In optics and photography, hyperfocal distance is a distance from a lens beyond which all objects can be brought into an "acceptable" focus. As the hyperfocal distance is the focus distance giving the maximum depth of field, it is the most desirable distance to set the focus of a fixed-focus camera. [1] The hyperfocal distance is entirely dependent upon what level of sharpness is considered to be acceptable.
The hyperfocal distance has a property called "consecutive depths of field", where a lens focused at an object whose distance from the lens is at the hyperfocal distance H will hold a depth of field from H/2 to infinity, if the lens is focused to H/2, the depth of field will be from H/3 to H; if the lens is then focused to H/3, the depth of field will be from H/4 to H/2, etc.
Thomas Sutton and George Dawson first wrote about hyperfocal distance (or "focal range") in 1867. [2] Louis Derr in 1906 may have been the first to derive a formula for hyperfocal distance. Rudolf Kingslake wrote in 1951 about the two methods of measuring hyperfocal distance.
Some cameras have their hyperfocal distance marked on the focus dial. For example, on the Minox LX focusing dial there is a red dot between 2 m and infinity; when the lens is set at the red dot, that is, focused at the hyperfocal distance, the depth of field stretches from 2 m to infinity. Some lenses have markings indicating the hyperfocal range for specific f-stops, also called a depth-of-field scale. [3]
There are two common methods of defining and measuring hyperfocal distance, leading to values that differ only slightly. The distinction between the two meanings is rarely made, since they have almost identical values. The value computed according to the first definition exceeds that from the second by just one focal length.
The hyperfocal distance is entirely dependent upon what level of sharpness is considered to be acceptable. The criterion for the desired acceptable sharpness is specified through the circle of confusion (CoC) diameter limit. This criterion is the largest acceptable spot size diameter that an infinitesimal point is allowed to spread out to on the imaging medium (film, digital sensor, etc.).
For the first definition,
where
For any practical f-number, the added focal length is insignificant in comparison with the first term, so that
This formula is exact for the second definition, if H is measured from a thin lens, or from the front principal plane of a complex lens; it is also exact for the first definition if H is measured from a point that is one focal length in front of the front principal plane. For practical purposes, there is little difference between the first and second definitions.
The following derivations refer to the accompanying figures. For clarity, half the aperture and circle of confusion are indicated. [4]
An object at distance H forms a sharp image at distance x (blue line). Here, objects at infinity have images with a circle of confusion indicated by the brown ellipse where the upper red ray through the focal point intersects the blue line.
First using similar triangles hatched in green,
Then using similar triangles dotted in purple,
as found above.
Objects at infinity form sharp images at the focal length f (blue line). Here, an object at H forms an image with a circle of confusion indicated by the brown ellipse where the lower red ray converging to its sharp image intersects the blue line.
Using similar triangles shaded in yellow,
As an example, for a 50 mm lens at f/8 using a circle of confusion of 0.03 mm, which is a value typically used in 35 mm photography, the hyperfocal distance according to Definition 1 is
If the lens is focused at a distance of 10.5 m, then everything from half that distance (5.2 m) to infinity will be acceptably sharp in our photograph. With the formula for the Definition 2, the result is 10417 mm, a difference of 0.5%.
The hyperfocal distance has a curious property: while a lens focused at H will hold a depth of field from H/2 to infinity, if the lens is focused to H/2, the depth of field will extend from H/3 to H; if the lens is then focused to H/3, the depth of field will extend from H/4 to H/2. This continues on through all successive neighboring terms in the harmonic series (1/x) values of the hyperfocal distance. That is, focusing at H/n will cause the depth of field to extend from H/(n + 1) to H/(n− 1).
C. Welborne Piper calls this phenomenon "consecutive depths of field" and shows how to test the idea easily. This is also among the earliest of publications to use the word hyperfocal. [5]
The concepts of the two definitions of hyperfocal distance have a long history, tied up with the terminology for depth of field, depth of focus, circle of confusion, etc. Here are some selected early quotations and interpretations on the topic.
