Thermal equilibrium

Last updated

Development of a thermal equilibrium in a closed system over time through a heat flow that levels out temperature differences Thermal equilibrium in closed system.png
Development of a thermal equilibrium in a closed system over time through a heat flow that levels out temperature differences

Two physical systems are in thermal equilibrium if there is no net flow of thermal energy between them when they are connected by a path permeable to heat. Thermal equilibrium obeys the zeroth law of thermodynamics. A system is said to be in thermal equilibrium with itself if the temperature within the system is spatially uniform and temporally constant.

Contents

Systems in thermodynamic equilibrium are always in thermal equilibrium, but the converse is not always true. If the connection between the systems allows transfer of energy as 'change in internal energy' but does not allow transfer of matter or transfer of energy as work, the two systems may reach thermal equilibrium without reaching thermodynamic equilibrium.

Two varieties of thermal equilibrium

Relation of thermal equilibrium between two thermally connected bodies

The relation of thermal equilibrium is an instance of equilibrium between two bodies, which means that it refers to transfer through a selectively permeable partition of matter or work; it is called a diathermal connection. According to Lieb and Yngvason, the essential meaning of the relation of thermal equilibrium includes that it is reflexive and symmetric. It is not included in the essential meaning whether it is or is not transitive. After discussing the semantics of the definition, they postulate a substantial physical axiom, that they call the "zeroth law of thermodynamics", that thermal equilibrium is a transitive relation. They comment that the equivalence classes of systems so established are called isotherms. [1]

Internal thermal equilibrium of an isolated body

Thermal equilibrium of a body in itself refers to the body when it is isolated. The background is that no heat enters or leaves it, and that it is allowed unlimited time to settle under its own intrinsic characteristics. When it is completely settled, so that macroscopic change is no longer detectable, it is in its own thermal equilibrium. It is not implied that it is necessarily in other kinds of internal equilibrium. For example, it is possible that a body might reach internal thermal equilibrium but not be in internal chemical equilibrium; glass is an example. [2]

One may imagine an isolated system, initially not in its own state of internal thermal equilibrium. It could be subjected to a fictive thermodynamic operation of partition into two subsystems separated by nothing, no wall. One could then consider the possibility of transfers of energy as heat between the two subsystems. A long time after the fictive partition operation, the two subsystems will reach a practically stationary state, and so be in the relation of thermal equilibrium with each other. Such an adventure could be conducted in indefinitely many ways, with different fictive partitions. All of them will result in subsystems that could be shown to be in thermal equilibrium with each other, testing subsystems from different partitions. For this reason, an isolated system, initially not its own state of internal thermal equilibrium, but left for a long time, practically always will reach a final state which may be regarded as one of internal thermal equilibrium. Such a final state is one of spatial uniformity or homogeneity of temperature. [3] The existence of such states is a basic postulate of classical thermodynamics. [4] [5] This postulate is sometimes, but not often, called the minus first law of thermodynamics. [6] A notable exception exists for isolated quantum systems which are many-body localized and which never reach internal thermal equilibrium.

Thermal contact

Heat can flow into or out of a closed system by way of thermal conduction or of thermal radiation to or from a thermal reservoir, and when this process is effecting net transfer of heat, the system is not in thermal equilibrium. While the transfer of energy as heat continues, the system's temperature can be changing.

Bodies prepared with separately uniform temperatures, then put into purely thermal communication with each other

If bodies are prepared with separately microscopically stationary states, and are then put into purely thermal connection with each other, by conductive or radiative pathways, they will be in thermal equilibrium with each other just when the connection is followed by no change in either body. But if initially they are not in a relation of thermal equilibrium, heat will flow from the hotter to the colder, by whatever pathway, conductive or radiative, is available, and this flow will continue until thermal equilibrium is reached and then they will have the same temperature.

