Glow discharge

Last updated
NE-2 type neon lamp powered by alternating current AC powered NE-2 type neon lamp close-up.jpg
NE-2 type neon lamp powered by alternating current
Glow discharge in a low-pressure tube caused by electric current.

A glow discharge is a plasma formed by the passage of electric current through a gas. It is often created by applying a voltage between two electrodes in a glass tube containing a low-pressure gas. When the voltage exceeds a value called the striking voltage, the gas ionization becomes self-sustaining, and the tube glows with a colored light. The color depends on the gas used.

Contents

Glow discharges are used as a source of light in devices such as neon lights, cold cathode fluorescent lamps and plasma-screen televisions. Analyzing the light produced with spectroscopy can reveal information about the atomic interactions in the gas, so glow discharges are used in plasma physics and analytical chemistry. They are also used in the surface treatment technique called sputtering.

Electrical conduction in gas

Voltage-current characteristics of electrical discharge in neon at 1 torr, with two planar electrodes separated by 50 cm.
A: random pulses by cosmic radiation
B: saturation current
C: avalanche Townsend discharge
D: self-sustained Townsend discharge
E: unstable region: corona discharge
F: sub-normal glow discharge
G: normal glow discharge
H: abnormal glow discharge
I: unstable region: glow-arc transition
J: electric arc
K: electric arc
A-D region: dark discharge; ionisation occurs, current below 10 microamps.
F-H region: glow discharge; the plasma emits a faint glow.
I-K region: arc discharge; large amounts of radiation produced. Glow discharge current-voltage curve English.svg
Voltage-current characteristics of electrical discharge in neon at 1 torr, with two planar electrodes separated by 50 cm.
A: random pulses by cosmic radiation
B: saturation current
C: avalanche Townsend discharge
D: self-sustained Townsend discharge
E: unstable region: corona discharge
F: sub-normal glow discharge
G: normal glow discharge
H: abnormal glow discharge
I: unstable region: glow-arc transition
J: electric arc
K: electric arc
A-D region: dark discharge; ionisation occurs, current below 10 microamps.
F-H region: glow discharge; the plasma emits a faint glow.
I-K region: arc discharge; large amounts of radiation produced.

Conduction in a gas requires charge carriers, which can be either electrons or ions. Charge carriers come from ionizing some of the gas molecules. In terms of current flow, glow discharge falls between dark discharge and arc discharge.

Below the breakdown voltage there is little to no glow and the electric field is uniform. When the electric field increases enough to cause ionization, the Townsend discharge starts. When a glow discharge develops, the electric field is considerably modified by the presence of positive ions; the field is concentrated near the cathode. The glow discharge starts as a normal glow. As the current is increased, more of the cathode surface is involved in the glow. When the current is increased above the level where the entire cathode surface is involved, the discharge is known as an abnormal glow. If the current is increased still further, other factors come into play and an arc discharge begins. [2]

Mechanism

The simplest type of glow discharge is a direct-current glow discharge. In its simplest form, it consists of two electrodes in a cell held at low pressure (0.1–10 torr; about 1/10000th to 1/100th of atmospheric pressure). A low pressure is used to increase the mean free path; for a fixed electric field, a longer mean free path allows a charged particle to gain more energy before colliding with another particle. The cell is typically filled with neon, but other gases can also be used. An electric potential of several hundred volts is applied between the two electrodes. A small fraction of the population of atoms within the cell is initially ionized through random processes, such as thermal collisions between atoms or by gamma rays. The positive ions are driven towards the cathode by the electric potential, and the electrons are driven towards the anode by the same potential. The initial population of ions and electrons collides with other atoms, exciting or ionizing them. As long as the potential is maintained, a population of ions and electrons remains.

Secondary emission

Some of the ions' kinetic energy is transferred to the cathode. This happens partially through the ions striking the cathode directly. The primary mechanism, however, is less direct. Ions strike the more numerous neutral gas atoms, transferring a portion of their energy to them. These neutral atoms then strike the cathode. Whichever species (ions or atoms) strike the cathode, collisions within the cathode redistribute this energy resulting in electrons ejected from the cathode. This process is known as secondary electron emission. Once free of the cathode, the electric field accelerates electrons into the bulk of the glow discharge. Atoms can then be excited by collisions with ions, electrons, or other atoms that have been previously excited by collisions.