Thomas Sutton and George Dawson define focal range for what we now call hyperfocal distance: [2]
Focal Range. In every lens there is, corresponding to a given apertal ratio (that is, the ratio of the diameter of the stop to the focal length), a certain distance of a near object from it, between which and infinity all objects are in equally good focus. For instance, in a single view lens of 6 inch focus, with a 1/4 in. stop (apertal ratio one-twenty-fourth), all objects situated at distances lying between 20 feet from the lens and an infinite distance from it (a fixed star, for instance) are in equally good focus. Twenty feet is therefore called the "focal range" of the lens when this stop is used. The focal range is consequently the distance of the nearest object, which will be in good focus when the ground glass is adjusted for an extremely distant object. In the same lens, the focal range will depend upon the size of the diaphragm used, while in different lenses having the same apertal ratio the focal ranges will be greater as the focal length of the lens is increased. The terms 'apertal ratio' and 'focal range' have not come into general use, but it is very desirable that they should, in order to prevent ambiguity and circumlocution when treating of the properties of photographic lenses. 'Focal range' is a good term, because it expresses the range within which it is necessary to adjust the focus of the lens to objects at different distances from it – in other words, the range within which focusing becomes necessary.
Their focal range is about 1000 times their aperture diameter, so it makes sense as a hyperfocal distance with CoC value of f/1000, or image format diagonal times 1/1000 assuming the lens is a "normal" lens. What is not clear, however, is whether the focal range they cite was computed, or empirical.
Sir William de Wivelesley Abney says: [6]
The annexed formula will approximately give the nearest point p which will appear in focus when the distance is accurately focussed, supposing the admissible disc of confusion to be 0.025 cm:
when
- f = the focal length of the lens in cm
- a = the ratio of the aperture to the focal length
That is, a is the reciprocal of what we now call the f-number, and the answer is evidently in meters. His 0.41 should obviously be 0.40. Based on his formulae, and on the notion that the aperture ratio should be kept fixed in comparisons across formats, Abney says:
It can be shown that an enlargement from a small negative is better than a picture of the same size taken direct as regards sharpness of detail. ... Care must be taken to distinguish between the advantages to be gained in enlargement by the use of a smaller lens, with the disadvantages that ensue from the deterioration in the relative values of light and shade.
John Traill Taylor recalls this word formula for a sort of hyperfocal distance: [7]
We have seen it laid down as an approximative rule by some writers on optics (Thomas Sutton, if we remember aright), that if the diameter of the stop be a fortieth part of the focus of the lens, the depth of focus will range between infinity and a distance equal to four times as many feet as there are inches in the focus of the lens.
This formula implies a stricter CoC criterion than we typically use today.
John Hodges discusses depth of field without formulas but with some of these relationships: [8]
There is a point, however, beyond which everything will be in pictorially good definition, but the longer the focus of the lens used, the further will the point beyond which everything is in sharp focus be removed from the camera. Mathematically speaking, the amount of depth possessed by a lens varies inversely as the square of its focus.
This "mathematically" observed relationship implies that he had a formula at hand, and a parameterization with the f-number or "intensity ratio" in it. To get an inverse-square relation to focal length, you have to assume that the CoC limit is fixed and the aperture diameter scales with the focal length, giving a constant f-number.
C. Welborne Piper may be the first to have published a clear distinction between Depth of Field in the modern sense and Depth of Definition in the focal plane, and implies that Depth of Focus and Depth of Distance are sometimes used for the former (in modern usage, Depth of Focus is usually reserved for the latter). [5] He uses the term Depth Constant for H, and measures it from the front principal focus (i. e., he counts one focal length less than the distance from the lens to get the simpler formula), and even introduces the modern term:
This is the maximum depth of field possible, and H + f may be styled the distance of maximum depth of field. If we measure this distance extra-focally it is equal to H, and is sometimes called the hyperfocal distance. The depth constant and the hyperfocal distance are quite distinct, though of the same value.
It is unclear what distinction he means. Adjacent to Table I in his appendix, he further notes:
If we focus on infinity, the constant is the focal distance of the nearest object in focus. If we focus on an extra-focal distance equal to the constant, we obtain a maximum depth of field from approximately half the constant distance up to infinity. The constant is then the hyper-focal distance.
At this point we do not have evidence of the term hyperfocal before Piper, nor the hyphenated hyper-focal which he also used, but he obviously did not claim to coin this descriptor himself.
Louis Derr may be the first to clearly specify the first definition, [9] which is considered to be the strictly correct one in modern times, and to derive the formula corresponding to it. Using p for hyperfocal distance, D for aperture diameter, d for the diameter that a circle of confusion shall not exceed, and f for focal length, he derives: [10]
As the aperture diameter, D is the ratio of the focal length f to the numerical aperture N (D = f/N); and the diameter of the circle of confusion, c = d, this gives the equation for the first definition above.
