Radiative equilibrium is the condition where the total thermal radiation leaving an object is equal to the total thermal radiation entering it. It is one of the several requirements for thermodynamic equilibrium, but it can occur in the absence of thermodynamic equilibrium. There are various types of radiative equilibrium, which is itself a kind of dynamic equilibrium.
Equilibrium, in general, is a state in which opposing forces are balanced, and hence a system does not change in time. Radiative equilibrium is the specific case of thermal equilibrium, for the case in which the exchange of heat is done by radiative heat transfer.
There are several types of radiative equilibrium.
An important early contribution was made by Pierre Prevost in 1791. [1] Prevost considered that what is nowadays called the photon gas or electromagnetic radiation was a fluid that he called "free heat". Prevost proposed that free radiant heat is a very rare fluid, rays of which, like light rays, pass through each other without detectable disturbance of their passage. Prevost's theory of exchanges stated that each body radiates to, and receives radiation from, other bodies. The radiation from each body is emitted regardless of the presence or absence of other bodies. [2] [3]
Prevost in 1791 offered the following definitions (translated):
Absolute equilibrium of free heat is the state of this fluid in a portion of space which receives as much of it as it lets escape.
Relative equilibrium of free heat is the state of this fluid in two portions of space which receive from each other equal quantities of heat, and which moreover are in absolute equilibrium, or experience precisely equal changes.
Prevost went on to comment that "The heat of several portions of space at the same temperature, and next to one another, is at the same time in the two species of equilibrium."
Following Max Planck (1914), [4] a radiative field is often described in terms of specific radiative intensity, which is a function of each geometrical point in a space region, at an instant of time. [5] [6] This is slightly different from Prevost's mode of definition, which was for regions of space. It is also slightly conceptually different from Prevost's definition: Prevost thought in terms of bound and free heat while today we think in terms of heat in kinetic and other dynamic energy of molecules, that is to say heat in matter, and the thermal photon gas. A detailed definition is given by R. M. Goody and Y. L. Yung (1989). [6] They think of the interconversion between thermal radiation and heat in matter. From the specific radiative intensity they derive , the monochromatic vector flux density of radiation at each point in a region of space, which is equal to the time averaged monochromatic Poynting vector at that point (D. Mihalas 1978 [7] on pages 9–11). They define the monochromatic volume-specific rate of gain of heat by matter from radiation as the negative of the divergence of the monochromatic flux density vector; it is a scalar function of the position of the point:
They define (pointwise) monochromatic radiative equilibrium by
They define (pointwise) radiative equilibrium by
This means that, at every point of the region of space that is in (pointwise) radiative equilibrium, the total, for all frequencies of radiation, interconversion of energy between thermal radiation and energy content in matter is nil(zero). Pointwise radiative equilibrium is closely related to Prevost's absolute radiative equilibrium.
D. Mihalas and B. Weibel-Mihalas (1984) [5] emphasise that this definition applies to a static medium, in which the matter is not moving. They also consider moving media.
Karl Schwarzschild in 1906 [8] considered a system in which convection and radiation both operated but radiation was so much more efficient than convection that convection could be, as an approximation, neglected, and radiation could be considered predominant. This applies when the temperature is very high, as for example in a star, but not in a planet's atmosphere.
Subrahmanyan Chandrasekhar (1950, page 290) [9] writes of a model of a stellar atmosphere in which "there are no mechanisms, other than radiation, for transporting heat within the atmosphere ... [and] there are no sources of heat in the surrounding" This is hardly different from Schwarzschild's 1906 approximate concept, but is more precisely stated.
Planck (1914, page 40) [4] refers to a condition of thermodynamic equilibrium, in which "any two bodies or elements of bodies selected at random exchange by radiation equal amounts of heat with each other."
The term radiative exchange equilibrium can also be used to refer to two specified regions of space that exchange equal amounts of radiation by emission and absorption (even when the steady state is not one of thermodynamic equilibrium, but is one in which some sub-processes include net transport of matter or energy including radiation). Radiative exchange equilibrium is very nearly the same as Prevost's relative radiative equilibrium.