Light production

Once excited, atoms will lose their energy fairly quickly. Of the various ways that this energy can be lost, the most important is radiatively, meaning that a photon is released to carry the energy away. In optical atomic spectroscopy, the wavelength of this photon can be used to determine the identity of the atom (that is, which chemical element it is) and the number of photons is directly proportional to the concentration of that element in the sample. Some collisions (those of high enough energy) will cause ionization. In atomic mass spectrometry, these ions are detected. Their mass identifies the type of atoms and their quantity reveals the amount of that element in the sample.

Regions

Glow discharge regions.jpg
Glow discharge structure - English.svg
A glow discharge illustrating the different regions comprising it and a diagram giving their names.

The illustrations to the right shows the main regions that may be present in a glow discharge. Regions described as "glows" emit significant light; regions labeled as "dark spaces" do not. As the discharge becomes more extended (i.e., stretched horizontally in the geometry of the illustrations), the positive column may become striated. That is, alternating dark and bright regions may form. Compressing the discharge horizontally will result in fewer regions. The positive column will be compressed while the negative glow will remain the same size, and, with small enough gaps, the positive column will disappear altogether. In an analytical[ clarification needed ] glow discharge, the discharge is primarily a negative glow with dark region above and below it.

Cathode layer

The cathode layer begins with the Aston dark space, and ends with the negative glow region. The cathode layer shortens with increased gas pressure. The cathode layer has a positive space charge and a strong electric field. [3] [4]

Aston dark space

Electrons leave the cathode with an energy of about 1 eV, which is not enough to ionize or excite atoms, leaving a thin dark layer next to the cathode. [3]

Cathode glow

Electrons from the cathode eventually attain enough energy to excite atoms. These excited atoms quickly fall back to the ground state, emitting light at a wavelength corresponding to the difference between the energy bands of the atoms. This glow is seen very near the cathode. [3]

Cathode dark space

As electrons from the cathode gain more energy, they tend to ionize, rather than excite atoms. Excited atoms quickly fall back to ground level emitting light, however, when atoms are ionized, the opposite charges are separated, and do not immediately recombine. This results in more ions and electrons, but no light. [3] This region is sometimes called Crookes dark space, and sometimes referred to as the cathode fall, because the largest voltage drop in the tube occurs in this region.

Negative glow

The ionization in the cathode dark space results in a high electron density, but slower electrons, making it easier for the electrons to recombine with positive ions, leading to intense light, through a process called bremsstrahlung radiation. [3]

Faraday dark space

As the electrons keep losing energy, less light is emitted, resulting in another dark space. [3]

Anode layer

The anode layer begins with the positive column, and ends at the anode. The anode layer has a negative space charge and a moderate electric field. [3]

Positive column

With fewer ions, the electric field increases, resulting in electrons with energy of about 2 eV, which is enough to excite atoms and produce light. With longer glow discharge tubes, the longer space is occupied by a longer positive column, while the cathode layer remains the same. [3] For example, with a neon sign, the positive column occupies almost the entire length of the tube.

Anode glow

An electric field increase results in the anode glow. [3]

Anode dark space

Fewer electrons results in another dark space. [3]

Striations

Bands of alternating light and dark in the positive column are called striations. There is no universal mechanism explaining the striations for all conditions of gas and pressure producing them, but recent theoretical and modelling studies, supported with experimental results, mention the importance of the Dufour effect. [5]

Sputtering

In addition to causing secondary emission, positive ions can strike the cathode with sufficient force to eject particles of the material from which the cathode is made. This process is called sputtering and it gradually ablates the cathode. Sputtering is useful when using spectroscopy to analyze the composition of the cathode, as is done in Glow-discharge optical emission spectroscopy. [6]

However, sputtering is not desirable when glow discharge is used for lighting, because it shortens the life of the lamp. For example, neon signs have hollow cathodes designed to minimize sputtering, and contain charcoal to continuously remove undesired ions and atoms. [7]

Carrier gas

In the context of sputtering, the gas in the tube is called "carrier gas," because it carries the particles from the cathode. [6]

Color difference

Because of sputtering occurring at the cathode, the colors emitted from regions near the cathode are quite different from the anode. Particles sputtered from the cathode are excited and emit radiation from the metals and oxides that make up the cathode. The radiation from these particles combines with radiation from excited carrier gas, giving the cathode region a white or blue color, while in the rest of the tube, radiation is only from the carrier gas and tends to be more monochromatic. [6]