George Lindsay Johnson uses the term Depth of Field for what Abney called Depth of Focus, and Depth of Focus in the modern sense (possibly for the first time), [11] as the allowable distance error in the focal plane. His definitions include hyperfocal distance:
Depth of Focus is a convenient, but not strictly accurate term, used to describe the amount of racking movement (forwards or backwards) which can be given to the screen without the image becoming sensibly blurred, i.e. without any blurring in the image exceeding 1/100 in., or in the case of negatives to be enlarged or scientific work, the 1/10 or 1/100 mm. Then the breadth of a point of light, which, of course, causes blurring on both sides, i.e. {{{1}}} (or {{{1}}}).
His drawing makes it clear that his e is the radius of the circle of confusion. He has clearly anticipated the need to tie it to format size or enlargement, but has not given a general scheme for choosing it.
Depth of Field is precisely the same as depth of focus, only in the former case the depth is measured by the movement of the plate, the object being fixed, while in the latter case the depth is measured by the distance through which the object can be moved without the circle of confusion exceeding 2e.
Thus if a lens which is focused for infinity still gives a sharp image for an object at 6 yards, its depth of field is from infinity to 6 yards, every object beyond 6 yards being in focus.
This distance (6 yards) is termed the hyperfocal distance of the lens, and any allowable confusion disc depends on the focal length of the lens and on the stop used.
If the limit of confusion of half of the disc (i.e. e) be taken as 1/100 in., then the hyperfocal distance
d being the diameter of the stop, ...
Johnson's use of former and latter seem to be swapped; perhaps former was here meant to refer to the immediately preceding section title Depth of Focus, and latter to the current section title Depth of Field. Except for an obvious factor-of-2 error in using the ratio of stop diameter to CoC radius, this definition is the same as Abney's hyperfocal distance.
The term hyperfocal distance also appears in Cassell's Cyclopaedia of 1911, The Sinclair Handbook of Photography of 1913, and Bayley's The Complete Photographer of 1914.
Rudolf Kingslake is explicit about the two meanings: [1]
if the camera is focused on a distance s equal to 1000 times the diameter of the lens aperture, then the far depth D1 becomes infinite. This critical object distance "h" is known as the Hyperfocal Distance. For a camera focused on this distance, D1 = ∞ and D2 = h/2, and we see that the range of distances acceptably in focus will run from just half the hyperfocal distance to infinity. The hyperfocal distance is, therefore, the most desirable distance on which to pre-set the focus of a fixed-focus camera. It is worth noting, too, that if a camera is focused on s = ∞, the closest acceptable object is at L2 = sh/(h + s) = h/(h/s + 1) = h (by equation 21). This is a second important meaning of the hyperfocal distance.
Kingslake uses the simplest formulae for DOF near and far distances, which has the effect of making the two different definitions of hyperfocal distance give identical values.
In optics, aberration is a property of optical systems, such as lenses, that causes light to be spread out over some region of space rather than focused to a point. Aberrations cause the image formed by a lens to be blurred or distorted, with the nature of the distortion depending on the type of aberration. Aberration can be defined as a departure of the performance of an optical system from the predictions of paraxial optics. In an imaging system, it occurs when light from one point of an object does not converge into a single point after transmission through the system. Aberrations occur because the simple paraxial theory is not a completely accurate model of the effect of an optical system on light, rather than due to flaws in the optical elements.
The depth of field (DOF) is the distance between the nearest and the farthest objects that are in acceptably sharp focus in an image captured with a camera. See also the closely related depth of focus.
In optics, the numerical aperture (NA) of an optical system is a dimensionless number that characterizes the range of angles over which the system can accept or emit light. By incorporating index of refraction in its definition, NA has the property that it is constant for a beam as it goes from one material to another, provided there is no refractive power at the interface. The exact definition of the term varies slightly between different areas of optics. Numerical aperture is commonly used in microscopy to describe the acceptance cone of an objective, and in fiber optics, in which it describes the range of angles within which light that is incident on the fiber will be transmitted along it.
In optics, the aperture of an optical system is a hole or an opening that primarily limits light propagated through the system. More specifically, the entrance pupil as the front side image of the aperture and focal length of an optical system determine the cone angle of a bundle of rays that comes to a focus in the image plane.
The focal length of an optical system is a measure of how strongly the system converges or diverges light; it is the inverse of the system's optical power. A positive focal length indicates that a system converges light, while a negative focal length indicates that the system diverges light. A system with a shorter focal length bends the rays more sharply, bringing them to a focus in a shorter distance or diverging them more quickly. For the special case of a thin lens in air, a positive focal length is the distance over which initially collimated (parallel) rays are brought to a focus, or alternatively a negative focal length indicates how far in front of the lens a point source must be located to form a collimated beam. For more general optical systems, the focal length has no intuitive meaning; it is simply the inverse of the system's optical power.