One form of thermal equilibrium is radiative exchange equilibrium. [7] [8] Two bodies, each with its own uniform temperature, in solely radiative connection, no matter how far apart, or what partially obstructive, reflective, or refractive, obstacles lie in their path of radiative exchange, not moving relative to one another, will exchange thermal radiation, in net the hotter transferring energy to the cooler, and will exchange equal and opposite amounts just when they are at the same temperature. In this situation, Kirchhoff's law of equality of radiative emissivity and absorptivity and the Helmholtz reciprocity principle are in play.

Change of internal state of an isolated system

If an initially isolated physical system, without internal walls that establish adiabatically isolated subsystems, is left long enough, it will usually reach a state of thermal equilibrium in itself, in which its temperature will be uniform throughout, but not necessarily a state of thermodynamic equilibrium, if there is some structural barrier that can prevent some possible processes in the system from reaching equilibrium; glass is an example. Classical thermodynamics in general considers idealized systems that have reached internal equilibrium, and idealized transfers of matter and energy between them.

An isolated physical system may be inhomogeneous, or may be composed of several subsystems separated from each other by walls. If an initially inhomogeneous physical system, without internal walls, is isolated by a thermodynamic operation, it will in general over time change its internal state. Or if it is composed of several subsystems separated from each other by walls, it may change its state after a thermodynamic operation that changes its walls. Such changes may include change of temperature or spatial distribution of temperature, by changing the state of constituent materials. A rod of iron, initially prepared to be hot at one end and cold at the other, when isolated, will change so that its temperature becomes uniform all along its length; during the process, the rod is not in thermal equilibrium until its temperature is uniform. In a system prepared as a block of ice floating in a bath of hot water, and then isolated, the ice can melt; during the melting, the system is not in thermal equilibrium; but eventually, its temperature will become uniform; the block of ice will not re-form. A system prepared as a mixture of petrol vapour and air can be ignited by a spark and produce carbon dioxide and water; if this happens in an isolated system, it will increase the temperature of the system, and during the increase, the system is not in thermal equilibrium; but eventually, the system will settle to a uniform temperature.

Such changes in isolated systems are irreversible in the sense that while such a change will occur spontaneously whenever the system is prepared in the same way, the reverse change will practically never occur spontaneously within the isolated system; this is a large part of the content of the second law of thermodynamics. Truly perfectly isolated systems do not occur in nature, and always are artificially prepared.

In a gravitational field

One may consider a system contained in a very tall adiabatically isolating vessel with rigid walls initially containing a thermally heterogeneous distribution of material, left for a long time under the influence of a steady gravitational field, along its tall dimension, due to an outside body such as the earth. It will settle to a state of uniform temperature throughout, though not of uniform pressure or density, and perhaps containing several phases. It is then in internal thermal equilibrium and even in thermodynamic equilibrium. This means that all local parts of the system are in mutual radiative exchange equilibrium. This means that the temperature of the system is spatially uniform. [8] This is so in all cases, including those of non-uniform external force fields. For an externally imposed gravitational field, this may be proved in macroscopic thermodynamic terms, by the calculus of variations, using the method of Langrangian multipliers. [9] [10] [11] [12] [13] [14] Considerations of kinetic theory or statistical mechanics also support this statement. [15] [16] [17] [18] [19] [20] [21]

Distinctions between thermal and thermodynamic equilibria

There is an important distinction between thermal and thermodynamic equilibrium. According to Münster (1970), in states of thermodynamic equilibrium, the state variables of a system do not change at a measurable rate. Moreover, "The proviso 'at a measurable rate' implies that we can consider an equilibrium only with respect to specified processes and defined experimental conditions." Also, a state of thermodynamic equilibrium can be described by fewer macroscopic variables than any other state of a given body of matter. A single isolated body can start in a state which is not one of thermodynamic equilibrium, and can change till thermodynamic equilibrium is reached. Thermal equilibrium is a relation between two bodies or closed systems, in which transfers are allowed only of energy and take place through a partition permeable to heat, and in which the transfers have proceeded till the states of the bodies cease to change. [22]

