The first description of multiple-prism arrays, and multiple-prism dispersion, was given by Newton in his book Opticks . [1] Prism pair expanders were introduced by Brewster in 1813. [2] A modern mathematical description of the single-prism dispersion was given by Born and Wolf in 1959. [3] The generalized multiple-prism dispersion theory was introduced by Duarte and Piper [4] [5] in 1982.
The generalized mathematical description of multiple-prism dispersion, as a function of the angle of incidence, prism geometry, prism refractive index, and number of prisms, was introduced as a design tool for multiple-prism grating laser oscillators by Duarte and Piper, [4] [5] and is given by
which can also be written as
using
Also,
Here, is the angle of incidence, at the mth prism, and its corresponding angle of refraction. Similarly, is the exit angle and its corresponding angle of refraction. The two main equations give the first order dispersion for an array of m prisms at the exit surface of the mth prism. The plus sign in the second term in parentheses refers to a positive dispersive configuration while the minus sign refers to a compensating configuration. [4] [5] The k factors are the corresponding beam expansions, and the H factors are additional geometrical quantities. It can also be seen that the dispersion of the mth prism depends on the dispersion of the previous prism (m - 1).
These equations can also be used to quantify the angular dispersion in prism arrays, as described in Isaac Newton's book Opticks , and as deployed in dispersive instrumentation such as multiple-prism spectrometers. A comprehensive review on practical multiple-prism beam expanders and multiple-prism angular dispersion theory, including explicit and ready to apply equations (engineering style), is given by Duarte. [7]
More recently, the generalized multiple-prism dispersion theory has been extended to include positive and negative refraction. [8] Also, higher order phase derivatives have been derived using a Newtonian iterative approach. [9] This extension of the theory enables the evaluation of the Nth higher derivative via an elegant mathematical framework. Applications include further refinements in the design of prism pulse compressors and nonlinear optics.
For a single generalized prism (m = 1), the generalized multiple-prism dispersion equation simplifies to [3] [10]
If the single prism is a right-angled prism with the beam exiting normal to the output face, that is equal to zero, this equation reduces to [7]
The first application of this theory was to evaluate the laser linewidth in multiple-prism grating laser oscillators. [4] The total intracavity angular dispersion plays an important role in the linewidth narrowing of pulsed tunable lasers through the equation [4] [7]
where is the beam divergence and the overall intracavity angular dispersion is the quantity in parentheses (elevated to –1). Although originally classical in origin, in 1992 it was shown that this laser cavity linewidth equation can also be derived from interferometric quantum principles. [11]
For the special case of zero dispersion from the multiple-prism beam expander, the single-pass laser linewidth is given by [7] [10]
where M is the beam magnification provided by the beam expander that multiplies the angular dispersion provided by the diffraction grating. In practice, M can be as high as 100-200. [7] [10]
When the dispersion of the multiple-prism expander is not equal to zero, then the single-pass linewidth is given by [4] [7]
where the first differential refers to the angular dispersion from the grating and the second differential refers to the overall dispersion from the multiple-prism beam expander (given in the section above). [7] [10]
In 1987 the multiple-prism angular dispersion theory was extended to provide explicit second order equations directly applicable to the design of prismatic pulse compressors. [12] The generalized multiple-prism dispersion theory is applicable to:
Diffraction refers to various phenomena that occur when a wave encounters an obstacle or opening. It is defined as the bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a secondary source of the propagating wave. Italian scientist Francesco Maria Grimaldi coined the word diffraction and was the first to record accurate observations of the phenomenon in 1660.
In physics, interference is a phenomenon in which two waves superpose to form a resultant wave of greater, lower, or the same amplitude. Constructive and destructive interference result from the interaction of waves that are correlated or coherent with each other, either because they come from the same source or because they have the same or nearly the same frequency. Interference effects can be observed with all types of waves, for example, light, radio, acoustic, surface water waves, gravity waves, or matter waves. The resulting images or graphs are called interferograms.
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as
Fourier optics is the study of classical optics using Fourier transforms (FTs), in which the waveform being considered is regarded as made up of a combination, or superposition, of plane waves. It has some parallels to the Huygens–Fresnel principle, in which the wavefront is regarded as being made up of a combination of spherical wavefronts whose sum is the wavefront being studied. A key difference is that Fourier optics considers the plane waves to be natural modes of the propagation medium, as opposed to Huygens–Fresnel, where the spherical waves originate in the physical medium.
A rotational transition is an abrupt change in angular momentum in quantum physics. Like all other properties of a quantum particle, angular momentum is quantized, meaning it can only equal certain discrete values, which correspond to different rotational energy states. When a particle loses angular momentum, it is said to have transitioned to a lower rotational energy state. Likewise, when a particle gains angular momentum, a positive rotational transition is said to have occurred.