To a first approximation, an example of radiative exchange equilibrium is in the exchange of non-window wavelength thermal radiation between the land-and-sea surface and the lowest atmosphere, when there is a clear sky. As a first approximation (W. C. Swinbank 1963, [10] G. W. Paltridge and C. M. R. Platt 1976, pages 139–140 [11] ), in the non-window wavenumbers, there is zero net exchange between the surface and the atmosphere, while, in the window wavenumbers, there is simply direct radiation from the land-sea surface to space. A like situation occurs between adjacent layers in the turbulently mixed boundary layer of the lower troposphere, expressed in the so-called "cooling to space approximation", first noted by C. D. Rodgers and C. D. Walshaw (1966). [12] [13] [14] [15]
Global radiative equilibrium can be defined for an entire passive celestial system that does not supply its own energy, such as a planet.
Liou (2002, page 459) [16] and other authors use the term global radiative equilibrium to refer to radiative exchange equilibrium globally between Earth and extraterrestrial space; such authors intend to mean that, in the theoretical, incoming solar radiation absorbed by Earth's surface and its atmosphere would be equal to outgoing longwave radiation from Earth's surface and its atmosphere. Prevost [1] would say then that the Earth's surface and its atmosphere regarded as a whole were in absolute radiative equilibrium. Some texts, for example Satoh (2004), [17] simply refer to "radiative equilibrium" in referring to global exchange radiative equilibrium.
The various global temperatures that may be theoretically conceived for any planet in general can be computed. Such temperatures include the planetary equilibrium temperature, equivalent blackbody temperature [18] or effective radiation emission temperature of the planet. [19] For a planet with an atmosphere, these temperatures can be different than the mean surface temperature, which may be measured as the global-mean surface air temperature , [20] or as the global-mean surface skin temperature. [21]
A radiative equilibrium temperature is calculated for the case that the supply of energy from within the planet (for example, from chemical or nuclear sources) is negligibly small; this assumption is reasonable for Earth, but fails, for example, for calculating the temperature of Jupiter, for which internal energy sources are larger than the incident solar radiation, [22] and hence the actual temperature is higher than the theoretical radiative equilibrium.
A star supplies its own energy from nuclear sources, and hence the temperature equilibrium cannot be defined in terms of incident energy only.
Cox and Giuli (1968/1984) [23] define 'radiative equilibrium' for a star, taken as a whole and not confining attention only to its atmosphere, when the rate of transfer as heat of energy from nuclear reactions plus viscosity to the microscopic motions of the material particles of the star is just balanced by the transfer of energy by electromagnetic radiation from the star to space. Note that this radiative equilibrium is slightly different from the previous usage. They note that a star that is radiating energy to space cannot be in a steady state of temperature distribution unless there is a supply of energy, in this case, energy from nuclear reactions within the star, to support the radiation to space. Likewise the condition that is used for the above definition of pointwise radiative equilibrium cannot hold throughout a star that is radiating: internally, the star is in a steady state of temperature distribution, not internal thermodynamic equilibrium. Cox and Giuli's definition allows them to say at the same time that a star is in a steady state of temperature distribution and is in 'radiative equilibrium'; they are assuming that all the radiative energy to space comes from within the star. [23]
When there is enough matter in a region to allow molecular collisions to occur very much more often than absorption or emission of photons, for radiation one speaks of local thermodynamic equilibrium (LTE). In this case, Kirchhoff's law of equality of radiative absorptivity and emissivity holds. [24]
Two bodies in radiative exchange equilibrium, each in its own local thermodynamic equilibrium, have the same temperature and their radiative exchange complies with the Stokes-Helmholtz reciprocity principle.
The greenhouse effect occurs when greenhouse gases in a planet's atmosphere insulate the planet from losing heat to space, raising its surface temperature. Surface heating can happen from an internal heat source as in the case of Jupiter, or from its host star as in the case of the Earth. In the case of Earth, the Sun emits shortwave radiation (sunlight) that passes through greenhouse gases to heat the Earth's surface. In response, the Earth's surface emits longwave radiation that is mostly absorbed by greenhouse gases. The absorption of longwave radiation prevents it from reaching space, reducing the rate at which the Earth can cool off.