An explicit distinction between 'thermal equilibrium' and 'thermodynamic equilibrium' is made by C.J. Adkins. He allows that two systems might be allowed to exchange heat but be constrained from exchanging work; they will naturally exchange heat till they have equal temperatures, and reach thermal equilibrium, but in general, will not be in thermodynamic equilibrium. They can reach thermodynamic equilibrium when they are allowed also to exchange work. [23]

Another explicit distinction between 'thermal equilibrium' and 'thermodynamic equilibrium' is made by B. C. Eu. He considers two systems in thermal contact, one a thermometer, the other a system in which several irreversible processes are occurring. He considers the case in which, over the time scale of interest, it happens that both the thermometer reading and the irreversible processes are steady. Then there is thermal equilibrium without thermodynamic equilibrium. Eu proposes consequently that the zeroth law of thermodynamics can be considered to apply even when thermodynamic equilibrium is not present; also he proposes that if changes are occurring so fast that a steady temperature cannot be defined, then "it is no longer possible to describe the process by means of a thermodynamic formalism. In other words, thermodynamics has no meaning for such a process." [24]

Thermal equilibrium of planets

A planet is in thermal equilibrium when the incident energy reaching it (typically the solar irradiance from its parent star) is equal to the infrared energy radiated away to space.

See also

Citations

  1. Lieb, E.H., Yngvason, J. (1999). The physics and mathematics of the second law of thermodynamics, Physics Reports, '314..a': 1–96, p. 55–56.
  2. Adkins, C.J. (1968/1983), pp. 249–251.
  3. Planck, M., (1897/1903), p. 3.
  4. Tisza, L. (1966), p. 108.
  5. Bailyn, M. (1994), p. 20.
  6. Marsland, Robert; Brown, Harvey R.; Valente, Giovanni (2015). "Time and irreversibility in axiomatic thermodynamics". American Journal of Physics. 83 (7): 628–634. Bibcode:2015AmJPh..83..628M. doi:10.1119/1.4914528. hdl: 11311/1043322 .
  7. Prevost, P. (1791). Mémoire sur l'equilibre du feu. Journal de Physique (Paris), vol. 38 pp. 314-322.
  8. 1 2 Planck, M. (1914), p. 40.
  9. Gibbs, J.W. (1876/1878), pp. 144-150.
  10. ter Haar, D., Wergeland, H. (1966), pp. 127–130.
  11. Münster, A. (1970), pp. 309–310.
  12. Bailyn, M. (1994), pp. 254-256.
  13. Verkley, W. T. M.; Gerkema, T. (2004). "On Maximum Entropy Profiles". Journal of the Atmospheric Sciences. 61 (8): 931–936. Bibcode:2004JAtS...61..931V. doi: 10.1175/1520-0469(2004)061<0931:OMEP>2.0.CO;2 . ISSN   1520-0469.
  14. Akmaev, R.A. (2008). On the energetics of maximum-entropy temperature profiles, Q. J. R. Meteorol. Soc., 134:187–197.
  15. Maxwell, J.C. (1867).
  16. Boltzmann, L. (1896/1964), p. 143.
  17. Chapman, S., Cowling, T.G. (1939/1970), Section 4.14, pp. 75–78.
  18. Partington, J.R. (1949), pp. 275–278.
  19. Coombes, C.A., Laue, H. (1985). A paradox concerning the temperature distribution of a gas in a gravitational field, Am. J. Phys., 53: 272–273.
  20. Román, F.L., White, J.A., Velasco, S. (1995). Microcanonical single-particle distributions for an ideal gas in a gravitational field, Eur. J. Phys., 16: 83–90.
  21. Velasco, S., Román, F.L., White, J.A. (1996). On a paradox concerning the temperature distribution of an ideal gas in a gravitational field, Eur. J. Phys., 17: 43–44.
  22. Münster, A. (1970), pp. 6, 22, 52.
  23. Adkins, C.J. (1968/1983), pp. 6–7.
  24. Eu, B.C. (2002). Generalized Thermodynamics. The Thermodynamics of Irreversible Processes and Generalized Hydrodynamics, Kluwer Academic Publishers, Dordrecht, ISBN   1-4020-0788-4, page 13.

