This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
In optics, a circle of confusion (CoC) is an optical spot caused by a cone of light rays from a lens not coming to a perfect focus when imaging a point source. It is also known as disk of confusion, circle of indistinctness, blur circle, or blur spot.
In photography, the circle of confusion is used to determine the depth of field, the part of an image that is acceptably sharp. A standard value of CoC is often associated with each image format, but the most appropriate value depends on visual acuity, viewing conditions, and the amount of enlargement. Usages in context include maximum permissible circle of confusion, circle of confusion diameter limit, and the circle of confusion criterion.
Real lenses do not focus all rays perfectly, so that even at best focus, a point is imaged as a spot rather than a point. The smallest such spot that a lens can produce is often referred to as the circle of least confusion.
Two important uses of this term and concept need to be distinguished:
For describing the largest blur spot that is indistinguishable from a point. A lens can precisely focus objects at only one distance; objects at other distances are defocused . Defocused object points are imaged as blur spots rather than points; the greater the distance an object is from the plane of focus, the greater the size of the blur spot. Such a blur spot has the same shape as the lens aperture, but for simplicity, is usually treated as if it were circular. In practice, objects at considerably different distances from the camera can still appear sharp; [1] the range of object distances over which objects appear sharp is the depth of field (DoF). The common criterion for "acceptable sharpness" in the final image (e.g., print, projection screen, or electronic display) is that the blur spot be indistinguishable from a point.
In idealized ray optics, where rays are assumed to converge to a point when perfectly focused, the shape of a defocus blur spot from a lens with a circular aperture is a hard-edged circle of light. A more general blur spot has soft edges due to diffraction and aberrations, [5] [6] and may be non-circular due to the aperture shape. Therefore, the diameter concept needs to be carefully defined in order to be meaningful. Suitable definitions often use the concept of encircled energy, the fraction of the total optical energy of the spot that is within the specified diameter. Values of the fraction (e.g., 80%, 90%) vary with application.
In photography, the circle of confusion diameter limit (CoC limit or CoC criterion) is often defined as the largest blur spot that will still be perceived by the human eye as a point, when viewed on a final image from a standard viewing distance. The CoC limit can be specified on a final image (e.g. a print) or on the original image (on film or image sensor).
With this definition, the CoC limit in the original image (the image on the film or electronic sensor) can be set based on several factors:
The common values for CoC limit may not be applicable if reproduction or viewing conditions differ significantly from those assumed in determining those values. If the original image will be given greater enlargement, or viewed at a closer distance, then a smaller CoC will be required. All three factors above are accommodated with this formula:
For example, to support a final-image resolution equivalent to 5 lp/mm for a 25 cm viewing distance when the anticipated viewing distance is 50 cm and the anticipated enlargement is 8:
Since the final-image size is not usually known at the time of taking a photograph, it is common to assume a standard size such as 25 cm width, along with a conventional final-image CoC of 0.2 mm, which is 1/1250 of the image width. Conventions in terms of the diagonal measure are also commonly used. The DoF computed using these conventions will need to be adjusted if the original image is cropped before enlarging to the final image size, or if the size and viewing assumptions are altered.
For full-frame 35 mm format (24 mm × 36 mm, 43 mm diagonal), a widely used CoC limit is d/1500, or 0.029 mm for full-frame 35 mm format, which corresponds to resolving 5 lines per millimeter on a print of 30 cm diagonal. Values of 0.030 mm and 0.033 mm are also common for full-frame 35 mm format.
Criteria relating CoC to the lens focal length have also been used. Kodak recommended 2 minutes of arc (the Snellen criterion of 30 cycles/degree for normal vision) for critical viewing, yielding a CoC of about f/1720, where f is the lens focal length. [8] For a 50 mm lens on full-frame 35 mm format, the corresponding CoC is 0.0291 mm. This criterion evidently assumed that a final image would be viewed at perspective-correct distance (i.e., the angle of view would be the same as that of the original image):
However, images seldom are viewed at the so-called 'correct' distance; the viewer usually does not know the focal length of the taking lens, and the "correct" distance may be uncomfortably short or long. Consequently, criteria based on lens focal length have generally given way to criteria (such as d/1500) related to the camera format.