Electrons near the cathode are less energetic than the rest of the tube. Surrounding the cathode is a negative field, which slows electrons as they are ejected from the surface. Only those electrons with the highest velocity are able to escape this field, and those without enough kinetic energy are pulled back into the cathode. Once outside the negative field, the attraction from the positive field begins to accelerate these electrons toward the anode. During this acceleration electrons are deflected and slowed down by positive ions speeding toward the cathode, which, in turn, produces bright blue-white bremsstrahlung radiation in the negative glow region. [8]

Use in analytical chemistry

Glow discharges can be used to analyze the elemental, and sometimes molecular, composition of solids, liquids, and gases, but elemental analysis of solids is the most common. In this arrangement, the sample is used as the cathode. As mentioned earlier, gas ions and atoms striking the sample surface knock atoms off of it, a process known as sputtering.

The sputtered atoms, now in the gas phase, can be detected by atomic absorption, but this is a comparatively rare strategy. Instead, atomic emission and mass spectrometry are usually used.

Collisions between the gas-phase sample atoms and the plasma gas pass energy to the sample atoms. This energy can excite the atoms, after which they can lose their energy through atomic emission. By observing the wavelength of the emitted light, the atom's identity can be determined. By observing the intensity of the emission, the concentration of atoms of that type can be determined.

Energy gained through collisions can also ionize the sample atoms. The ions can then be detected by mass spectrometry. In this case, it is the mass of the ions that identify the element and the number of ions that reflect the concentration. This method is referred to as glow discharge mass spectrometry (GDMS) and it has detection limits down to the sub-ppb range for most elements that are nearly matrix-independent.

Depth analysis

Both bulk and depth analysis of solids may be performed with glow discharge. Bulk analysis assumes that the sample is fairly homogeneous and averages the emission or mass spectrometric signal over time. Depth analysis relies on tracking the signal in time, therefore, is the same as tracking the elemental composition in depth.

Depth analysis requires greater control over operational parameters. For example, conditions (current, potential, pressure) need to be adjusted so that the crater produced by sputtering is flat bottom (that is, so that the depth analyzed over the crater area is uniform). In bulk measurement, a rough or rounded crater bottom would not adversely impact analysis. Under the best conditions, depth resolution in the single nanometer range has been achieved (in fact, within-molecule resolution has been demonstrated).[ citation needed ]

The chemistry of ions and neutrals in vacuum is called gas phase ion chemistry and is part of the analytical study that includes glow discharge.

Powering modes

DC powered neon lamp, showing glow discharge surrounding only the cathode Neon lamp on DC.JPG
DC powered neon lamp, showing glow discharge surrounding only the cathode

In analytical chemistry, glow discharges are usually operated in direct-current mode. For direct-current, the cathode (which is the sample in solids analysis) must be conductive. In contrast, analysis of a non conductive cathode requires the use of a high frequency alternating current.

The potential, pressure, and current are interrelated. Only two can be directly controlled at once, while the third must be allowed to vary. The pressure is most typically held constant, but other schemes may be used. The pressure and current may be held constant, while potential is allowed to vary. The pressure and voltage may be held constant while the current is allowed to vary. The power (product of voltage and current) may be held constant while the pressure is allowed to vary.

Glow discharges may also be operated in radio-frequency. The use of this frequency will establish a negative DC-bias voltage on the sample surface. The DC-bias is the result of an alternating current waveform that is centered about negative potential; as such it more or less represent the average potential residing on the sample surface. Radio-frequency has ability to appear to flow through insulators (non-conductive materials).

Both radio-frequency and direct-current glow discharges can be operated in pulsed mode, where the potential is turned on and off. This allows higher instantaneous powers to be applied without excessively heating the cathode. These higher instantaneous powers produce higher instantaneous signals, aiding detection. Combining time-resolved detection with pulsed powering results in additional benefits. In atomic emission, analyte atoms emit during different portions of the pulse than background atoms, allowing the two to be discriminated. Analogously, in mass spectrometry, sample and background ions are created at different times.

Application to analog computing

An interesting application for using glow discharge was described in a 2002 scientific paper by Ryes, Ghanem et al. [9] According to a Nature news article describing the work, [10] researchers at Imperial College London demonstrated how they built a mini-map that glows along the shortest route between two points. The Nature news article describes the system as follows:

To make the one-inch London chip, the team etched a plan of the city centre on a glass slide. Fitting a flat lid over the top turned the streets into hollow, connected tubes. They filled these with helium gas, and inserted electrodes at key tourist hubs. When a voltage is applied between two points, electricity naturally runs through the streets along the shortest route from A to B - and the gas glows like a tiny neon strip light.