Citation references

Related Research Articles

Entropy Property of a thermodynamic system

Entropy is a scientific concept as well as a measurable physical property that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the microscopic description of nature in statistical physics, and to the principles of information theory. It has found far-ranging applications in chemistry and physics, in biological systems and their relation to life, in cosmology, economics, sociology, weather science, climate change, and information systems including the transmission of information in telecommunication.

Thermodynamics Physics of heat, work, and temperature

Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of thermodynamics which convey a quantitative description using measurable macroscopic physical quantities, but may be explained in terms of microscopic constituents by statistical mechanics. Thermodynamics applies to a wide variety of topics in science and engineering, especially physical chemistry, biochemistry, chemical engineering and mechanical engineering, but also in other complex fields such as meteorology.

Second law of thermodynamics Law of physics

The second law of thermodynamics is a physical law of thermodynamics about heat and loss in its conversion. It can be stated in various ways, the simplest being:

Not all heat energy can be converted into work in a cyclic process.

First law of thermodynamics Law of thermodynamics distinguishing heat, work, and matter transfers

The first law of thermodynamics is a version of the law of conservation of energy, adapted for thermodynamic processes, distinguishing three kinds of transfer of energy, as heat, as thermodynamic work, and as energy associated with matter transfer, and relating them to a function of a body's state, called internal energy.

Zeroth law of thermodynamics Principle stating if two systems are in thermal equilibrium with another, they are with each other

The zeroth law of thermodynamics states that if two thermodynamic systems are each in thermal equilibrium with a third system, then they are in thermal equilibrium with each other. Accordingly, thermal equilibrium between systems is a transitive relation.

Thermodynamic equilibrium is an axiomatic concept of thermodynamics. It is an internal state of a single thermodynamic system, or a relation between several thermodynamic systems connected by more or less permeable or impermeable walls. In thermodynamic equilibrium there are no net macroscopic flows of matter or of energy, within a system or between systems. In a system that is in its own state of internal thermodynamic equilibrium, no macroscopic change occurs.

Thermodynamic system Body of matter in a state of internal equilibrium

A thermodynamic system is a body of matter and/or radiation, confined in space by walls, with defined permeabilities, which separate it from its surroundings. The surroundings may include other thermodynamic systems, or physical systems that are not thermodynamic systems. A wall of a thermodynamic system may be purely notional, when it is described as being 'permeable' to all matter, all radiation, and all forces. A state of a thermodynamic system can be fully described in several different ways, by several different sets of thermodynamic state variables.

Non-equilibrium thermodynamics Branch of thermodynamics

Non-equilibrium thermodynamics is a branch of thermodynamics that deals with physical systems that are not in thermodynamic equilibrium but can be described in terms of macroscopic quantities that represent an extrapolation of the variables used to specify the system in thermodynamic equilibrium. Non-equilibrium thermodynamics is concerned with transport processes and with the rates of chemical reactions.

Quasistatic process Thermodynamic process in which equilibrium is maintained throughout the processs duration

In thermodynamics, a quasi-static process, is a thermodynamic process that happens slowly enough for the system to remain in internal physical thermodynamic equilibrium. An example of this is quasi-static expansion of a mixture of hydrogen and oxygen gas, where the volume of the system changes so slowly that the pressure remains uniform throughout the system at each instant of time during the process. Such an idealized process is a succession of physical equilibrium states, characterized by infinite slowness.

Irreversible process Process that cannot be undone

In science, a process that is not reversible is called irreversible. This concept arises frequently in thermodynamics. All complex natural processes are irreversible, although a phase transition at the coexistence temperature is well approximated as reversible.

