Prism (optics)

Last updated

A familiar dispersive prism Dispersive prism.png
A familiar dispersive prism

An optical prism is a transparent optical element with flat, polished surfaces that are designed to refract light. At least one surface must be angled — elements with two parallel surfaces are not prisms. The most familiar type of optical prism is the triangular prism, which has a triangular base and rectangular sides. Not all optical prisms are geometric prisms, and not all geometric prisms would count as an optical prism. Prisms can be made from any material that is transparent to the wavelengths for which they are designed. Typical materials include glass, acrylic and fluorite.

Contents

A dispersive prism can be used to break white light up into its constituent spectral colors (the colors of the rainbow) to form a spectrum as described in the following section. Other types of prisms noted below can be used to reflect light, or to split light into components with different polarizations.

Types

Dispersive

Comparison of the spectra obtained from a diffraction grating by diffraction (1), and a prism by refraction (2). Longer wavelengths (red) are diffracted more, but refracted less than shorter wavelengths (violet). Comparison refraction diffraction spectra.svg
Comparison of the spectra obtained from a diffraction grating by diffraction (1), and a prism by refraction (2). Longer wavelengths (red) are diffracted more, but refracted less than shorter wavelengths (violet).

Dispersive prisms are used to break up light into its constituent spectral colors because the refractive index depends on wavelength; the white light entering the prism is a mixture of different wavelengths, each of which gets bent slightly differently. Blue light is slowed more than red light and will therefore be bent more than red light.

Spectral dispersion is the best known property of optical prisms, although not the most frequent purpose of using optical prisms in practice.

Reflective

Reflective prisms are used to reflect light, in order to flip, invert, rotate, deviate or displace the light beam. They are typically used to erect the image in binoculars or single-lens reflex cameras – without the prisms the image would be upside down for the user.

Reflective prisms use total internal reflection to achieve near-perfect reflection of light that strikes the facets at a sufficiently oblique angle. Prisms are usually made of optical glass which, combined with anti-reflective coating of input and output facets, leads to significantly lower light loss than metallic mirrors.

Beam-splitting

Various thin-film optical layers can be deposited on the hypotenuse of one right-angled prism, and cemented to another prism to form a beam-splitter cube. Overall optical performance of such a cube is determined by the thin layer.

In comparison with a usual glass substrate, the glass cube provides protection of the thin-film layer from both sides and better mechanical stability. The cube can also eliminate etalon effects, back-side reflection and slight beam deflection.

Polarizing

Another class is formed by polarizing prisms which use birefringence to split a beam of light into components of varying polarization. In the visible and UV regions, they have very low losses and their extinction ratio typically exceeds , which is superior to other types of polarizers. They may or may not employ total internal reflection;

These are typically made of a birefringent crystalline material like calcite, but other materials like quartz and α-BBO may be necessary for UV applications, and others (MgF2, YVO4 and TiO2) will extend transmission farther into the infrared spectral range.

Depolarizer

Birefringent crystals can be also assembled in a way that leads to apparent depolarization of the light.

Note that depolarization would not be observed for an ideal monochromatic plane wave, as actually both devices turn reduced temporal coherence or spatial coherence, respectively, of the beam into decoherence of its polarization components.

Others

However, prisms made of isotropic materials like glass will also alter polarization of light, as partial reflection under oblique angles does not maintain the amplitude ratio (nor phase) of the s- and p-polarized components of the light, leading to general elliptical polarization. This is generally an unwanted effect of dispersive prisms. In some cases this can be avoided by choosing prism geometry which light enters and exits under perpendicular angle, by compensation through non-planar light trajectory, or by use of p-polarized light.

Total internal reflection alters only the mutual phase between s- and p-polarized light. Under well chosen angle of incidence, this phase is close to .

Other uses

Total internal reflection in prisms finds numerous uses through optics, plasmonics and microscopy. In particular:

Other uses of prisms are based on their beam-deviating refraction:

In optometry

By shifting corrective lenses off axis, images seen through them can be displaced in the same way that a prism displaces images. Eye care professionals use prisms, as well as lenses off axis, to treat various orthoptics problems:

Prism spectacles with a single prism perform a relative displacement of the two eyes, thereby correcting eso-, exo, hyper- or hypotropia.

