This article's lead section may be too short to adequately summarize the key points.(September 2019) |
Photographic plates preceded photographic film as a capture medium in photography. The light-sensitive emulsion of silver salts was coated on a glass plate, typically thinner than common window glass. They were heavily used in the late 19th century. With the spread of photographic film, the use of plates declined through the 20th. They were still used in some communities, particularly in science and medicine, until the late 20th century.
Glass plates were far superior to film for research-quality imaging because they were stable and less likely to bend or distort, especially in large-format frames for wide-field imaging. Early plates used the wet collodion process. The wet plate process was replaced late in the 19th century by gelatin dry plates.
A view camera nicknamed "The Mammoth" weighing 1,400 pounds (640 kg) was built by George R. Lawrence in 1899, specifically to photograph "The Alton Limited" train owned by the Chicago & Alton Railway. It took photographs on glass plates measuring 8 feet (2.4 m) × 4.5 feet (1.4 m). [1]
Glass plate photographic material largely faded from the consumer market in the early years of the 20th century, as more convenient and less fragile films were increasingly adopted. However, photographic plates were reportedly still being used by one photography business in London until the 1970s, [2] and by one in Bradford called the Belle Vue Studio that closed in 1975. [3] They were in wide use by the professional astronomical community as late as the 1990s. Workshops on the use of glass plate photography as an alternative medium or for artistic use are still being conducted.
Known as | Imperial | Metric |
---|---|---|
Quarter-plate | 3¼ × 4¼ in. | 83mm × 108mm |
Half-plate | 4¾ × 6½ in. | 120mm × 165mm |
Full-plate | 6½ × 8½ in. | 216mm × 165mm |
Many famous astronomical surveys were taken using photographic plates, including the first Palomar Observatory Sky Survey (POSS) of the 1950s, the follow-up POSS-II survey of the 1990s, and the UK Schmidt Telescope survey of southern declinations. A number of observatories, including Harvard College and Sonneberg, maintain large archives of photographic plates, which are used primarily for historical research on variable stars.
Many solar system objects were discovered by using photographic plates, superseding earlier visual methods. Discovery of minor planets using photographic plates was pioneered by Max Wolf beginning with his discovery of 323 Brucia in 1891. The first natural satellite discovered using photographic plates was Phoebe in 1898. Pluto was discovered using photographic plates in a blink comparator; its moon Charon was discovered 48 years later in 1978 by U.S. Naval Observatory astronomer James W. Christy by carefully examining a bulge in Pluto's image on a photographic plate. [4]
Glass-backed plates, rather than film, were generally used in astronomy because they do not shrink or deform noticeably in the development process or under environmental changes. Several important applications of astrophotography, including astronomical spectroscopy and astrometry, continued using plates until digital imaging improved to the point where it could outmatch photographic results. Kodak and other manufacturers discontinued production of most kinds of plates as the market for them dwindled between 1980 and 2000, terminating most remaining astronomical use, including for sky surveys. [5]
Photographic plates were also an important tool in early high-energy physics, as they are blackened by ionizing radiation. Ernest Rutherford was one of the first to study the absorption, in various materials, of the rays produced in radioactive decay, by using photographic plates to measure the intensity of the rays. Development of particle detection optimised nuclear emulsions in the 1930s and 1940s, first in physics laboratories, then by commercial manufacturers, enabled the discovery and measurement of both the pi-meson and K-meson, in 1947 and 1949, initiating a flood of new particle discoveries in the second half of the 20th century. [6]
Photographic emulsions were originally coated on thin glass plates for imaging with electron microscopes, which provided a more rigid, stable and flatter plane compared to plastic films. [7] Beginning in the 1970s, high-contrast, fine grain emulsions coated on thicker plastic films manufactured by Kodak, Ilford and DuPont replaced glass plates. These films have largely been replaced by digital imaging technologies. [8]
The sensitivity of certain types of photographic plates to ionizing radiation (usually X-rays) is also useful in medical imaging and material science applications, although they have been largely replaced with reusable and computer readable image plate detectors and other types of X-ray detectors.
The earliest flexible films of the late 1880s were sold for amateur use in medium-format cameras. The plastic was not of very high optical quality and tended to curl and otherwise not provide as desirably flat a support surface as a sheet of glass. Initially, a transparent plastic base was more expensive to produce than glass. Quality was eventually improved, manufacturing costs came down, and most amateurs gladly abandoned plates for films. After large-format high quality cut films for professional photographers were introduced in the late 1910s, the use of plates for ordinary photography of any kind became increasingly rare.
The persistent use of plates in astronomical and other scientific applications started to decline in the early 1980s as they were gradually replaced by charge-coupled devices (CCDs), which also provide outstanding dimensional stability. CCD cameras have several advantages over glass plates, including high efficiency, linear light response, and simplified image acquisition and processing. However, even the largest CCD formats (e.g., 8192 × 8192 pixels) still do not have the detecting area and resolution of most photographic plates, which has forced modern survey cameras to use large CCD arrays to obtain the same coverage.