Laws of thermodynamics Axiomatic basis of thermodynamics

The laws of thermodynamics define a group of physical quantities, such as temperature, energy, and entropy, that characterize thermodynamic systems in thermodynamic equilibrium. The laws also use various parameters for thermodynamic processes, such as thermodynamic work and heat, and establish relationships between them. They state empirical facts that form a basis of precluding the possibility of certain phenomena, such as perpetual motion. In addition to their use in thermodynamics, they are important fundamental laws of physics in general, and are applicable in other natural sciences.

Joule expansion

The Joule expansion is an irreversible process in thermodynamics in which a volume of gas is kept in one side of a thermally isolated container, with the other side of the container being evacuated. The partition between the two parts of the container is then opened, and the gas fills the whole container.

Isolated system Physical systems that dont interact with other parts of the universe

In physical science, an isolated system is either of the following:

  1. a physical system so far removed from other systems that it does not interact with them.
  2. a thermodynamic system enclosed by rigid immovable walls through which neither mass nor energy can pass.
Thermodynamic state Quantifiable conditions of a thermodynamic system at a specific time

In thermodynamics, a thermodynamic state of a system is its condition at a specific time; that is, fully identified by values of a suitable set of parameters known as state variables, state parameters or thermodynamic variables. Once such a set of values of thermodynamic variables has been specified for a system, the values of all thermodynamic properties of the system are uniquely determined. Usually, by default, a thermodynamic state is taken to be one of thermodynamic equilibrium. This means that the state is not merely the condition of the system at a specific time, but that the condition is the same, unchanging, over an indefinitely long duration of time.

Work (thermodynamics) Form of energy defined in the first law of thermodynamics

In thermodynamics, work performed by a system is energy transferred by the system to its surroundings, by a mechanism through which the system can spontaneously exert macroscopic forces on its surroundings. In the surroundings, through suitable passive linkages, the work can lift a weight, for example. Energy can also transfer from the surroundings to the system; in a sign convention used in physics, such work has a negative magnitude.

In classical thermodynamics, entropy is a property of a thermodynamic system that expresses the direction or outcome of spontaneous changes in the system. The term was introduced by Rudolf Clausius in the mid-nineteenth century from the Greek word τρoπή (transformation) to explain the relationship of the internal energy that is available or unavailable for transformations in form of heat and work. Entropy predicts that certain processes are irreversible or impossible, despite not violating the conservation of energy. The definition of entropy is central to the establishment of the second law of thermodynamics, which states that the entropy of isolated systems cannot decrease with time, as they always tend to arrive at a state of thermodynamic equilibrium, where the entropy is highest. Entropy is therefore also considered to be a measure of disorder in the system.

Introduction to entropy Non-technical introduction to entropy

In thermodynamics, entropy is a numerical quantity that shows that many physical processes can go in only one direction in time. For example, you can pour cream into coffee and mix it, but you cannot "unmix" it; you can burn a piece of wood, but you cannot "unburn" it. The word 'entropy' has entered popular usage to refer a lack of order or predictability, or of a gradual decline into disorder. A more physical interpretation of thermodynamic entropy refers to spread of energy or matter, or to extent and diversity of microscopic motion.

Heat Thermodynamic energy transfer, other than by thermodynamic work or by transfer of matter

In thermodynamics, heat is energy in transfer to or from a thermodynamic system, by mechanisms other than thermodynamic work or transfer of matter.

Temperature Physical quantity that expresses hot and cold

Temperature is a physical quantity that expresses hot and cold or a measure of the average kinetic energy of the atoms or molecules in the system. It is the manifestation of thermal energy, present in all matter, which is the source of the occurrence of heat, the flow of energy from a hotter body in contact with a colder body.

A thermodynamic operation is an externally imposed manipulation that affects a thermodynamic system. The change can be either in the connection or wall between a thermodynamic system and its surroundings, or in the value of some variable in the surroundings that is in contact with a wall of the system that allows transfer of the extensive quantity belonging that variable. It is assumed in thermodynamics that the operation is conducted in ignorance of any pertinent microscopic information.