The approach itself provides a novel visible analog computing approach for solving a wide class of maze searching problems based on the properties of lighting up of a glow discharge in a microfluidic chip.

Application to voltage regulation

A 5651 voltage-regulator tube in operation 5651RegulatorTubeInOperation.jpg
A 5651 voltage-regulator tube in operation

In the mid-20th century, prior to the development of solid state components such as Zener diodes, voltage regulation in circuits was often accomplished with voltage-regulator tubes, which used glow discharge.

See also

Related Research Articles

<span class="mw-page-title-main">Cathode ray</span> Beam of electrons observed in vacuum tubes

Cathode rays or electron beams (e-beam) are streams of electrons observed in discharge tubes. If an evacuated glass tube is equipped with two electrodes and a voltage is applied, glass behind the positive electrode is observed to glow, due to electrons emitted from the cathode. They were first observed in 1859 by German physicist Julius Plücker and Johann Wilhelm Hittorf, and were named in 1876 by Eugen Goldstein Kathodenstrahlen, or cathode rays. In 1897, British physicist J. J. Thomson showed that cathode rays were composed of a previously unknown negatively charged particle, which was later named the electron. Cathode-ray tubes (CRTs) use a focused beam of electrons deflected by electric or magnetic fields to render an image on a screen.

<span class="mw-page-title-main">Cathode</span> Electrode where reduction takes place

A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic CCD for Cathode Current Departs. A conventional current describes the direction in which positive charges move. Electrons have a negative electrical charge, so the movement of electrons is opposite to that of the conventional current flow. Consequently, the mnemonic cathode current departs also means that electrons flow into the device's cathode from the external circuit. For example, the end of a household battery marked with a + (plus) is the cathode.

<span class="mw-page-title-main">Geiger–Müller tube</span> Part of a Geiger counter

The Geiger–Müller tube or G–M tube is the sensing element of the Geiger counter instrument used for the detection of ionizing radiation. It is named after Hans Geiger, who invented the principle in 1908, and Walther Müller, who collaborated with Geiger in developing the technique further in 1928 to produce a practical tube that could detect a number of different radiation types.

<span class="mw-page-title-main">Fluorescent lamp</span> Lamp using fluorescence to produce light

A fluorescent lamp, or fluorescent tube, is a low-pressure mercury-vapor gas-discharge lamp that uses fluorescence to produce visible light. An electric current in the gas excites mercury vapor, which produces short-wave ultraviolet light that then causes a phosphor coating on the inside of the lamp to glow. A fluorescent lamp converts electrical energy into useful light much more efficiently than an incandescent lamp. The typical luminous efficacy of fluorescent lighting systems is 50–100 lumens per watt, several times the efficacy of incandescent bulbs with comparable light output. For comparison, the luminous efficacy of an incandescent bulb may only be 16 lumens per watt.

<span class="mw-page-title-main">Cold cathode</span> Type of electrode and part of cold cathode fluorescent lamp.

A cold cathode is a cathode that is not electrically heated by a filament. A cathode may be considered "cold" if it emits more electrons than can be supplied by thermionic emission alone. It is used in gas-discharge lamps, such as neon lamps, discharge tubes, and some types of vacuum tube. The other type of cathode is a hot cathode, which is heated by electric current passing through a filament. A cold cathode does not necessarily operate at a low temperature: it is often heated to its operating temperature by other methods, such as the current passing from the cathode into the gas.

<span class="mw-page-title-main">Neon lamp</span> Light source based on gas discharge

A neon lamp is a miniature gas-discharge lamp. The lamp typically consists of a small glass capsule that contains a mixture of neon and other gases at a low pressure and two electrodes. When sufficient voltage is applied and sufficient current is supplied between the electrodes, the lamp produces an orange glow discharge. The glowing portion in the lamp is a thin region near the cathode; the larger and much longer neon signs are also glow discharges, but they use the positive column which is not present in the ordinary neon lamp. Neon glow lamps were widely used as indicator lamps in the displays of electronic instruments and appliances. They are still sometimes used for their electrical simplicity in high-voltage circuits.

