Multiple-prism grating laser oscillator

Last updated

Multiple-prism grating laser oscillators, [1] or MPG laser oscillators, use multiple-prism beam expansion to illuminate a diffraction grating mounted either in Littrow configuration or grazing-incidence configuration. Originally, these narrow-linewidth tunable dispersive oscillators were introduced as multiple-prism Littrow (MPL) grating oscillators, [2] or hybrid multiple-prism near-grazing-incidence (HMPGI) grating cavities, [3] [4] in organic dye lasers. However, these designs were quickly adopted for other types of lasers such as gas lasers, [5] [6] diode lasers, [7] [8] and more recently fiber lasers. [9]

Contents

Multiple-prism grating narrow-linewidth tunable laser oscillator. The grating in this particular oscillator is deployed in Littrow configuration. Duarte's multiple-prism grating laser oscillator.png
Multiple-prism grating narrow-linewidth tunable laser oscillator. The grating in this particular oscillator is deployed in Littrow configuration.

Excitation

Multiple-prism grating laser oscillators can be excited either electrically, as in the case of gas lasers and semiconductor lasers, [11] or optically, as in the case of crystalline lasers and organic dye lasers. [1] In the case of optical excitation it is often necessary to match the polarization of the excitation laser to the polarization preference of the multiple-prism grating oscillator. [1] This can be done using a polarization rotator thus improving the laser conversion efficiency. [11]

Linewidth performance

The multiple-prism dispersion theory is applied to design these beam expanders either in additive configuration, thus adding or subtracting their dispersion to the dispersion of the grating, or in compensating configuration (yielding zero dispersion at a design wavelength) thus allowing the diffraction grating to control the tuning characteristics of the laser cavity. [11] Under those conditions, that is, zero dispersion from the multiple-prism beam expander, the single-pass laser linewidth is given by [1] [11]

where is the beam divergence and M is the beam magnification provided by the beam expander that multiplies the angular dispersion provided by the diffraction grating. In the case of multiple-prism beam expanders this factor can be as high as 100–200. [1] [11]

When the dispersion of the multiple-prism expander is not equal to zero, then the single-pass linewidth is given by [1] [11]

where the first differential refers to the angular dispersion from the grating and the second differential refers to the overall dispersion from the multiple-prism beam expander. [1] [11]

Optimized solid-state multiple-prism grating laser oscillators have been shown, by Duarte, to generate pulsed single-longitudinal-mode emission limited only by Heisenberg's uncertainty principle. [12] The laser linewidth in these experiments is reported as ≈ 350 MHz (or ≈ 0.0004 nm at 590 nm) in pulses ~ 3 ns wide, at power levels in the kW regime. [12]

Applications

Applications of these tunable narrow-linewidth lasers include:

See also

Related Research Articles

<span class="mw-page-title-main">Beam divergence</span> How much a beam expands as it travels

In electromagnetics, especially in optics, beam divergence is an angular measure of the increase in beam diameter or radius with distance from the optical aperture or antenna aperture from which the beam emerges. The term is relevant only in the "far field", away from any focus of the beam. Practically speaking, however, the far field can commence physically close to the radiating aperture, depending on aperture diameter and the operating wavelength.

<span class="mw-page-title-main">Dye laser</span> Equipment using an organic dye to emit coherent light

A dye laser is a laser that uses an organic dye as the lasing medium, usually as a liquid solution. Compared to gases and most solid state lasing media, a dye can usually be used for a much wider range of wavelengths, often spanning 50 to 100 nanometers or more. The wide bandwidth makes them particularly suitable for tunable lasers and pulsed lasers. The dye rhodamine 6G, for example, can be tuned from 635 nm (orangish-red) to 560 nm (greenish-yellow), and produce pulses as short as 16 femtoseconds. Moreover, the dye can be replaced by another type in order to generate an even broader range of wavelengths with the same laser, from the near-infrared to the near-ultraviolet, although this usually requires replacing other optical components in the laser as well, such as dielectric mirrors or pump lasers.

<span class="mw-page-title-main">Tunable laser</span> Laser with a variable wavelength

A tunable laser is a laser whose wavelength of operation can be altered in a controlled manner. While all laser gain media allow small shifts in output wavelength, only a few types of lasers allow continuous tuning over a significant wavelength range.