The Stefan–Boltzmann law, also known as Stefan's law, describes the intensity of the thermal radiation emitted by matter in terms of that matter's temperature. It is named for Josef Stefan, who empirically derived the relationship, and Ludwig Boltzmann who derived the law theoretically.
Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes. Engineers also consider the transfer of mass of differing chemical species, either cold or hot, to achieve heat transfer. While these mechanisms have distinct characteristics, they often occur simultaneously in the same system.
Thermal radiation is electromagnetic radiation emitted by the thermal motion of particles in matter. Thermal radiation transmits as an electromagnetic wave through both matter and vacuum. When matter absorbs thermal radiation its temperature will tend to rise. All matter with a temperature greater than absolute zero emits thermal radiation. The emission of energy arises from a combination of electronic, molecular, and lattice oscillations in a material. Kinetic energy is converted to electromagnetism due to charge-acceleration or dipole oscillation. At room temperature, most of the emission is in the infrared (IR) spectrum. Thermal radiation is one of the fundamental mechanisms of heat transfer, along with conduction and convection.
In physics, Planck's law describes the spectral density of electromagnetic radiation emitted by a black body in thermal equilibrium at a given temperature T, when there is no net flow of matter or energy between the body and its environment.
The lapse rate is the rate at which an atmospheric variable, normally temperature in Earth's atmosphere, falls with altitude. Lapse rate arises from the word lapse. In dry air, the adiabatic lapse rate is 9.8 °C/km. The saturated adiabatic lapse rate (SALR), or moist adiabatic lapse rate (MALR), is the decrease in temperature of a parcel of water-saturated air that rises in the atmosphere. It varies with the temperature and pressure of the parcel and is often in the range 3.6 to 9.2 °C/km, as obtained from the International Civil Aviation Organization (ICAO). The environmental lapse rate is the decrease in temperature of air with altitude for a specific time and place. It can be highly variable between circumstances.
Two physical systems are in thermal equilibrium if there is no net flow of thermal energy between them when they are connected by a path permeable to heat. Thermal equilibrium obeys the zeroth law of thermodynamics. A system is said to be in thermal equilibrium with itself if the temperature within the system is spatially uniform and temporally constant.
In heat transfer, Kirchhoff's law of thermal radiation refers to wavelength-specific radiative emission and absorption by a material body in thermodynamic equilibrium, including radiative exchange equilibrium. It is a special case of Onsager reciprocal relations as a consequence of the time reversibility of microscopic dynamics, also known as microscopic reversibility.
Black-body radiation is the thermal electromagnetic radiation within, or surrounding, a body in thermodynamic equilibrium with its environment, emitted by a black body. It has a specific, continuous spectrum of wavelengths, inversely related to intensity, that depend only on the body's temperature, which is assumed, for the sake of calculations and theory, to be uniform and constant.
The emissivity of the surface of a material is its effectiveness in emitting energy as thermal radiation. Thermal radiation is electromagnetic radiation that most commonly includes both visible radiation (light) and infrared radiation, which is not visible to human eyes. A portion of the thermal radiation from very hot objects is easily visible to the eye.
Stellar structure models describe the internal structure of a star in detail and make predictions about the luminosity, the color and the future evolution of the star. Different classes and ages of stars have different internal structures, reflecting their elemental makeup and energy transport mechanisms.
In atomic, molecular, and optical physics, the Einstein coefficients are quantities describing the probability of absorption or emission of a photon by an atom or molecule. The Einstein A coefficients are related to the rate of spontaneous emission of light, and the Einstein B coefficients are related to the absorption and stimulated emission of light. Throughout this article, "light" refers to any electromagnetic radiation, not necessarily in the visible spectrum.
