The active laser medium (also called a gain medium or lasing medium) is the source of optical gain within a laser. The gain results from the stimulated emission of photons through electronic or molecular transitions to a lower energy state from a higher energy state previously populated by a pump source.
Examples of active laser media include:
In order to fire a laser, the active gain medium must be changed into a state in which population inversion occurs. The preparation of this state requires an external energy source and is known as laser pumping. Pumping may be achieved with electrical currents (e.g. semiconductors, or gases via high-voltage discharges) or with light, generated by discharge lamps or by other lasers (semiconductor lasers). More exotic gain media can be pumped by chemical reactions, nuclear fission, [7] or with high-energy electron beams. [8]
The simplest model of optical gain in real systems includes just two, energetically well separated, groups of sub-levels. Within each sub-level group, fast transitions ensure that thermal equilibrium is reached quickly. Stimulated emissions between upper and lower groups, essential for gain, require the upper levels to be more populated than the corresponding lower ones. This situation is called population-inversion. It is more readily achieved if unstimulated transition rates between the two groups are slow, i.e. the upper levels are metastable. Population inversions are more easily produced when only the lowest sublevels are occupied, requiring either low temperatures or well energetically split groups.
In the case of amplification of optical signals, the lasing frequency is called signal frequency. If the externally provided energy required for the signal's amplification is optical, it would necessarily be at the same or higher pump frequency.
The simple medium can be characterized with effective cross-sections of absorption and emission at frequencies and .
The relative concentrations can be defined as and .
The rate of transitions of an active center from the ground state to the excited state can be expressed like this: .
While the rate of transitions back to the ground state can be expressed like: , where and are effective cross-sections of absorption at the frequencies of the signal and the pump, and are the same for stimulated emission, and is rate of the spontaneous decay of the upper level.
Then, the kinetic equation for relative populations can be written as follows:
,
However, these equations keep .
The absorption at the pump frequency and the gain at the signal frequency can be written as follows:
and .
In many cases the gain medium works in a continuous-wave or quasi-continuous regime, causing the time derivatives of populations to be negligible.
The steady-state solution can be written:
,
The dynamic saturation intensities can be defined:
, .
The absorption at strong signal: .
The gain at strong pump: , where is determinant of cross-section.
Gain never exceeds value , and absorption never exceeds value .
At given intensities , of pump and signal, the gain and absorption can be expressed as follows:
, ,
where , , , .
The following identities [9] take place: ,
The state of gain medium can be characterized with a single parameter, such as population of the upper level, gain or absorption.
The efficiency of a gain medium can be defined as .
Within the same model, the efficiency can be expressed as follows: .
For efficient operation, both intensities—pump and signal—should exceed their saturation intensities: , and .
The estimates above are valid for a medium uniformly filled with pump and signal light. Spatial hole burning may slightly reduce the efficiency because some regions are pumped well, but the pump is not efficiently withdrawn by the signal in the nodes of the interference of counter-propagating waves.
In engineering, a transfer function of a system, sub-system, or component is a mathematical function that models the system's output for each possible input. They are widely used in electronic engineering tools like circuit simulators and control systems. In some simple cases, this function can be represented as two-dimensional graph of an independent scalar input versus the dependent scalar output, called a transfer curve or characteristic curve. Transfer functions for components are used to design and analyze systems assembled from components, particularly using the block diagram technique, in electronics and control theory.
The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position and momentum, can be simultaneously known. In other words, the more accurately one property is measured, the less accurately the other property can be known.
In physics, the Rabi cycle is the cyclic behaviour of a two-level quantum system in the presence of an oscillatory driving field. A great variety of physical processes belonging to the areas of quantum computing, condensed matter, atomic and molecular physics, and nuclear and particle physics can be conveniently studied in terms of two-level quantum mechanical systems, and exhibit Rabi flopping when coupled to an optical driving field. The effect is important in quantum optics, magnetic resonance and quantum computing, and is named after Isidor Isaac Rabi.
In quantum mechanics, a two-state system is a quantum system that can exist in any quantum superposition of two independent quantum states. The Hilbert space describing such a system is two-dimensional. Therefore, a complete basis spanning the space will consist of two independent states. Any two-state system can also be seen as a qubit.
Einstein coefficients are quantities describing the probability of absorption or emission of a photon by an atom or molecule. The Einstein A coefficients are related to the rate of spontaneous emission of light, and the Einstein B coefficients are related to the absorption and stimulated emission of light. Throughout this article, "light" refers to any electromagnetic radiation, not necessarily in the visible spectrum.