If an image is viewed on a low-resolution display medium such as a computer monitor, the detectability of blur will be limited by the display medium rather than by human vision. For example, the optical blur will be more difficult to detect in an 8 in × 10 in image displayed on a computer monitor than in an 8×10 print of the same original image viewed at the same distance. If the image is to be viewed only on a low-resolution device, a larger CoC may be appropriate; however, if the image may also be viewed in a high-resolution medium such as a print, the criteria discussed above will govern.
Depth of field formulas derived from geometrical optics imply that any arbitrary DoF can be achieved by using a sufficiently small CoC. Because of diffraction, however, this is not quite true. Using a smaller CoC requires increasing the lens f-number to achieve the same DoF, and if the lens is stopped down sufficiently far, the reduction in defocus blur is offset by the increased blur from diffraction. See the Depth of field article for a more detailed discussion.
Image Format | Format class | Frame size [9] | CoC |
---|---|---|---|
1" sensor (Nikon 1, Sony RX10, Sony RX100) | Small format | 8.8 mm × 13.2 mm | 0.011 mm |
Four Thirds System | 13.5 mm × 18 mm | 0.015 mm | |
APS-C [10] | 15.0 mm × 22.5 mm | 0.018 mm | |
APS-C Canon | 14.8 mm × 22.2 mm | 0.018 mm | |
APS-C Nikon/Pentax/Sony | 15.7 mm × 23.6 mm | 0.019 mm | |
APS-H Canon | 19.0 mm × 28.7 mm | 0.023 mm | |
35 mm | 24 mm × 36 mm | 0.029 mm | |
645 (6×4.5) | Medium Format | 56 mm × 42 mm | 0.047 mm |
6×6 | 56 mm × 56 mm | 0.053 mm | |
6×7 | 56 mm × 69 mm | 0.059 mm | |
6×9 | 56 mm × 84 mm | 0.067 mm | |
6×12 | 56 mm × 112 mm | 0.083 mm | |
6×17 | 56 mm × 168 mm | 0.12 mm | |
4×5 | Large Format | 102 mm × 127 mm | 0.11 mm |
5×7 | 127 mm × 178 mm | 0.15 mm | |
8×10 | 203 mm × 254 mm | 0.22 mm |
The f-number determined from a lens DoF scale can be adjusted to reflect a CoC different from the one on which the DoF scale is based. It is shown in the Depth of field article that
where N is the lens f-number, c is the CoC, m is the magnification, and f is the lens focal length. Because the f-number and CoC occur only as the product Nc, an increase in one is equivalent to a corresponding decrease in the other. For example, if it is known that a lens DoF scale is based on a CoC of 0.035 mm, and the actual conditions require a CoC of 0.025 mm, the CoC must be decreased by a factor of 0.035 / 0.025 = 1.4; this can be accomplished by increasing the f-number determined from the DoF scale by the same factor, or about 1 stop, so the lens can simply be closed down 1 stop from the value indicated on the scale.
The same approach can usually be used with a DoF calculator on a view camera.
To calculate the diameter of the circle of confusion in the image plane for an out-of-focus subject, one method is to first calculate the diameter of the blur circle in a virtual image in the object plane, which is simply done using similar triangles, and then multiply by the magnification of the system, which is calculated with the help of the lens equation.
The blur circle, of diameter C, in the focused object plane at distance S1, is an unfocused virtual image of the object at distance S2 as shown in the diagram. It depends only on these distances and the aperture diameter A, via similar triangles, independent of the lens focal length:
The circle of confusion in the image plane is obtained by multiplying by magnification m:
where the magnification m is given by the ratio of focus distances:
Using the lens equation we can solve for the auxiliary variable f1:
which yields
and express the magnification in terms of focused distance and focal length:
which gives the final result:
This can optionally be expressed in terms of the f-number N = f/A as:
This formula is exact for a simple paraxial thin lens or a symmetrical lens, in which the entrance pupil and exit pupil are both of diameter A. More complex lens designs with a non-unity pupil magnification will need a more complex analysis, as addressed in depth of field.