An isotropic radiator is a theoretical point source of waves which radiates the same intensity of radiation in all directions. It may be based on sound waves or electromagnetic waves, in which case it is also known as an isotropic antenna. It has no preferred direction of radiation, i.e., it radiates uniformly in all directions over a sphere centred on the source.
Radiative transfer is the physical phenomenon of energy transfer in the form of electromagnetic radiation. The propagation of radiation through a medium is affected by absorption, emission, and scattering processes. The equation of radiative transfer describes these interactions mathematically. Equations of radiative transfer have application in a wide variety of subjects including optics, astrophysics, atmospheric science, and remote sensing. Analytic solutions to the radiative transfer equation (RTE) exist for simple cases but for more realistic media, with complex multiple scattering effects, numerical methods are required. The present article is largely focused on the condition of radiative equilibrium.
In climate science, longwave radiation (LWR) is electromagnetic thermal radiation emitted by Earth's surface, atmosphere, and clouds. It may also be referred to as terrestrial radiation. This radiation is in the infrared portion of the spectrum, but is distinct from the shortwave (SW) near-infrared radiation found in sunlight.
In spectroscopy, spectral flux density is the quantity that describes the rate at which energy is transferred by electromagnetic radiation through a real or virtual surface, per unit surface area and per unit wavelength. It is a radiometric rather than a photometric measure. In SI units it is measured in W m−3, although it can be more practical to use W m−2 nm−1 or W m−2 μm−1, and respectively by W·m−2·Hz−1, Jansky or solar flux units. The terms irradiance, radiant exitance, radiant emittance, and radiosity are closely related to spectral flux density.
The temperatures of a planet's surface and atmosphere are governed by a delicate balancing of their energy flows. The idealized greenhouse model is based on the fact that certain gases in the Earth's atmosphere, including carbon dioxide and water vapour, are transparent to the high-frequency solar radiation, but are much more opaque to the lower frequency infrared radiation leaving Earth's surface. Thus heat is easily let in, but is partially trapped by these gases as it tries to leave. Rather than get hotter and hotter, Kirchhoff's law of thermal radiation says that the gases of the atmosphere also have to re-emit the infrared energy that they absorb, and they do so, also at long infrared wavelengths, both upwards into space as well as downwards back towards the Earth's surface. In the long-term, the planet's thermal inertia is surmounted and a new thermal equilibrium is reached when all energy arriving on the planet is leaving again at the same rate. In this steady-state model, the greenhouse gases cause the surface of the planet to be warmer than it would be without them, in order for a balanced amount of heat energy to finally be radiated out into space from the top of the atmosphere.
Energy dissipation and entropy production extremal principles are ideas developed within non-equilibrium thermodynamics that attempt to predict the likely steady states and dynamical structures that a physical system might show. The search for extremum principles for non-equilibrium thermodynamics follows their successful use in other branches of physics. According to Kondepudi (2008), and to Grandy (2008), there is no general rule that provides an extremum principle that governs the evolution of a far-from-equilibrium system to a steady state. According to Glansdorff and Prigogine, irreversible processes usually are not governed by global extremal principles because description of their evolution requires differential equations which are not self-adjoint, but local extremal principles can be used for local solutions. Lebon Jou and Casas-Vásquez (2008) state that "In non-equilibrium ... it is generally not possible to construct thermodynamic potentials depending on the whole set of variables". Šilhavý (1997) offers the opinion that "... the extremum principles of thermodynamics ... do not have any counterpart for [non-equilibrium] steady states ." It follows that any general extremal principle for a non-equilibrium problem will need to refer in some detail to the constraints that are specific for the structure of the system considered in the problem.
In radiometry, spectral radiance or specific intensity is the radiance of a surface per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. The SI unit of spectral radiance in frequency is the watt per steradian per square metre per hertz and that of spectral radiance in wavelength is the watt per steradian per square metre per metre —commonly the watt per steradian per square metre per nanometre. The microflick is also used to measure spectral radiance in some fields.
In the study of heat transfer, Schwarzschild's equation is used to calculate radiative transfer through a medium in local thermodynamic equilibrium that both absorbs and emits radiation.