<span class="mw-page-title-main">Corona discharge</span> Ionization of air around a high-voltage conductor

A corona discharge is an electrical discharge caused by the ionization of a fluid such as air surrounding a conductor carrying a high voltage. It represents a local region where the air has undergone electrical breakdown and become conductive, allowing charge to continuously leak off the conductor into the air. A corona discharge occurs at locations where the strength of the electric field around a conductor exceeds the dielectric strength of the air. It is often seen as a bluish glow in the air adjacent to pointed metal conductors carrying high voltages, and emits light by the same mechanism as a gas discharge lamp. Corona discharges can also happen in weather, such as thunderstorms, where objects like ship masts or airplane wings have a charge significantly different from the air around them.

<span class="mw-page-title-main">Ion source</span> Device that creates charged atoms and molecules (ions)

An ion source is a device that creates atomic and molecular ions. Ion sources are used to form ions for mass spectrometers, optical emission spectrometers, particle accelerators, ion implanters and ion engines.

<span class="mw-page-title-main">Franck–Hertz experiment</span> Experiment confirming quantisation of energy levels

The Franck–Hertz experiment was the first electrical measurement to clearly show the quantum nature of atoms, and thus "transformed our understanding of the world". It was presented on April 24, 1914, to the German Physical Society in a paper by James Franck and Gustav Hertz. Franck and Hertz had designed a vacuum tube for studying energetic electrons that flew through a thin vapor of mercury atoms. They discovered that, when an electron collided with a mercury atom, it could lose only a specific quantity of its kinetic energy before flying away. This energy loss corresponds to decelerating the electron from a speed of about 1.3 million meters per second to zero. A faster electron does not decelerate completely after a collision, but loses precisely the same amount of its kinetic energy. Slower electrons merely bounce off mercury atoms without losing any significant speed or kinetic energy.

<span class="mw-page-title-main">Flashtube</span> Incoherent light source

A flashtube (flashlamp) is an electric arc lamp designed to produce extremely intense, incoherent, full-spectrum white light for a very short time. A flashtube is a glass tube with an electrode at each end and is filled with a gas that, when triggered, ionizes and conducts a high-voltage pulse to make light. Flashtubes are used most in photography; they also are used in science, medicine, industry, and entertainment.

<span class="mw-page-title-main">Gas-filled tube</span> Assembly of electrodes at either end of an insulated tube filled with gas

A gas-filled tube, also commonly known as a discharge tube or formerly as a Plücker tube, is an arrangement of electrodes in a gas within an insulating, temperature-resistant envelope. Gas-filled tubes exploit phenomena related to electric discharge in gases, and operate by ionizing the gas with an applied voltage sufficient to cause electrical conduction by the underlying phenomena of the Townsend discharge. A gas-discharge lamp is an electric light using a gas-filled tube; these include fluorescent lamps, metal-halide lamps, sodium-vapor lamps, and neon lights. Specialized gas-filled tubes such as krytrons, thyratrons, and ignitrons are used as switching devices in electric devices.

<span class="mw-page-title-main">Paschen's law</span> Physical law about electrical discharge in gases

Paschen's law is an equation that gives the breakdown voltage, that is, the voltage necessary to start a discharge or electric arc, between two electrodes in a gas as a function of pressure and gap length. It is named after Friedrich Paschen who discovered it empirically in 1889.

<span class="mw-page-title-main">Anode ray</span> Beam of positively charged ions

An anode ray is a beam of positive ions that is created by certain types of gas-discharge tubes. They were first observed in Crookes tubes during experiments by the German scientist Eugen Goldstein, in 1886. Later work on anode rays by Wilhelm Wien and J. J. Thomson led to the development of mass spectrometry.

<span class="mw-page-title-main">Electric arc</span> Electrical breakdown of a gas that results in an ongoing electrical discharge

An electric arc is an electrical breakdown of a gas that produces a prolonged electrical discharge. The current through a normally nonconductive medium such as air produces a plasma, which may produce visible light. An arc discharge is initiated either by thermionic emission or by field emission. After initiation, the arc relies on thermionic emission of electrons from the electrodes supporting the arc. An arc discharge is characterized by a lower voltage than a glow discharge. An archaic term is voltaic arc, as used in the phrase "voltaic arc lamp".

A vacuum arc can arise when the surfaces of metal electrodes in contact with a good vacuum begin to emit electrons either through heating or in an electric field that is sufficient to cause field electron emission. Once initiated, a vacuum arc can persist, since the freed particles gain kinetic energy from the electric field, heating the metal surfaces through high-speed particle collisions. This process can create an incandescent cathode spot, which frees more particles, thereby sustaining the arc. At sufficiently high currents an incandescent anode spot may also be formed.

