Miniature faking, also known as diorama effect or diorama illusion, is a process in which a photograph of a life-size location or object is made to look like a photograph of a miniature scale model. Blurring parts of the photo simulates the shallow depth of field normally encountered in close-up photography, making the scene seem much smaller than it actually is; the blurring can be done either optically when the photograph is taken, or by digital postprocessing. Many diorama effect photographs are taken from a high angle to simulate the effect of looking down on a miniature. Tilt–shift photography is also associated with miniature faking.
For video sequences, a way of strengthening the miniature impression is to run the video at higher speed than it was recorded. This appears to reduce the inertia which would normally limit the motion of large objects.
In a typical scene, objects close to the camera are at the bottom of the image, and objects far from the camera are at the top. This is less true if the image includes significant height as well as depth; a tall object near the camera can extend the height of the entire image.
Only one plane can be in precise focus. Objects not in the plane of focus are blurred; the blurring increases with distance from the plane of focus. But blurring less than a certain amount is imperceptible under normal viewing conditions; objects for which blurring is imperceptible are within the depth of field (DoF). [1]
DoF decreases as magnification increases; [2] in a close-up photograph of a miniature scene, the DoF is limited, and it often is impossible to have everything appear sharp even at the lens's smallest aperture. Consequently, the foreground and background are often blurred, with the blur increasing with distance above or below the center of the image. In a photograph of a full-size scene, the DoF is considerably greater; in some cases, it is difficult to have much of the scene outside the DoF, even at the lens's maximum aperture. Thus a difference in DoF is one characteristic by which a photograph of a full-size scene is readily distinguished from one of a miniature model.
In typical photographs, there are no optical cues that specify the distance to objects (how far they are from the observation point) [3] and so distance has to be inferred from the size of familiar objects in the scene. [4] DoF blurring is a visual cue to distance. [5] [6] In a diorama illusion, the introduction of the blur cue appears to override this familiar information causing objects to appear miniature and toy-like.
A common technique for making an image of a full-size scene resemble an image of a miniature model is to have the image progressively blurred from the center to the top or bottom, simulating the blurring due to the limited DoF of a typical image of a miniature. The blurring can be accomplished either optically or with digital postprocessing.
Miniatures can be simulated optically by using lens tilt, although the effect is somewhat different from the shallow depth of field (DoF) that normally results from macro photography. [7]
In a normal photograph (i.e. one not using tilt):
In a photograph using tilt:
Despite the differences, for a scene that includes relatively little height, lens tilt can produce a result similar to that of a miniature scene, especially if the image is taken from above at a moderate angle to the ground. For a completely flat surface, the effect using tilt would be almost the same as that with a regular lens: the region of focus would be sharp, with progressive blurring toward the top or bottom of the image. The image of Jodhpur was made from such a scene; although the blurring was accomplished with digital postprocessing, a similar result could have been obtained using tilt.
Diorama effect using tilt is less effective if a scene includes objects of significant height, such as tall buildings or trees, especially when photographed at a small angle to the ground, because there is a sharpness gradient along surfaces that are obviously the same distance from the camera.
Though probably less common, similar difficulties arise if an object has significant extent along the line of sight, such as a long train receding from view, again photographed at a small angle to the ground, because parts of the train that are obviously at considerably different distances from the camera are rendered equally sharp.
With a view camera, tilt can usually be set with movements built into the camera; with a small- or medium-format camera, a tilt/shift lens or adapter is usually required.
A miniature can also be simulated digitally, using an image editor to blur the top and bottom of the photograph, so that only the subject is sharp. With basic techniques, e.g., a tool such as Adobe Photoshop's Lens Blur filter, [9] using sharpness gradients extending from the middle of the image to the top and bottom, the effect is quite similar to that obtained using lens tilt.
The simple techniques have limitations similar to those of lens tilt. In the image of Jodhpur, the diorama simulation is quite effective, because the scene includes relatively little height and was photographed at a fairly high angle to the ground. The simulation is less convincing in the image of the train and in the image of the large, low building, because these scenes include several tall objects and were photographed at fairly low angles to the ground. In the image of the train, there is significant sharpness variation from the bottom of the train to the top, and the same is true for many of the trees, even though the tops and bottoms of these objects are at nearly the same distances from the camera. Similar effects occur in the image of the large, low building; although the diorama simulation of the main subject is reasonable, there are noticeable sharpness differences from top to bottom on the nearest light poles and on the taller building in the background, even though the tops and bottoms of these objects are at nearly the same distances from the camera.
More realistic simulation is possible using more advanced techniques. A simple depth map [10] consisting of a linear gradient can be edited to give uniform sharpness to objects at the same distance from the camera. This effect cannot be achieved using lens tilt.
Even simple digital techniques afford greater flexibility than optical techniques, including the ability to choose the region of sharpness and the amount of blur for the unsharp areas after the photograph has been taken. In addition, digital miniature faking does not require a camera with movements or a special lens.
Other techniques to enhance the impression of a diorama scene are increasing the contrast of the picture, simulating the darker, harder shadows of a miniature under a light, and increasing the saturation of the picture to simulate the brighter colors of a painted miniature.
An advanced use of the diorama effect in a motion picture was a process developed by Clark James, dubbed Smallgantics, for "Harrowdown Hill", a music video for Thom Yorke of Radiohead. The project was produced at Bent Image Lab in July 2006 and directed by filmmaker Chel White. In this instance, the false diorama effect was achieved digitally using helicopter footage of full-size vernal and urban landscapes that was broken down into separate planes. It involves hand creating as many as eight planes of z-buffering over live-action footage, one frame at a time, resulting in an animated black and white matte (filmmaking) sequence. These mattes are then blended together with varying degrees of blur to create the effect of shallow depth of field.