The manufacture of photographic plates has been discontinued by Kodak, Agfa and other widely known traditional makers. Eastern European sources have subsequently catered to the minimal remaining demand, practically all of it for use in holography, which requires a recording medium with a large surface area and a submicroscopic level of resolution that currently (2014) available electronic image sensors cannot provide. In the realm of traditional photography, a small number of historical process enthusiasts make their own wet or dry plates from raw materials and use them in vintage large-format cameras.
Several institutions have established archives to preserve photographic plates and prevent their valuable historical information from being lost. The emulsion on the plate can deteriorate. In addition, the glass plate medium is fragile and prone to cracking if not stored correctly. [9]
The United States Library of Congress has a large collection of both wet and dry plate photographic negatives, dating from 1855 through 1900, [10] over 7,500 of which have been digitized from the period 1861 to 1865. [11] The George Eastman Museum holds an extensive collection of photographic plates. [12] [ failed verification ] In 1955, wet plate negatives measuring 4 feet 6 inches (1.37 m) × 3 feet 2 inches (0.97 m) were reported to have been discovered in 1951 as part of the Holtermann Collection. These purportedly were the largest glass negatives discovered at that time. [13] These images were taken in 1875 by Charles Bayliss [14] and formed the "Shore Tower" panorama [15] of Sydney Harbour. [13] Albumen contact prints made from these negatives are in the holdings of the Holtermann Collection, the negatives are listed among the current holdings of the Collection. [14] [16]
Preservation of photographic plates is a particular need in astronomy, where changes often occur slowly and the plates represent irreplaceable records of the sky and astronomical objects that extend back over 100 years. The method of digitization of astronomical plates enables free and easy access to those unique astronomical data and it is one of the most popular approaches to preserve them. This approach was applied at the Baldone Astrophysical Observatory where about 22,000 glass and film plates of the Schmidt Telescope were scanned and cataloged. [17] Another example of an astronomical plate archive is the Astronomical Photographic Data Archive (APDA) at the Pisgah Astronomical Research Institute (PARI). APDA was created in response to recommendations of a group of international scientists who gathered in 2007 to discuss how to best preserve astronomical plates (see the Osborn and Robbins reference listed under Further reading). The discussions revealed that some observatories no longer could maintain their plate collections and needed a place to archive them. APDA is dedicated to housing and cataloging unwanted plates, with the goal to eventually catalog the plates and create a database of images that can be accessed via the Internet by the global community of scientists, researchers, and students. APDA now has a collection of more than 404,000 photographic images from over 40 observatories that are housed in a secure building with environmental control. The facility possesses several plate scanners, including two high-precision ones, GAMMA I and GAMMA II, built for NASA and the Space Telescope Science Institute (STScI) and used by a team under the leadership of the late Barry Lasker to develop the Guide Star Catalog and Digitized Sky Survey that are used to guide and direct the Hubble Space Telescope. APDA's networked storage system can store and analyze more than 100 terabytes of data. [18]
A historical collection of photographic plates from Mt. Wilson observatory is available at the Carnegie Observatories. [19] Metadata is available via a searchable database, [20] while a portion of the plates has been digitized.
Photography is the art, application, and practice of creating images by recording light, either electronically by means of an image sensor, or chemically by means of a light-sensitive material such as photographic film. It is employed in many fields of science, manufacturing, and business, as well as its more direct uses for art, film and video production, recreational purposes, hobby, and mass communication. A person who captures or takes photographs is called a photographer.
The following list comprises significant milestones in the development of photography technology.
Astrophotography, also known as astronomical imaging, is the photography or imaging of astronomical objects, celestial events, or areas of the night sky. The first photograph of an astronomical object was taken in 1840, but it was not until the late 19th century that advances in technology allowed for detailed stellar photography. Besides being able to record the details of extended objects such as the Moon, Sun, and planets, modern astrophotography has the ability to image objects outside of the visible spectrum of the human eye such as dim stars, nebulae, and galaxies. This is accomplished through long time exposure as both film and digital cameras can accumulate and sum photons over long periods of time or using specialized optical filters which limit the photons to a certain wavelength.
The collodion process is an early photographic process. The collodion process, mostly synonymous with the "collodion wet plate process", requires the photographic material to be coated, sensitized, exposed, and developed within the span of about fifteen minutes, necessitating a portable darkroom for use in the field. Collodion is normally used in its wet form, but it can also be used in its dry form, at the cost of greatly increased exposure time. The increased exposure time made the dry form unsuitable for the usual portraiture work of most professional photographers of the 19th century. The use of the dry form was mostly confined to landscape photography and other special applications where minutes-long exposure times were tolerable.
Palomar Observatory is an astronomical research observatory in the Palomar Mountains of San Diego County, California, United States. It is owned and operated by the California Institute of Technology (Caltech). Research time at the observatory is granted to Caltech and its research partners, which include the Jet Propulsion Laboratory (JPL), Yale University, and the National Astronomical Observatories of China.