Quantum noise is noise arising from the indeterminate state of matter in accordance with fundamental principles of quantum mechanics, specifically the uncertainty principle and via zero-point energy fluctuations. Quantum noise is due to the apparently discrete nature of the small quantum constituents such as electrons, as well as the discrete nature of quantum effects, such as photocurrents.
The Jaynes–Cummings model is a theoretical model in quantum optics. It describes the system of a two-level atom interacting with a quantized mode of an optical cavity, with or without the presence of light. It was originally developed to study the interaction of atoms with the quantized electromagnetic field in order to investigate the phenomena of spontaneous emission and absorption of photons in a cavity.
Self-pulsation is a transient phenomenon in continuous-wave lasers. Self-pulsation takes place at the beginning of laser action. As the pump is switched on, the gain in the active medium rises and exceeds the steady-state value. The number of photons in the cavity increases, depleting the gain below the steady-state value, and so on. The laser pulsates; the output power at the peaks can be orders of magnitude larger than that between pulses. After several strong peaks, the amplitude of pulsation reduces, and the system behaves as a linear oscillator with damping. Then the pulsation decays; this is the beginning of the continuous-wave operation.
In laser physics, gain or amplification is a process where the medium transfers part of its energy to the emitted electromagnetic radiation, resulting in an increase in optical power. This is the basic principle of all lasers. Quantitatively, gain is a measure of the ability of a laser medium to increase optical power. However, overall a laser consumes energy.
The McCumber relation is a relationship between the effective cross-sections of absorption and emission of light in the physics of solid-state lasers. It is named after Dean McCumber, who proposed the relationship in 1964.
A vacuum Rabi oscillation is a damped oscillation of an initially excited atom coupled to an electromagnetic resonator or cavity in which the atom alternately emits photon(s) into a single-mode electromagnetic cavity and reabsorbs them. The atom interacts with a single-mode field confined to a limited volume V in an optical cavity. Spontaneous emission is a consequence of coupling between the atom and the vacuum fluctuations of the cavity field.
Surface-extended X-ray absorption fine structure (SEXAFS) is the surface-sensitive equivalent of the EXAFS technique. This technique involves the illumination of the sample by high-intensity X-ray beams from a synchrotron and monitoring their photoabsorption by detecting in the intensity of Auger electrons as a function of the incident photon energy. Surface sensitivity is achieved by the interpretation of data depending on the intensity of the Auger electrons instead of looking at the relative absorption of the X-rays as in the parent method, EXAFS.
The Mattis–Bardeen theory is a theory that describes the electrodynamic properties of superconductivity. It is commonly applied in the research field of optical spectroscopy on superconductors.
Free carrier absorption occurs when a material absorbs a photon, and a carrier is excited from an already-excited state to another, unoccupied state in the same band. This intraband absorption is different from interband absorption because the excited carrier is already in an excited band, such as an electron in the conduction band or a hole in the valence band, where it is free to move. In interband absorption, the carrier starts in a fixed, nonconducting band and is excited to a conducting one.
An electric dipole transition is the dominant effect of an interaction of an electron in an atom with the electromagnetic field.
In physics, particularly in quantum field theory, the Weyl equation is a relativistic wave equation for describing massless spin-1/2 particles called Weyl fermions. The equation is named after Hermann Weyl. The Weyl fermions are one of the three possible types of elementary fermions, the other two being the Dirac and the Majorana fermions.
Menter's Shear Stress Transport turbulence model, or SST, is a widely used and robust two-equation eddy-viscosity turbulence model used in Computational Fluid Dynamics. The model combines the k-omega turbulence model and K-epsilon turbulence model such that the k-omega is used in the inner region of the boundary layer and switches to the k-epsilon in the free shear flow.
In mathematical physics, the Gordon decomposition of the Dirac current is a splitting of the charge or particle-number current into a part that arises from the motion of the center of mass of the particles and a part that arises from gradients of the spin density. It makes explicit use of the Dirac equation and so it applies only to "on-shell" solutions of the Dirac equation.
Laser theory of Fabry-Perot (FP) semiconductor lasers proves to be nonlinear, since the gain, the refractive index and the loss coefficient are the functions of energy flux. The nonlinear theory made it possible to explain a number of experiments some of which could not even be explained, much less modeled, on the basis of other theoretical models; this suggests that the nonlinear theory developed is a new paradigm of the laser theory.
In quantum computing, Mølmer–Sørensen gate scheme refers to an implementation procedure for various multi-qubit quantum logic gates used mostly in trapped ion quantum computing. This procedure is based on the original proposition by Klaus Mølmer and Anders Sørensen in 1999-2000.