 23 August 2015. Retrieved 8 August 2015.
  9. Hannavy John (2013). Encyclopedia of Nineteenth-Century Photography. Routledge. p. 251.
  10. "1878-1929". Eastman Kodak. Archived from the original on 2012-02-10. Retrieved 2016-01-01.
  11. "". 2014. Archived from the original on 19 September 2015. Retrieved 8 August 2015.
  12. Day Lance McNeil Ian (2002). Biographical Dictionary of the History of Technology. Routledge. p. 631. ISBN   1134650205.
  13. 1 2 Peres, Michael (2007). The Focal encyclopedia of photography: digital imaging, theory and applications, history, and science (4th ed.). Burlington, MA: Focal Press. ISBN   978-024080740-9.
  14. Jacobson 2000, p. 266.
  16. Langford, Michael (2010). Langford’s Basic Photography: The guide for serious photographers, 9th ed. Oxford, UK: Focal Press. ISBN   978-0-240-52168-8.
  17. "dr5CHROME B&W reversal process information". Archived from the original on 2010-08-08.
  18. Haist, Grant (1979). Modern photographic processing. New York: Wiley. ISBN   978-0471022282.
  19. Jacobson 2000, pp. 232–234.
  20. 1 2 Peres, Michael R. (2008). The concise Focal encyclopedia of photography: from the first photo on paper to the digital revolution. Burlington, Mass.: Focal Press/Elsevier. p. 75. ISBN   978-0-240-80998-4.
  21. Jacobson 2000, pp. 306–309.
  22. "Basic Sensitometry and Characteristics of Film" (PDF). Kodak Cinema and Television: Technical Information. Kodak. Archived (PDF) from the original on 5 March 2016. Retrieved 11 August 2015.
  23. Jacobson 2000, p. 306.
  24. "KODAK PROFESSIONAL Technical Pan Film Technical Data Sheet" (PDF). Eastman Kodak Company. Archived (PDF) from the original on 17 August 2000. Retrieved 13 August 2015.
  25. London, Barbara; Upton, John (1998). Photography (6th ed.). New York: Longman. ISBN   0321011082.
  26. "Archived copy". Archived from the original on 2017-12-07. Retrieved 2016-08-18.CS1 maint: archived copy as title (link)
  27. Malin, David; Murdin, Paul (1984-08-30). Colours of the Stars. CUP Archive. ISBN   9780521257145.
  28. "History of the digital camera and digital imaging". The Digital Camera Museum. Retrieved 10 August 2015.(section "1988/1989 - First Consumer Digital Cameras")
  29. "H&D curve of film vs digital". Archived from the original on September 23, 2015. Retrieved August 11, 2015.
  30. Claire Elise Campton (17 August 2016). "Film Photography". Photopholio. Archived from the original on 19 September 2016. Retrieved 17 August 2016.
  31. "This Is Why Film Photography Is Making a Comeback". Archived from the original on 2017-05-19. Retrieved 2017-10-28.
  32. "Archived copy". Archived from the original on 2017-07-08. Retrieved 2017-10-28.CS1 maint: archived copy as title (link)
  33. "Archived copy". Archived from the original on 2017-10-29. Retrieved 2017-10-28.CS1 maint: archived copy as title (link)
  34. 1 2 Francois (30 January 2008). "The DX story - or how the coding works". Archived from the original on 3 October 2015. Retrieved 8 August 2015.
  35. Grundberg, Andy (12 October 1986). "CAMERA: How to Read the Code on DX Film Cartridges". The New York Times: Arts Section. The New York Times Company. Archived from the original on 11 October 2015. Retrieved 8 August 2015.
  36. Jacobson 2000, p. 138.
  37. Jacobson 2000, pp. 200–201.
  38. "Fotokemika Ceases Production, Affects Efke/ADOX". La Vida Leica!. Archived from the original on 2016-03-04. Retrieved 2016-01-01.