Color photography is photography that uses media capable of capturing and reproducing colors. By contrast, black-and-white or gray-monochrome photography records only a single channel of luminance (brightness) and uses media capable only of showing shades of gray.
Pisgah Astronomical Research Institute (PARI) is a non-profit astronomical observatory located in the Pisgah National Forest near Balsam Grove, North Carolina. PARI operates multiple radio telescopes and optical telescopes for research and teaching purposes. The observatory is affiliated with the University of North Carolina system through the Pisgah Astronomical Research and Science Educational Center (PARSEC).
A Schmidt camera, also referred to as the Schmidt telescope, is a catadioptric astrophotographic telescope designed to provide wide fields of view with limited aberrations. The design was invented by Bernhard Schmidt in 1930.
The Digitized Sky Survey (DSS) is a digitized version of several photographic astronomical surveys of the night sky, produced by the Space Telescope Science Institute between 1983 and 2006.
The ambrotype, also known as a collodion positive in the UK, is a positive photograph on glass made by a variant of the wet plate collodion process. Following the invention of daguerreotypes, cheaper than the French invention, ambrotypes came to replace them. Like a print on paper, it is viewed by reflected light. Like the daguerreotype or the prints produced by a Polaroid camera, each is a unique original that could only be duplicated by using a camera to copy it.
The Samuel Oschin telescope, also called the Oschin Schmidt, is a 48-inch-aperture (1.22 m) Schmidt camera at the Palomar Observatory in northern San Diego County, California, United States. It consists of a 49.75 inches (1.264 m) Schmidt corrector plate and a 72 inches (1.8 m) (f/2.5) mirror. The instrument is strictly a camera; there is no provision for an eyepiece to look through it. It originally used 10 inches (25 cm) and 14 inches (36 cm) glass photographic plates. Since the focal plane is curved, these plates had to be preformed in a special jig before being loaded into the camera.
The UK Schmidt Telescope (UKST) is a 1.24 metre Schmidt telescope operated by the Australian Astronomical Observatory ; it is located adjacent to the 3.9 metre Anglo-Australian Telescope at Siding Spring Observatory, Australia. It is very similar to the Samuel Oschin telescope in California. The telescope can detect objects down to magnitude 21 after an hour of exposure on photographic plates.
An astrograph is a telescope designed for the sole purpose of astrophotography. Astrographs are mostly used in wide-field astronomical surveys of the sky and for detection of objects such as asteroids, meteors, and comets.
Photographic magnitude is a measure of the relative brightness of a star or other astronomical object as imaged on a photographic film emulsion with a camera attached to a telescope. An object's apparent photographic magnitude depends on its intrinsic luminosity, its distance and any extinction of light by interstellar matter existing along the line of sight to the observer.
Sonneberg Observatory is an astronomical observatory located at 638 m altitude on Erbisbühl in the Neufang district of Sonneberg. The observatory was founded in 1925 on the initiative of Cuno Hoffmeister by the town of Sonneberg with the support of the Carl-Zeiss-Stiftung. The observatory carries out long-term studies of variable stars. To this end the sky is monitored continuously through photography, resulting in one of the largest archives of astronomical plates. The observatory was also always engaged in popularising astronomy, which now continues in the Astronomy Museum on site.
Photographic film is a strip or sheet of transparent film base coated on one side with a gelatin emulsion containing microscopically small light-sensitive silver halide crystals. The sizes and other characteristics of the crystals determine the sensitivity, contrast, and resolution of the film. Film is typically segmented in frames, that give rise to separate photographs.
Photographic hypersensitization refers to a set of processes that can be applied to photographic film or plates before exposing. One or more of these processes is often needed to make photographic materials work better in long exposures.
The Holtermann Collection is the name given to a collection of over 3,500 glass-plate negatives and albumen prints, many of which depict life in New South Wales goldfield towns. It also includes numerous photographs of Australian rural towns and the cities of Sydney and Melbourne taken between 1871 and 1876. The collection is held by the State Library of New South Wales.
The Digital Access to a Sky Century @ Harvard (DASCH) is a project to preserve and digitize images recorded on astronomical photographic plates created before astronomy became dominated by digital imaging. It is a major project of the Center for Astrophysics | Harvard & Smithsonian. Over 500,000 glass plates held by the Harvard College Observatory are to be digitized. The digital images will contribute to time domain astronomy, providing over a hundred years of data that may be compared to current observations.
The conservation and restoration of photographic plates is the practice of caring for and maintaining photographic plates to preserve their materials and content. The practice includes the measures that can be taken by conservators, curators, collection managers, and other professionals to conserve the material unique to photographic plate processes. This practice includes understanding the composition and agents of deterioration of photographic plates, as well as the preventive, and interventive conservational measures that can be taken to increase a photographic image's longevity.