In contrast, spectacles with prisms of equal power for both eyes, called yoked prisms (also: conjugate prisms, ambient lenses or performance glasses) shift the visual field of both eyes to the same extent. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Augustin-Jean Fresnel</span> French optical physicist (1788–1827)

Augustin-Jean Fresnel was a French civil engineer and physicist whose research in optics led to the almost unanimous acceptance of the wave theory of light, excluding any remnant of Newton's corpuscular theory, from the late 1830s  until the end of the 19th century. He is perhaps better known for inventing the catadioptric (reflective/refractive) Fresnel lens and for pioneering the use of "stepped" lenses to extend the visibility of lighthouses, saving countless lives at sea. The simpler dioptric stepped lens, first proposed by Count Buffon  and independently reinvented by Fresnel, is used in screen magnifiers and in condenser lenses for overhead projectors.

<span class="mw-page-title-main">Optics</span> Branch of physics that studies light

Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviolet, and infrared light. Light is a type of electromagnetic radiation, and other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

<span class="mw-page-title-main">Refractive index</span> Ratio of the speed of light in vacuum to that in the medium

In optics, the refractive index of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium.

<span class="mw-page-title-main">Total internal reflection</span> Reflection of a wave from a boundary between two media (rather than refraction)

In physics, total internal reflection (TIR) is the phenomenon in which waves arriving at the interface (boundary) from one medium to another are not refracted into the second ("external") medium, but completely reflected back into the first ("internal") medium. It occurs when the second medium has a higher wave speed than the first, and the waves are incident at a sufficiently oblique angle on the interface. For example, the water-to-air surface in a typical fish tank, when viewed obliquely from below, reflects the underwater scene like a mirror with no loss of brightness (Fig. 1).

<span class="mw-page-title-main">Brewster's angle</span> Angle of incidence for which all reflected light will be polarized

Brewster's angle is an angle of incidence at which light with a particular polarization is perfectly transmitted through a transparent dielectric surface, with no reflection. When unpolarized light is incident at this angle, the light that is reflected from the surface is therefore perfectly polarized. The angle is named after the Scottish physicist Sir David Brewster (1781–1868).

<span class="mw-page-title-main">Polarization (waves)</span> Property of waves that can oscillate with more than one orientation

Polarization is a property of transverse waves which specifies the geometrical orientation of the oscillations. In a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. A simple example of a polarized transverse wave is vibrations traveling along a taut string (see image); for example, in a musical instrument like a guitar string. Depending on how the string is plucked, the vibrations can be in a vertical direction, horizontal direction, or at any angle perpendicular to the string. In contrast, in longitudinal waves, such as sound waves in a liquid or gas, the displacement of the particles in the oscillation is always in the direction of propagation, so these waves do not exhibit polarization. Transverse waves that exhibit polarization include electromagnetic waves such as light and radio waves, gravitational waves, and transverse sound waves in solids.

<span class="mw-page-title-main">Waveplate</span> Optical polarization device

A waveplate or retarder is an optical device that alters the polarization state of a light wave travelling through it. Two common types of waveplates are the half-wave plate, which rotates the polarization direction of linearly polarized light, and the quarter-wave plate, which converts between different elliptical polarizations

<span class="mw-page-title-main">Birefringence</span> Property of materials whose refractive index depends on light polarization and direction

Birefringence is the optical property of a material having a refractive index that depends on the polarization and propagation direction of light. These optically anisotropic materials are described as birefringent or birefractive. The birefringence is often quantified as the maximum difference between refractive indices exhibited by the material. Crystals with non-cubic crystal structures are often birefringent, as are plastics under mechanical stress.

Optics is the branch of physics which involves the behavior and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behavior of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

<span class="mw-page-title-main">Ellipsometry</span> Optical technique for characterizing thin films

Ellipsometry is an optical technique for investigating the dielectric properties of thin films. Ellipsometry measures the change of polarization upon reflection or transmission and compares it to a model.

<span class="mw-page-title-main">Polarimetry</span> Measurement and interpretation of the polarization of transverse waves

Polarimetry is the measurement and interpretation of the polarization of transverse waves, most notably electromagnetic waves, such as radio or light waves. Typically polarimetry is done on electromagnetic waves that have traveled through or have been reflected, refracted or diffracted by some material in order to characterize that object.

<span class="mw-page-title-main">Polarizer</span> Optical filter device

A polarizer or polariser is an optical filter that lets light waves of a specific polarization pass through while blocking light waves of other polarizations. It can filter a beam of light of undefined or mixed polarization into a beam of well-defined polarization, known as polarized light. Polarizers are used in many optical techniques and instruments. Polarizers find applications in photography and LCD technology. In photography, a polarizing filter can be used to filter out reflections.