More generally, this approach leads to an exact paraxial result for all optical systems if A is the entrance pupil diameter, the subject distances are measured from the entrance pupil, and the magnification is known:
If either the focus distance or the out-of-focus subject distance is infinite, the equations can be evaluated in the limit. For infinite focus distance:
And for the blur circle of an object at infinity when the focus distance is finite:
If the c value is fixed as a circle of confusion diameter limit, either of these can be solved for subject distance to get the hyperfocal distance, with approximately equivalent results.
Before it was applied to photography, the concept of circle of confusion was applied to optical instruments such as telescopes. Coddington (1829 , p. 54 ) quantifies both a circle of least confusion and a least circle of confusion for a spherical reflecting surface.
This we may consider as the nearest approach to a simple focus, and term the circle of least confusion.
The Society for the Diffusion of Useful Knowledge (1832 , p. 11 ) applied it to third-order aberrations:
This spherical aberration produces an indistinctness of vision, by spreading out every mathematical point of the object into a small spot in its picture; which spots, by mixing with each other, confuse the whole. The diameter of this circle of confusion, at the focus of the central rays F, over which every point is spread, will be L K (fig. 17.); and when the aperture of the reflector is moderate it equals the cube of the aperture, divided by the square of the radius (...): this circle is called the aberration of latitude.
Circle-of-confusion calculations: An early precursor to depth of field calculations is the TH (1866 , p. 138) calculation of a circle-of-confusion diameter from a subject distance, for a lens focused at infinity; this article was pointed out by von Rohr (1899). The formula he comes up with for what he terms "the indistinctness" is equivalent, in modern terms, to
for focal length f, aperture diameter A, and subject distance S. But he does not invert this to find the S corresponding to a given c criterion (i.e. he does not solve for the hyperfocal distance), nor does he consider focusing at any other distance than infinity.
He finally observes "long-focus lenses have usually a larger aperture than short ones, and on this account have less depth of focus" [his italic emphasis].
Dallmeyer (1892 , p. 24), in an expanded re-publication of his father John Henry Dallmeyer's 1874 ( Dallmeyer 1874 ) pamphlet On the Choice and Use of Photographic Lenses (in material that is not in the 1874 edition and appears to have been added from a paper by J.H.D. "On the Use of Diaphragms or Stops" of unknown date), says:
Thus every point in an object out of focus is represented in the picture by a disc, or circle of confusion, the size of which is proportionate to the aperture in relation to the focus of the lens employed. If a point in the object is 1/100 of an inch out of focus, it will be represented by a circle of confusion measuring but 1/100 part of the aperture of the lens.
This latter statement is clearly incorrect, or misstated, being off by a factor of focal distance (focal length). He goes on:
and when the circles of confusion are sufficiently small the eye fails to see them as such; they are then seen as points only, and the picture appears sharp. At the ordinary distance of vision, of from twelve to fifteen inches, circles of confusion are seen as points, if the angle subtended by them does not exceed one minute of arc, or roughly, if they do not exceed the 1/100 of an inch in diameter.
Numerically, 1/100 inch at 12–15 inches is closer to two minutes of arc. This choice of CoC limit remains (for a large print) the most widely used even today. Abney (1881 , pp. 207–08 ) takes a similar approach based on a visual acuity of one minute of arc, and chooses a circle of confusion of 0.025 cm for viewing at 40–50 cm, essentially making the same factor-of-two error in metric units. It is unclear whether Abney or Dallmeyer was earlier to set the CoC standard thereby.