In mathematics, the associated Legendre polynomials are the canonical solutions of the general Legendre equation
In theoretical physics, the (one-dimensional) nonlinear Schrödinger equation (NLSE) is a nonlinear variation of the Schrödinger equation. It is a classical field equation whose principal applications are to the propagation of light in nonlinear optical fibers and planar waveguides and to Bose–Einstein condensates confined to highly anisotropic cigar-shaped traps, in the mean-field regime. Additionally, the equation appears in the studies of small-amplitude gravity waves on the surface of deep inviscid (zero-viscosity) water; the Langmuir waves in hot plasmas; the propagation of plane-diffracted wave beams in the focusing regions of the ionosphere; the propagation of Davydov's alpha-helix solitons, which are responsible for energy transport along molecular chains; and many others. More generally, the NLSE appears as one of universal equations that describe the evolution of slowly varying packets of quasi-monochromatic waves in weakly nonlinear media that have dispersion. Unlike the linear Schrödinger equation, the NLSE never describes the time evolution of a quantum state. The 1D NLSE is an example of an integrable model.
In classical mechanics, Routh's procedure or Routhian mechanics is a hybrid formulation of Lagrangian mechanics and Hamiltonian mechanics developed by Edward John Routh. Correspondingly, the Routhian is the function which replaces both the Lagrangian and Hamiltonian functions. As with the rest of analytical mechanics, Routhian mechanics is completely equivalent to Newtonian mechanics, all other formulations of classical mechanics, and introduces no new physics. It offers an alternative way to solve mechanical problems.
A prism compressor is an optical device used to shorten the duration of a positively chirped ultrashort laser pulse by giving different wavelength components a different time delay. It typically consists of two prisms and a mirror. Figure 1 shows the construction of such a compressor. Although the dispersion of the prism material causes different wavelength components to travel along different paths, the compressor is built such that all wavelength components leave the compressor at different times, but in the same direction. If the different wavelength components of a laser pulse were already separated in time, the prism compressor can make them overlap with each other, thus causing a shorter pulse.
The theoretical and experimental justification for the Schrödinger equation motivates the discovery of the Schrödinger equation, the equation that describes the dynamics of nonrelativistic particles. The motivation uses photons, which are relativistic particles with dynamics described by Maxwell's equations, as an analogue for all types of particles.
Clutter is a term used for unwanted echoes in electronic systems, particularly in reference to radars. Such echoes are typically returned from ground, sea, rain, animals/insects, chaff and atmospheric turbulences, and can cause serious performance issues with radar systems.
In general relativity, a point mass deflects a light ray with impact parameter by an angle approximately equal to
In fluid dynamics, the Oseen equations describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow, with the (partial) inclusion of convective acceleration.
Francisco Javier "Frank" Duarte is a laser physicist and author/editor of several well-known books on tunable lasers and quantum optics. He introduced the generalized multiple-prism dispersion theory, has discovered various multiple-prism grating oscillator laser configurations, and pioneered polymer-nanoparticle gain media. His contributions have found applications in a variety of fields including astrometry, atomic vapor laser isotope separation, cytology, geodesics, gravitational lensing, laser medicine, laser microscopy, laser pulse compression, laser spectroscopy, medical imaging, nanobiophotonics, nonlinear optics, phase imaging, and tunable diode lasers.
Quantum mechanics was first applied to optics, and interference in particular, by Paul Dirac. Richard Feynman, in his Lectures on Physics, uses Dirac's notation to describe thought experiments on double-slit interference of electrons. Feynman's approach was extended to N-slit interferometers for either single-photon illumination, or narrow-linewidth laser illumination, that is, illumination by indistinguishable photons, by Frank Duarte. The N-slit interferometer was first applied in the generation and measurement of complex interference patterns.
Multiple-prism grating laser oscillators, or MPG laser oscillators, use multiple-prism beam expansion to illuminate a diffraction grating mounted either in Littrow configuration or grazing-incidence configuration. Originally, these narrow-linewidth tunable dispersive oscillators were introduced as multiple-prism Littrow (MPL) grating oscillators, or hybrid multiple-prism near-grazing-incidence (HMPGI) grating cavities, in organic dye lasers. However, these designs were quickly adopted for other types of lasers such as gas lasers, diode lasers, and more recently fiber lasers.
Laser linewidth is the spectral linewidth of a laser beam.
The solution to the Schrödinger equation, the wavefunction, describes the quantum mechanical properties of a particle on microscopic scales. Measurable quantities such as position, momentum and energy are all derived from the wavefunction.
In general relativity, the Weyl metrics are a class of static and axisymmetric solutions to Einstein's field equation. Three members in the renowned Kerr–Newman family solutions, namely the Schwarzschild, nonextremal Reissner–Nordström and extremal Reissner–Nordström metrics, can be identified as Weyl-type metrics.
In physics and engineering, the radiative heat transfer from one surface to another is the equal to the difference of incoming and outgoing radiation from the first surface. In general, the heat transfer between surfaces is governed by temperature, surface emissivity properties and the geometry of the surfaces. The relation for heat transfer can be written as an integral equation with boundary conditions based upon surface conditions. Kernel functions can be useful in approximating and solving this integral equation.