<span class="mw-page-title-main">Crookes tube</span> Early type of cathode ray tube

A Crookes tube is an early experimental electrical discharge tube, with partial vacuum, invented by English physicist William Crookes and others around 1869-1875, in which cathode rays, streams of electrons, were discovered.

<span class="mw-page-title-main">Hollow-cathode lamp</span>

A hollow-cathode lamp (HCL) is type of cold cathode lamp used in physics and chemistry as a spectral line source and as a frequency tuner for light sources such as lasers. An HCL takes advantage of the hollow cathode effect, which causes conduction at a lower voltage and with more current than a cold cathode lamp that does not have a hollow cathode.

<span class="mw-page-title-main">Gas-discharge lamp</span> Artificial light sources powered by ionized gas electric discharge

Gas-discharge lamps are a family of artificial light sources that generate light by sending an electric discharge through an ionized gas, a plasma.

<span class="mw-page-title-main">Townsend discharge</span> Gas ionization process

In electromagnetism, the Townsend discharge or Townsend avalanche is an ionisation process for gases where free electrons are accelerated by an electric field, collide with gas molecules, and consequently free additional electrons. Those electrons are in turn accelerated and free additional electrons. The result is an avalanche multiplication that permits significantly increased electrical conduction through the gas. The discharge requires a source of free electrons and a significant electric field; without both, the phenomenon does not occur.

Plasma activation is a method of surface modification employing plasma processing, which improves surface adhesion properties of many materials including metals, glass, ceramics, a broad range of polymers and textiles and even natural materials such as wood and seeds. Plasma functionalization also refers to the introduction of functional groups on the surface of exposed materials. It is widely used in industrial processes to prepare surfaces for bonding, gluing, coating and painting. Plasma processing achieves this effect through a combination of reduction of metal oxides, ultra-fine surface cleaning from organic contaminants, modification of the surface topography and deposition of functional chemical groups. Importantly, the plasma activation can be performed at atmospheric pressure using air or typical industrial gases including hydrogen, nitrogen and oxygen. Thus, the surface functionalization is achieved without expensive vacuum equipment or wet chemistry, which positively affects its costs, safety and environmental impact. Fast processing speeds further facilitate numerous industrial applications.

References

  1. Fridman, Alexander (2011). Plasma physics and engineering. Boca Raton, FL: CRC Press. ISBN   978-1439812280.
  2. Principles of Electronics By V.K. Mehta ISBN   81-219-2450-2
  3. 1 2 3 4 5 6 7 8 9 10 Fridman, Alexander (2012). Plasma chemistry. Cambridge: Cambridge University Press. p. 177. ISBN   978-1107684935.
  4. Konjevic, N.; Videnovic, I. R.; Kuraica, M. M. (1997). "Emission Spectroscopy of the Cathode Fall Region of an Analytical Glow Discharge". Le Journal de Physique IV. 07 (C4): C4–247–C4–258. doi:10.1051/jp4:1997420. ISSN   1155-4339 . Retrieved June 19, 2017.
  5. Tahiyat, Malik M.; Stephens, Jacob C.; Kolobov, Vladimir I.; Farouk, Tanvir I. (2022). "Striations in moderate pressure dc driven nitrogen glow discharge". Journal of Physics D: Applied Physics. 55 (8): 085201. Bibcode:2022JPhD...55h5201T. doi:10.1088/1361-6463/ac33da. OSTI   1979264. S2CID   240123280.
  6. 1 2 3 Mavrodineanu, R. (1984). "Hollow Cathode Discharges - Analytical Applications". Journal of Research of the National Bureau of Standards. 89 (2): 147. doi: 10.6028/jres.089.009 . ISSN   0160-1741. PMC   6768240 . PMID   34566122.
  7. Claude, Georges (November 1913). "The Development of Neon Tubes". The Engineering Magazine: 271–274. LCCN   sn83009124.
  8. Whitaker, Jerry (1999). Power vacuum tubes handbook, Second Edition. Boca Raton: CRC Press. p. 94. ISBN   978-1420049657.
  9. Reyes, D. R.; Ghanem, M. M.; Whitesides, G. M.; Manz, A. (2002). "Glow discharge in microfluidic chips for visible analog computing". Lab on a Chip. ACS. 2 (2): 113–6. doi:10.1039/B200589A. PMID   15100843.
  10. Mini-map gives tourists neon route signs: http://www.nature.com/news/2002/020527/full/news020520-12.html

Further reading