<span class="mw-page-title-main">Glan–Taylor prism</span> Improved air-spaced calcite polarizer design

A Glan–Taylor prism is a type of prism which is used as a polarizer or polarizing beam splitter. It is one of the most common types of modern polarizing prism. It was first described by Archard and Taylor in 1948.

<span class="mw-page-title-main">Dispersive prism</span> Device used to disperse light

In optics, a dispersive prism is an optical prism that is used to disperse light, that is, to separate light into its spectral components. Different wavelengths (colors) of light will be deflected by the prism at different angles. This is a result of the prism material's index of refraction varying with wavelength (dispersion). Generally, longer wavelengths (red) undergo a smaller deviation than shorter wavelengths (blue). The dispersion of white light into colors by a prism led Sir Isaac Newton to conclude that white light consisted of a mixture of different colors.

<span class="mw-page-title-main">Fresnel rhomb</span> Optical prism

A Fresnel rhomb is an optical prism that introduces a 90° phase difference between two perpendicular components of polarization, by means of two total internal reflections. If the incident beam is linearly polarized at 45° to the plane of incidence and reflection, the emerging beam is circularly polarized, and vice versa. If the incident beam is linearly polarized at some other inclination, the emerging beam is elliptically polarized with one principal axis in the plane of reflection, and vice versa.

A depolarizer or depolariser is an optical device used to scramble the polarization of light. An ideal depolarizer would output randomly polarized light whatever its input, but all practical depolarizers produce pseudo-random output polarization.

<span class="mw-page-title-main">Radial polarization</span>

A beam of light has radial polarization if at every position in the beam the polarization vector points towards the center of the beam. In practice, an array of waveplates may be used to provide an approximation to a radially polarized beam. In this case the beam is divided into segments, and the average polarization vector of each segment is directed towards the beam centre.

<span class="mw-page-title-main">Polarization rotator</span> Optical device

A polarization rotator is an optical device that rotates the polarization axis of a linearly polarized light beam by an angle of choice. Such devices can be based on the Faraday effect, on birefringence, or on total internal reflection. Rotators of linearly polarized light have found widespread applications in modern optics since laser beams tend to be linearly polarized and it is often necessary to rotate the original polarization to its orthogonal alternative.

<span class="mw-page-title-main">Acousto-optic programmable dispersive filter</span>

An acousto-optic programmable dispersive filter (AOPDF) is a special type of collinear-beam acousto-optic modulator capable of shaping spectral phase and amplitude of ultrashort laser pulses. AOPDF was invented by Pierre Tournois. Typically, quartz crystals are used for the fabrication of the AOPDFs operating in the UV spectral domain, paratellurite crystals are used in the visible and the NIR and calomel in the MIR (3–20 μm). Recently introduced Lithium niobate crystals allow for high-repetition rate operation (> 100 kHz) owing to their high acoustic velocity. The AOPDF is also used for the active control of the carrier-envelope phase of few-cycle optical pulses and as a part of pulse-measurement schemes. Although sharing a lot in principle of operation with an acousto-optic tunable filter, the AOPDF should not be confused with it, since in the former the tunable parameter is the transfer function and in the latter it is the impulse response.

<span class="mw-page-title-main">Plane of polarization</span> Concept in optics

For light and other electromagnetic radiation, the plane of polarization is the plane spanned by the direction of propagation and either the electric vector or the magnetic vector, depending on the convention. It can be defined for polarized light, remains fixed in space for linearly-polarized light, and undergoes axial rotation for circularly-polarized light.

References

  1. "Definition of BIPRISM". Merriam-Webster. 6 February 2023. Retrieved 9 February 2023.
  2. "Fresnel biprism experiment - Wave Optics, Physics". eSaral. 6 May 2022. Retrieved 13 November 2023.
  3. Duncan, B.D.; Bos, P.J.; Sergan, V. (2003). "Wide-angle achromatic prism beam steering for infrared countermeasure applications". Opt. Eng. 42 (4): 1038–1047. Bibcode:2003OptEn..42.1038D. doi:10.1117/1.1556393.
  4. Loenen, Nick (February 2012). Wooden Boat Building: How to Build a Dragon Class Sailboat. FriesenPress. ISBN   9781770974067.
  5. Kaplan, M; Carmody, D. P.; Gaydos, A (1996). "Postural orientation modifications in autism in response to ambient lenses". Child Psychiatry and Human Development. 27 (2): 81–91. doi:10.1007/BF02353802. PMID   8936794. S2CID   37007723.

Further reading