Lippmann process photography is an early color photography method and type of alternative process photography. It was invented by French scientist Gabriel Lippmann in 1891 and consists of first focusing an image onto a light-sensitive plate, placing the emulsion in contact with a mirror (originally liquid mercury) during the exposure to introduce interference, chemically developing the plate, inverting the plate and painting the glass black, and finally affixing a prism to the emulsion surface. The image is then viewed by illuminating the plate with light. This type of photography became known as interferential photography or interferometric colour photography and the results it produces are sometimes called direct photochromes, interference photochromes, or Lippmann photochromes (distinguished from the earlier so-called "photochromes" which were merely black-and-white photographs painted with color by hand). [1] [2] In French, the method is known as photographie interférentielle and the resulting images were originally exhibited as des vues lippmaniennes. Lippmann won the Nobel Prize in Physics in 1908 "for his method of reproducing colours photographically based on the phenomenon of interference". [3]
Images made with this method are created on a Lippmann plate: a clear glass plate (having no anti-halation backing), coated with an almost transparent (very low silver halide content) emulsion of extremely fine grains, typically 0.01 to 0.04 micrometres in diameter. [4] Consequently, Lippmann plates have an extremely high resolving power [5] exceeding 400 lines/mm.
In Lippmann's method, a glass plate is coated with an ultra fine grain [6] light-sensitive film (originally using the albumen process containing potassium bromide; later and primarily using silver halide gelatin), [7] then dried, sensitized in the silver bath, washed, irrigated with cyanine solution, and dried again. The back of the film is then brought into optical contact with a reflective surface. This originally was done by mounting the plate in a specialized holder with pure mercury behind the film. When it is exposed in the camera through the glass side of the plate, the light rays which strike the transparent light-sensitive film are reflected back on themselves and, by interference, create standing waves. [1] The standing waves cause exposure of the emulsion in diffraction patterns. The developed and fixated diffraction patterns constitute a Bragg condition in which diffuse, white light is scattered in a specular fashion and undergoes constructive interference in accordance to Bragg's law. [8] The result is an image having very similar colours as the original using a black and white photographic process.
For this method Lippmann won the Nobel Prize in Physics in 1908. [9]
The colour image can only be viewed in the reflection of a diffuse light source from the plate, making the field of view limited, and therefore not easily copied with conventional techniques. The method was very insensitive with the emulsions of the time and it never came into general use. Another reason Lippmann's process of colour photography did not succeed can be found in the invention of the autochrome plates by the Lumière brothers. [1] A technique derived from the Lippmann technique has been proposed as a method of producing images which can easily be viewed, but not copied, for security purposes. [10]
Because the photographs are so durable, researchers have reworked Lippmann plates for use in archival data storage to replace hard drives. [13] Work began on the project after they were made aware data storage on the International Space Station requires daily maintenance because it can be damaged by cosmic rays and they recalled that silver halide would not be significantly affected by astroparticles (or even electromagnetic pulses from nuclear explosions). 150 standing-wave storage samples placed on the ISS during 2019 showed no signs of data degradation after exposure to cosmic rays for nine months. [13]
The following list comprises significant milestones in the development of photography technology.
Holography is a technique that enables a wavefront to be recorded and later reconstructed. It is best known as a method of generating three-dimensional images, and has a wide range of other uses, including data storage, microscopy, and interferometry. In principle, it is possible to make a hologram for any type of wave.
The Autochrome Lumière was an early color photography process patented in 1903 by the Lumière brothers in France and first marketed in 1907. Autochrome was an additive color "mosaic screen plate" process. It was one of the principal color photography processes in use before the advent of subtractive color film in the mid-1930s. A competing process was that of the Russian Sergey Prokudin-Gorsky.
The collodion process is an early photographic process. The collodion process, mostly synonymous with the "collodion wet plate process", requires the photographic material to be coated, sensitized, exposed, and developed within the span of about fifteen minutes, necessitating a portable darkroom for use in the field. Collodion is normally used in its wet form, but it can also be used in its dry form, at the cost of greatly increased exposure time. The increased exposure time made the dry form unsuitable for the usual portraiture work of most professional photographers of the 19th century. The use of the dry form was mostly confined to landscape photography and other special applications where minutes-long exposure times were tolerable.
Kodachrome is the brand name for a color reversal film introduced by Eastman Kodak in 1935. It was one of the first successful color materials and was used for both cinematography and still photography. For many years, Kodachrome was widely used for professional color photography, especially for images intended for publication in print media.
Photographic paper is a paper coated with a light-sensitive chemical, used for making photographic prints. When photographic paper is exposed to light, it captures a latent image that is then developed to form a visible image; with most papers the image density from exposure can be sufficient to not require further development, aside from fixing and clearing, though latent exposure is also usually present. The light-sensitive layer of the paper is called the emulsion, and functions similarly to photographic film. The most common chemistry used is gelatin silver, but other alternatives have also been used.