The depth of field (DOF) is the distance between the nearest and the furthest objects that are in acceptably sharp focus in an image captured with a camera. See also the closely related depth of focus.
In optics, the aperture of an optical system is a hole or an opening that primarily limits light propagated through the system. More specifically, the entrance pupil as the front side image of the aperture and focal length of an optical system determine the cone angle of a bundle of rays that comes to a focus in the image plane.
A view camera is a large-format camera in which the lens forms an inverted image on a ground-glass screen directly at the film plane. The image is viewed, composed, and focused, then the glass screen is replaced with the film to expose exactly the same image seen on the screen.
In photography, shutter speed or exposure time is the length of time that the film or digital sensor inside the camera is exposed to light when taking a photograph. The amount of light that reaches the film or image sensor is proportional to the exposure time. 1⁄500 of a second will let half as much light in as 1⁄250.
In optics, a circle of confusion (CoC) is an optical spot caused by a cone of light rays from a lens not coming to a perfect focus when imaging a point source. It is also known as disk of confusion, circle of indistinctness, blur circle, or blur spot.
Forced perspective is a technique that employs optical illusion to make an object appear farther away, closer, larger or smaller than it actually is. It manipulates human visual perception through the use of scaled objects and the correlation between them and the vantage point of the spectator or camera. It has uses in photography, filmmaking and architecture.
A camera lens is an optical lens or assembly of lenses used in conjunction with a camera body and mechanism to make images of objects either on photographic film or on other media capable of storing an image chemically or electronically.
In photography and cinematography, a wide-angle lens is a lens covering a large angle of view. Conversely, its focal length is substantially smaller than that of a normal lens for a given film plane. This type of lens allows more of the scene to be included in the photograph, which is useful in architectural, interior, and landscape photography where the photographer may not be able to move farther from the scene to photograph it.
In photography and cinematography, perspective distortion is a warping or transformation of an object and its surrounding area that differs significantly from what the object would look like with a normal focal length, due to the relative scale of nearby and distant features. Perspective distortion is determined by the relative distances at which the image is captured and viewed, and is due to the angle of view of the image being either wider or narrower than the angle of view at which the image is viewed, hence the apparent relative distances differing from what is expected. Related to this concept is axial magnification – the perceived depth of objects at a given magnification.
Macro photography is extreme close-up photography, usually of very small subjects and living organisms like insects, in which the size of the subject in the photograph is greater than life-size . By the original definition, a macro photograph is one in which the size of the subject on the negative or image sensor is life-size or greater. In some senses, however, it refers to a finished photograph of a subject that is greater than life-size.
The Scheimpflug principle is a description of the geometric relationship between the orientation of the plane of focus, the lens plane, and the image plane of an optical system when the lens plane is not parallel to the image plane. It is applicable to the use of some camera movements on a view camera. It is also the principle used in corneal pachymetry, the mapping of corneal topography, done prior to refractive eye surgery such as LASIK, and used for early detection of keratoconus. The principle is named after Austrian army Captain Theodor Scheimpflug, who used it in devising a systematic method and apparatus for correcting perspective distortion in aerial photographs, although Captain Scheimpflug himself credits Jules Carpentier with the rule, thus making it an example of Stigler's law of eponymy.
The science of photography is the use of chemistry and physics in all aspects of photography. This applies to the camera, its lenses, physical operation of the camera, electronic camera internals, and the process of developing film in order to take and develop pictures properly.
Deep focus is a photographic and cinematographic technique using a large depth of field. Depth of field is the front-to-back range of focus in an image, or how much of it appears sharp and clear. In deep focus, the foreground, middle ground, and background are all in focus.
Lensbaby is a line of camera lenses for DSLR and mirrorless cameras that combine a simple lens with a bellows or ball and socket mechanism for use in special effect photography. A Lensbaby can give effects normally associated with view cameras. The lenses are for use in selective focus photography and bokeh effects.
Perspective control is a procedure for composing or editing photographs to better conform with the commonly accepted distortions in constructed perspective. The control would:
Tilt–shift photography is the use of camera movements that change the orientation or position of the lens with respect to the film or image sensor on cameras.
Tilted plane photography is a method of employing focus as a descriptive, narrative or symbolic artistic device. It is distinct from the more simple uses of selective focus which highlight or emphasise a single point in an image, create an atmospheric bokeh, or miniaturise an obliquely-viewed landscape. In this method the photographer is consciously using the camera to focus on several points in the image at once while de-focussing others, thus making conceptual connections between these points.
The Canon TS-E 24 mm f/3.5L II is a tilt-shift, wide-angle prime lens that provides the equivalent of the corresponding view camera front movements on Canon EOS camera bodies. Though it uses Canon's EF lens mount, it does not provide autofocus.
The Canon TS-E 90 mm f/2.8 is a tilt-shift, telephoto prime lens that provides the equivalent of the corresponding view camera front movements on Canon EOS camera bodies. Unlike most other EF-mount lenses, it does not provide autofocus.
The Canon TS-E 17 mm f/4L is a tilt-shift, ultra-wide-angle prime lens that provides the equivalent of the corresponding view camera front movements on Canon EOS camera bodies. Unlike most other EF-mount lenses, it does not provide autofocus.