The common 1/100 inch CoC limit has been applied to blur other than defocus blur. For example, Wall (1889 , p. 92 ) says:
To find how quickly a shutter must act to take an object in motion that there may be a circle of confusion less than 1/100 in. in diameter, divide the distance of the object by 100 times the focus of the lens, and divide the rapidity of motion of object in inches per second by the results, when you have the longest duration of exposure in fraction of a second.
In optics, aberration is a property of optical systems, such as lenses, that causes light to be spread out over some region of space rather than focused to a point. Aberrations cause the image formed by a lens to be blurred or distorted, with the nature of the distortion depending on the type of aberration. Aberration can be defined as a departure of the performance of an optical system from the predictions of paraxial optics. In an imaging system, it occurs when light from one point of an object does not converge into a single point after transmission through the system. Aberrations occur because the simple paraxial theory is not a completely accurate model of the effect of an optical system on light, rather than due to flaws in the optical elements.
The depth of field (DOF) is the distance between the nearest and the furthest objects that are in acceptably sharp focus in an image captured with a camera.
A lens is a transmissive optical device that focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (elements), usually arranged along a common axis. Lenses are made from materials such as glass or plastic and are ground, polished, or molded to the required shape. A lens can focus light to form an image, unlike a prism, which refracts light without focusing. Devices that similarly focus or disperse waves and radiation other than visible light are also called "lenses", such as microwave lenses, electron lenses, acoustic lenses, or explosive lenses.
In optics, the numerical aperture (NA) of an optical system is a dimensionless number that characterizes the range of angles over which the system can accept or emit light. By incorporating index of refraction in its definition, NA has the property that it is constant for a beam as it goes from one material to another, provided there is no refractive power at the interface. The exact definition of the term varies slightly between different areas of optics. Numerical aperture is commonly used in microscopy to describe the acceptance cone of an objective, and in fiber optics, in which it describes the range of angles within which light that is incident on the fiber will be transmitted along it.
In optics, the aperture of an optical system is a hole or an opening that primarily limits light propagated through the system. More specifically, the entrance pupil as the front side image of the aperture and focal length of an optical system determine the cone angle of a bundle of rays that comes to a focus in the image plane.
The focal length of an optical system is a measure of how strongly the system converges or diverges light; it is the inverse of the system's optical power. A positive focal length indicates that a system converges light, while a negative focal length indicates that the system diverges light. A system with a shorter focal length bends the rays more sharply, bringing them to a focus in a shorter distance or diverging them more quickly. For the special case of a thin lens in air, a positive focal length is the distance over which initially collimated (parallel) rays are brought to a focus, or alternatively a negative focal length indicates how far in front of the lens a point source must be located to form a collimated beam. For more general optical systems, the focal length has no intuitive meaning; it is simply the inverse of the system's optical power.
An f-number is a measure of the light-gathering ability of an optical system such as a camera lens. It is calculated by dividing the system's focal length by the diameter of the entrance pupil. The f-number is also known as the focal ratio, f-ratio, or f-stop, and it is key in determining the depth of field, diffraction, and exposure of a photograph. The f-number is dimensionless and is usually expressed using a lower-case hooked f with the format f/N, where N is the f-number.
In photography, angle of view (AOV) describes the angular extent of a given scene that is imaged by a camera. It is used interchangeably with the more general term field of view.
An optical telescope is a telescope that gathers and focuses light mainly from the visible part of the electromagnetic spectrum, to create a magnified image for direct visual inspection, to make a photograph, or to collect data through electronic image sensors.
In photography and cinematography, perspective distortion is a warping or transformation of an object and its surrounding area that differs significantly from what the object would look like with a normal focal length, due to the relative scale of nearby and distant features. Perspective distortion is determined by the relative distances at which the image is captured and viewed, and is due to the angle of view of the image being either wider or narrower than the angle of view at which the image is viewed, hence the apparent relative distances differing from what is expected. Related to this concept is axial magnification – the perceived depth of objects at a given magnification.
In optics, the Airy disk and Airy pattern are descriptions of the best-focused spot of light that a perfect lens with a circular aperture can make, limited by the diffraction of light. The Airy disk is of importance in physics, optics, and astronomy.