An f-number is a measure of the light-gathering ability of an optical system such as a camera lens. It is calculated by dividing the system's focal length by the diameter of the entrance pupil. The f-number is also known as the focal ratio, f-ratio, or f-stop, and it is key in determining the depth of field, diffraction, and exposure of a photograph. The f-number is dimensionless and is usually expressed using a lower-case hooked f with the format f/N, where N is the f-number.
In optics, a circle of confusion (CoC) is an optical spot caused by a cone of light rays from a lens not coming to a perfect focus when imaging a point source. It is also known as disk of confusion, circle of indistinctness, blur circle, or blur spot.
In photography, angle of view (AOV) describes the angular extent of a given scene that is imaged by a camera. It is used interchangeably with the more general term field of view.
An optical telescope is a telescope that gathers and focuses light mainly from the visible part of the electromagnetic spectrum, to create a magnified image for direct visual inspection, to make a photograph, or to collect data through electronic image sensors.
Magnification is the process of enlarging the apparent size, not physical size, of something. This enlargement is quantified by a size ratio called optical magnification. When this number is less than one, it refers to a reduction in size, sometimes called de-magnification.
The Scheimpflug principle is a description of the geometric relationship between the orientation of the plane of focus, the lens plane, and the image plane of an optical system when the lens plane is not parallel to the image plane. It is applicable to the use of some camera movements on a view camera. It is also the principle used in corneal pachymetry, the mapping of corneal topography, done prior to refractive eye surgery such as LASIK, and used for early detection of keratoconus. The principle is named after Austrian army Captain Theodor Scheimpflug, who used it in devising a systematic method and apparatus for correcting perspective distortion in aerial photographs, although Captain Scheimpflug himself credits Jules Carpentier with the rule, thus making it an example of Stigler's law of eponymy.
The science of photography is the use of chemistry and physics in all aspects of photography. This applies to the camera, its lenses, physical operation of the camera, electronic camera internals, and the process of developing film in order to take and develop pictures properly.
Depth of focus is a lens optics concept that measures the tolerance of placement of the image plane in relation to the lens. In a camera, depth of focus indicates the tolerance of the film's displacement within the camera and is therefore sometimes referred to as "lens-to-film tolerance".
The following are common definitions related to the machine vision field.
In Gaussian optics, the cardinal points consist of three pairs of points located on the optical axis of a rotationally symmetric, focal, optical system. These are the focal points, the principal points, and the nodal points; there are two of each. For ideal systems, the basic imaging properties such as image size, location, and orientation are completely determined by the locations of the cardinal points; in fact, only four points are necessary: the two focal points and either the principal points or the nodal points. The only ideal system that has been achieved in practice is a plane mirror, however the cardinal points are widely used to approximate the behavior of real optical systems. Cardinal points provide a way to analytically simplify an optical system with many components, allowing the imaging characteristics of the system to be approximately determined with simple calculations.
A photographic lens for which the focus is not adjustable is called a fixed-focus lens or sometimes focus-free. The focus is set at the time of lens design, and remains fixed. It is usually set to the hyperfocal distance, so that the depth of field ranges all the way down from half that distance to infinity, which is acceptable for most cameras used for capturing images of humans or objects larger than a meter.
Tilted plane photography is a method of employing focus as a descriptive, narrative or symbolic artistic device. It is distinct from the more simple uses of selective focus which highlight or emphasise a single point in an image, create an atmospheric bokeh, or miniaturise an obliquely-viewed landscape. In this method the photographer is consciously using the camera to focus on several points in the image at once while de-focussing others, thus making conceptual connections between these points.
In photography, the 35 mm equivalent focal length is a measure of the angle of view for a particular combination of a camera lens and film or image sensor size. The term is popular because in the early years of digital photography, most photographers experienced with interchangeable lenses were most familiar with the 35 mm film format.
For digital image processing, the Focus recovery from a defocused image is an ill-posed problem since it loses the component of high frequency. Most of the methods for focus recovery are based on depth estimation theory. The Linear canonical transform (LCT) gives a scalable kernel to fit many well-known optical effects. Using LCTs to approximate an optical system for imaging and inverting this system, theoretically permits recovery of a defocused image.
Petzval field curvature, named for Joseph Petzval, describes the optical aberration in which a flat object normal to the optical axis cannot be brought properly into focus on a flat image plane. Field curvature can be corrected with the use of a field flattener, designs can also incorporate a curved focal plane like in the case of the human eye in order to improve image quality at the focal surface.