In the processing of photographic films, plates or papers, the photographic developer is one or more chemicals that convert the latent image to a visible image. Developing agents achieve this conversion by reducing the silver halides, which are pale-colored, into silver metal, which is black when in the form of fine particles. The conversion occurs within the gelatine matrix. The special feature of photography is that the developer acts more quickly on those particles of silver halide that have been exposed to light. When left in developer, all the silver halides will eventually be reduced and turn black. Generally, the longer a developer is allowed to work, the darker the image.
The albumen print, also called albumen silver print, is a method of producing a photographic print using egg whites. Published in January 1847 by Louis Désiré Blanquart-Evrard, it was the first commercial process of producing a photo on a paper base from a negative, previous methods - such as the daguerreotype and the tintype - having been printed on metal. It became the dominant form of photographic positives from 1855 to the start of the 20th century, with a peak in the 1860–90 period. During the mid-19th century, the carte de visite became one of the more popular uses of the albumen method. In the 19th century, E. & H. T. Anthony & Company were the largest makers and distributors of albumen photographic prints and paper in the United States.
Color photography is photography that uses media capable of capturing and reproducing colors. By contrast, black-and-white or gray-monochrome photography records only a single channel of luminance (brightness) and uses media capable only of showing shades of gray.
The gelatin silver process is the most commonly used chemical process in black-and-white photography, and is the fundamental chemical process for modern analog color photography. As such, films and printing papers available for analog photography rarely rely on any other chemical process to record an image. A suspension of silver salts in gelatin is coated onto a support such as glass, flexible plastic or film, baryta paper, or resin-coated paper. These light-sensitive materials are stable under normal keeping conditions and are able to be exposed and processed even many years after their manufacture. The "dry plate" gelatin process was an improvement on the collodion wet-plate process dominant from the 1850s–1880s, which had to be exposed and developed immediately after coating.
Photographic printing is the process of producing a final image on paper for viewing, using chemically sensitized paper. The paper is exposed to a photographic negative, a positive transparency , or a digital image file projected using an enlarger or digital exposure unit such as a LightJet or Minilab printer. Alternatively, the negative or transparency may be placed atop the paper and directly exposed, creating a contact print. Digital photographs are commonly printed on plain paper, for example by a color printer, but this is not considered "photographic printing".
A silver halide is one of the chemical compounds that can form between the element silver (Ag) and one of the halogens. In particular, bromine (Br), chlorine (Cl), iodine (I) and fluorine (F) may each combine with silver to produce silver bromide (AgBr), silver chloride (AgCl), silver iodide (AgI), and four forms of silver fluoride, respectively.
Jonas Ferdinand Gabriel Lippmann was a Luxembourgish-French physicist, inventor and Nobel laureate in Physics for his method of reproducing colours photographically based on the phenomenon of interference.
Integral imaging is a three-dimensional imaging technique that captures and reproduces a light field by using a two-dimensional array of microlenses, sometimes called a fly's-eye lens, normally without the aid of a larger overall objective or viewing lens. In capture mode, in which a film or detector is coupled to the microlens array, each microlens allows an image of the subject as seen from the viewpoint of that lens's location to be acquired. In reproduction mode, in which an object or source array is coupled to the microlens array, each microlens allows each observing eye to see only the area of the associated micro-image containing the portion of the subject that would have been visible through that space from that eye's location. The optical geometry can perhaps be visualized more easily by substituting pinholes for the microlenses, as has actually been done for some demonstrations and special applications.
A chromogenic print, also known as a C-print or C-type print, a silver halide print, or a dye coupler print, is a photographic print made from a color negative, transparency or digital image, and developed using a chromogenic process. They are composed of three layers of gelatin, each containing an emulsion of silver halide, which is used as a light-sensitive material, and a different dye coupler of subtractive color which together, when developed, form a full-color image.
Photographic emulsion is a light-sensitive colloid used in film-based photography. Most commonly, in silver-gelatin photography, it consists of silver halide crystals dispersed in gelatin. The emulsion is usually coated onto a substrate of glass, films, paper, or fabric. The substrate is often flexible and known as a film base.
Photographic film is a strip or sheet of transparent film base coated on one side with a gelatin emulsion containing microscopically small light-sensitive silver halide crystals. The sizes and other characteristics of the crystals determine the sensitivity, contrast, and resolution of the film. Film is typically segmented in frames, that give rise to separate photographs.
Photographic hypersensitization refers to a set of processes that can be applied to photographic film or plates before exposing. One or more of these processes is often needed to make photographic materials work better in long exposures.
The conservation and restoration of photographic plates is the practice of caring for and maintaining photographic plates to preserve their materials and content. The practice includes the measures that can be taken by conservators, curators, collection managers, and other professionals to conserve the material unique to photographic plate processes. This practice includes understanding the composition and agents of deterioration of photographic plates, as well as the preventive, and interventive conservational measures that can be taken to increase a photographic image's longevity.
Optical holography is a technique which enables an optical wavefront to be recorded and later re-constructed. Holography is best known as a method of generating three-dimensional images but it also has a wide range of other applications.