Magnification is the process of enlarging the apparent size, not physical size, of something. This enlargement is quantified by a size ratio called optical magnification. When this number is less than one, it refers to a reduction in size, sometimes called de-magnification.
An eyepiece, or ocular lens, is a type of lens that is attached to a variety of optical devices such as telescopes and microscopes. It is named because it is usually the lens that is closest to the eye when someone looks through an optical device to observe an object or sample. The objective lens or mirror collects light from an object or sample and brings it to focus creating an image of the object. The eyepiece is placed near the focal point of the objective to magnify this image to the eyes. The amount of magnification depends on the focal length of the eyepiece.
In optics and photography, hyperfocal distance is a distance from a lens beyond which all objects can be brought into an "acceptable" focus. As the hyperfocal distance is the focus distance giving the maximum depth of field, it is the most desirable distance to set the focus of a fixed-focus camera. The hyperfocal distance is entirely dependent upon what level of sharpness is considered to be acceptable.
Macro photography is extreme close-up photography, usually of very small subjects and living organisms like insects, in which the size of the subject in the photograph is greater than life-size . By the original definition, a macro photograph is one in which the size of the subject on the negative or image sensor is life-size or greater. In some senses, however, it refers to a finished photograph of a subject that is greater than life-size.
In geometrical optics, a focus, also called an image point, is a point where light rays originating from a point on the object converge. Although the focus is conceptually a point, physically the focus has a spatial extent, called the blur circle. This non-ideal focusing may be caused by aberrations of the imaging optics. In the absence of significant aberrations, the smallest possible blur circle is the Airy disc, which is caused by diffraction from the optical system's aperture. Aberrations tend to worsen as the aperture diameter increases, while the Airy circle is smallest for large apertures.
The Scheimpflug principle is a description of the geometric relationship between the orientation of the plane of focus, the lens plane, and the image plane of an optical system when the lens plane is not parallel to the image plane. It is applicable to the use of some camera movements on a view camera. It is also the principle used in corneal pachymetry, the mapping of corneal topography, done prior to refractive eye surgery such as LASIK, and used for early detection of keratoconus. The principle is named after Austrian army Captain Theodor Scheimpflug, who used it in devising a systematic method and apparatus for correcting perspective distortion in aerial photographs, although Captain Scheimpflug himself credits Jules Carpentier with the rule, thus making it an example of Stigler's law of eponymy.
Depth of focus is a lens optics concept that measures the tolerance of placement of the image plane in relation to the lens. In a camera, depth of focus indicates the tolerance of the film's displacement within the camera and is therefore sometimes referred to as "lens-to-film tolerance".
In digital photography, the crop factor, format factor, or focal length multiplier of an image sensor format is the ratio of the dimensions of a camera's imaging area compared to a reference format; most often, this term is applied to digital cameras, relative to 35 mm film format as a reference. In the case of digital cameras, the imaging device would be a digital image sensor. The most commonly used definition of crop factor is the ratio of a 35 mm frame's diagonal (43.3 mm) to the diagonal of the image sensor in question; that is, . Given the same 3:2 aspect ratio as 35mm's 36 mm × 24 mm area, this is equivalent to the ratio of heights or ratio of widths; the ratio of sensor areas is the square of the crop factor.
The Sigma 8–16mm lens is an enthusiast-level, ultra wide-angle rectilinear zoom lens made by Sigma Corporation specifically for use with APS-C small format digital SLRs. It is the first ultrawide rectilinear zoom lens with a minimum focal length of 8 mm, designed specifically for APS-C size image sensors. The lens was introduced at the February 2010 Photo Marketing Association International Convention and Trade Show. At its release it was the widest viewing angle focal length available commercially for APS-C cameras. It is part of Sigma's DC line of lenses, meaning it was designed to have an image circle tailored to work with APS-C format cameras. The lens has a constant length regardless of optical zoom and focus with inner lens tube elements responding to these parameters. The lens has hypersonic zoom autofocus.