<span class="mw-page-title-main">Acousto-optic modulator</span> Device which diffracts light via sound waves

An acousto-optic modulator (AOM), also called a Bragg cell or an acousto-optic deflector (AOD), uses the acousto-optic effect to diffract and shift the frequency of light using sound waves. They are used in lasers for Q-switching, telecommunications for signal modulation, and in spectroscopy for frequency control. A piezoelectric transducer is attached to a material such as glass. An oscillating electric signal drives the transducer to vibrate, which creates sound waves in the material. These can be thought of as moving periodic planes of expansion and compression that change the index of refraction. Incoming light scatters off the resulting periodic index modulation and interference occurs similar to Bragg diffraction. The interaction can be thought of as a three-wave mixing process resulting in sum-frequency generation or difference-frequency generation between phonons and photons.

Chirped pulse amplification (CPA) is a technique for amplifying an ultrashort laser pulse up to the petawatt level, with the laser pulse being stretched out temporally and spectrally, then amplified, and then compressed again. The stretching and compression uses devices that ensure that the different color components of the pulse travel different distances.

<span class="mw-page-title-main">Fiber Bragg grating</span> Type of distributed Bragg reflector constructed in a short segment of optical fiber

A fiber Bragg grating (FBG) is a type of distributed Bragg reflector constructed in a short segment of optical fiber that reflects particular wavelengths of light and transmits all others. This is achieved by creating a periodic variation in the refractive index of the fiber core, which generates a wavelength-specific dielectric mirror. Hence a fiber Bragg grating can be used as an inline optical filter to block certain wavelengths, can be used for sensing applications, or it can be used as wavelength-specific reflector.

<span class="mw-page-title-main">Ring laser</span>

Ring lasers are composed of two beams of light of the same polarization traveling in opposite directions ("counter-rotating") in a closed loop.

<span class="mw-page-title-main">Prism compressor</span> Optical device for shortening laser pulses

A prism compressor is an optical device used to shorten the duration of a positively chirped ultrashort laser pulse by giving different wavelength components a different time delay. It typically consists of two prisms and a mirror. Figure 1 shows the construction of such a compressor. Although the dispersion of the prism material causes different wavelength components to travel along different paths, the compressor is built such that all wavelength components leave the compressor at different times, but in the same direction. If the different wavelength components of a laser pulse were already separated in time, the prism compressor can make them overlap with each other, thus causing a shorter pulse.

<span class="mw-page-title-main">Dispersive prism</span> Device used to disperse light

In optics, a dispersive prism is an optical prism that is used to disperse light, that is, to separate light into its spectral components. Different wavelengths (colors) of light will be deflected by the prism at different angles. This is a result of the prism material's index of refraction varying with wavelength (dispersion). Generally, longer wavelengths (red) undergo a smaller deviation than shorter wavelengths (blue). The dispersion of white light into colors by a prism led Sir Isaac Newton to conclude that white light consisted of a mixture of different colors.

Volume holograms are holograms where the thickness of the recording material is much larger than the light wavelength used for recording. In this case diffraction of light from the hologram is possible only as Bragg diffraction, i.e., the light has to have the right wavelength (color) and the wave must have the right shape. Volume holograms are also called thick holograms or Bragg holograms.

Free spectral range (FSR) is the spacing in optical frequency or wavelength between two successive reflected or transmitted optical intensity maxima or minima of an interferometer or diffractive optical element.

<span class="mw-page-title-main">F. J. Duarte</span> Laser physicist and author/editor

Francisco Javier "Frank" Duarte is a laser physicist and author/editor of several books on tunable lasers.

Beam expanders are optical devices that take a collimated beam of light and expand its width.

<span class="mw-page-title-main">Multiple-prism dispersion theory</span> Theory in optics

The first description of multiple-prism arrays, and multiple-prism dispersion, was given by Newton in his book Opticks. Prism pair expanders were introduced by Brewster in 1813. A modern mathematical description of the single-prism dispersion was given by Born and Wolf in 1959. The generalized multiple-prism dispersion theory was introduced by Duarte and Piper in 1982.

Quantum mechanics was first applied to optics, and interference in particular, by Paul Dirac. Richard Feynman, in his Lectures on Physics, uses Dirac's notation to describe thought experiments on double-slit interference of electrons. Feynman's approach was extended to N-slit interferometers for either single-photon illumination, or narrow-linewidth laser illumination, that is, illumination by indistinguishable photons, by Frank Duarte. The N-slit interferometer was first applied in the generation and measurement of complex interference patterns.

<span class="mw-page-title-main">Solid-state dye laser</span> Laser with a dye-doped organic matrix

A solid-state dye laser (SSDL) is a solid-state lasers in which the gain medium is a laser dye-doped organic matrix such as poly(methyl methacrylate) (PMMA), rather than a liquid solution of the dye. These lasers are also referred to as solid-state organic lasers and solid-state dye-doped polymer lasers.

Laser linewidth is the spectral linewidth of a laser beam.

A compound prism is a set of multiple triangular prism elements placed in contact, and often cemented together to form a solid assembly. The use of multiple elements gives several advantages to an optical designer:

James A. (Jim) Piper was a New Zealand/Australian physicist, Deputy Vice-Chancellor (Research) and Professor of Physics at Macquarie University.

<span class="mw-page-title-main">Organic laser</span> Laser that uses a carbon-based material as the gain medium

An organic laser is a laser which uses an organic material as the gain medium. The first organic laser was the liquid dye laser. These lasers use laser dye solutions as their gain media.

References

  1. 1 2 3 4 5 6 7 F. J. Duarte, Narrow-linewidth pulsed dye laser oscillators, in Dye Laser Principles (Academic, New York, 1990) Chapter 4.
  2. F. J. Duarte and J. A. Piper, A double-prism beam expander for pulsed dye lasers, Opt. Commun.35, 100-104 (1980).
  3. F. J. Duarte and J. A. Piper, A prism preexpanded grazing incidence pulsed dye laser, Appl. Opt.20, 2113-2116 (1981).
  4. F. J. Duarte and J. A. Piper, Narrow linewidth high prf copper laser-pumped dye-laser oscillators, Appl. Opt.23, 1391-1394 (1984).
  5. F. J. Duarte, Multiple-prism Littrow and grazing incidence pulsed CO2 lasers, Appl. Opt.24, 1244-1245 (1985).
  6. R. C. Sze and D. G. Harris, Tunable excimer lasers, in Tunable Lasers Handbook, F. J. Duarte (Ed.) (Academic, New York, 1995) Chapter 3.
  7. P. Zorabedian, Characteristics of a grating-external-cavity semiconductor laser containing intracavity prism beam expanders, J. Lightwave Tech.10, 330–335 (1992).
  8. P. Zorabedian, Tunable external cavity semiconductor lasers, in Tunable Lasers Handbook, F. J. Duarte (Ed.) (Academic, New York, 1995) Chapter 8.
  9. T. M. Shay and F. J. Duarte, in Tunable Laser Applications, 2nd Ed., F. J. Duarte (Ed.) (CRC, New York, 2009) Chapter 9.
  10. F. J. Duarte, T. S. Taylor, A. Costela, I. Garcia-Moreno, and R. Sastre, Long-pulse narrow-linewidth disperse solid-state dye laser oscillator, Appl. Opt.37, 3987–3989 (1998).
  11. 1 2 3 4 5 6 7 F. J. Duarte, Tunable Laser Optics, 2nd Ed. (CRC, New York, 2015).
  12. 1 2 F. J. Duarte, Multiple-prism grating solid-state dye laser oscillator: optimized architecture, Appl. Opt.38, 6347-6349 (1999).
  13. R. J. Hall and A. C. Eckbreth, Coherent anti-Stokes Raman spectroscopy: applications to combustion diagnostics, in Laser Applications (Academic, New York, 1984) pp. 213-309.
  14. W. B. Grant, Lidar for atmospheric and hydrospheric studies, in Tunable Laser Applications, 1st Ed. (Marcel-Dekker, New York, 1995) Chapter 7.
  15. W. Demtröder, Laserspektroscopie: Grundlagen und Techniken, 5th Ed. (Springer, Berlin, 2007).
  16. W. Demtröder, Laser Spectroscopy: Basic Principles, 4th Ed. (Springer, Berlin, 2008).
  17. S. Singh, K. Dasgupta, S. Kumar, K. G. Manohar, L. G. Nair, U. K. Chatterjee, High-power high-repetition-rate capper-vapor-pumped dye laser, Opt. Eng.33, 1894-1904 (1994).
  18. A. Sugiyama, T. Nakayama, M. Kato, Y. Maruyama, T. Arisawa, Characteristics of a pressure-tuned single-mode dye laser oscillator pumped by a copper vapor oscillator, Opt. Eng.35, 1093-1097 (1996).