Quadrupole mass analyzer

Last updated
Quadrupole elements Mass spectrometer quadrupole.JPG
Quadrupole elements

In mass spectrometry, the quadrupole mass analyzer (or quadrupole mass filter) is a type of mass analyzer originally conceived [1] by Nobel laureate Wolfgang Paul and his student Helmut Steinwedel. As the name implies, it consists of four cylindrical rods, set parallel to each other. [2] In a quadrupole mass spectrometer (QMS) the quadrupole is the mass analyzer – the component of the instrument responsible for selecting sample ions based on their mass-to-charge ratio (m/z). Ions are separated in a quadrupole based on the stability of their trajectories in the oscillating electric fields that are applied to the rods. [2]

Contents

Principle of operation

Image from US Patent "Apparatus for separating charged particles of different specific charges" Paul Patent 2939952 Fig5.gif
Image from US Patent "Apparatus for separating charged particles of different specific charges"

The quadrupole consists of four parallel metal rods. Each opposing rod pair is connected together electrically, and a radio frequency (RF) voltage with a DC offset voltage is applied between one pair of rods and the other. Ions travel down the quadrupole between the rods. Only ions of a certain mass-to-charge ratio will reach the detector for a given ratio of voltages: other ions have unstable trajectories and will collide with the rods. This permits selection of an ion with a particular m/z or allows the operator to scan for a range of m/z-values by continuously varying the applied voltage. [2] Mathematically this can be modeled with the help of the Mathieu differential equation. [3]

Ion path through a quadrupole Quadrupole mass analyzer.svg
Ion path through a quadrupole

Ideally, the rods are hyperbolic, however cylindrical rods with a specific ratio of rod diameter-to-spacing provide an easier-to-manufacture adequate approximation to hyperbolas. Small variations in the ratio have large effects on resolution and peak shape. Different manufacturers choose slightly different ratios to fine-tune operating characteristics in context of anticipated application requirements. Since the 1980s, the MAT company and subsequently Finnigan Instrument Corporation used hyperbolic rods produced with a mechanical tolerance of 0.001 mm, whose exact production process was a well-kept secret within the company. [4]

Multiple quadrupoles, hybrids and variations

Hybrid quadrupole time-of-flight mass spectrometer Agilent 6538 Ultra High Definition (UHD) Accurate-Mass Q-TOF.jpg
Hybrid quadrupole time-of-flight mass spectrometer

A linear series of three quadrupoles is known as a triple quadrupole mass spectrometer. The first (Q1) and third (Q3) quadrupoles act as mass filters, and the middle (q2) quadrupole is employed as a collision cell. This collision cell is an RF-only quadrupole (non-mass filtering) using Ar, He, or N2 gas (~10−3 Torr, ~30 eV) for collision induced dissociation of selected parent ion(s) from Q1. Subsequent fragments are passed through to Q3 where they may be filtered or fully scanned.

This process allows for the study of fragments that are useful in structural elucidation by tandem mass spectrometry. For example, the Q1 may be set to 'filter' for a drug ion of known mass, which is fragmented in q2. The third quadrupole (Q3) can then be set to scan the entire m/z range, giving information on the intensities of the fragments. Thus, the structure of the original ion can be deduced.

The arrangement of three quadrupoles was first developed by Jim Morrison of La Trobe University in Australia for the purpose of studying the photodissociation of gas-phase ions. [5] The first triple-quadrupole mass spectrometer was developed at Michigan State University by Christie Enke and graduate student Richard Yost in the late 1970s. [6]

Quadrupoles can be used in hybrid mass spectrometers. For example, a sector instrument can be combined with a collision quadrupole and quadrupole mass analyzer to form a hybrid instrument. [7]

A mass-selecting quadrupole and collision quadrupole with time-of-flight device as the second mass selection stage is a hybrid known as a quadrupole time-of-flight mass spectrometer (QTOF MS). [8] [9] Quadrupole-quadrupole-time-of-flight (QqTOF) configurations are also possible and used especially the mass spectrometry of peptides and other large biological polymers. [10] [11]

A variant of the quadrupole mass analyzer called the monopole was invented by von Zahn which operates with two electrodes and generates one quarter of the quadrupole field. [12] It has one circular electrode and one V-shaped electrode. The performance is, however, lower than that of a quadrupole mass analyzer.

An enhancement to the performance of the quadrupole mass analyzer has been demonstrated to occur when a magnetic field is applied to the instrument. Manifold improvements in resolution and sensitivity have been reported for a magnetic field applied in various orientations to a QMS. [13] [14]

Applications

These mass spectrometers excel at applications where particular ions of interest are being studied because they can stay tuned on a single ion for extended periods of time. One place where this is useful is in liquid chromatography-mass spectrometry or gas chromatography-mass spectrometry where they serve as exceptionally high specificity detectors. Quadrupole instruments are often reasonably priced and make good multi-purpose instruments. A single quadrupole mass spectrometer with an electron impact ionizer is used as a standalone analyzer in residual gas analyzers, real-time gas analyzers, plasma diagnostics and SIMS surface analysis systems.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Inductively coupled plasma mass spectrometry</span> Type of mass spectrometry that uses an inductively coupled plasma to ionize the sample

Inductively coupled plasma mass spectrometry (ICP-MS) is a type of mass spectrometry that uses an inductively coupled plasma to ionize the sample. It atomizes the sample and creates atomic and small polyatomic ions, which are then detected. It is known and used for its ability to detect metals and several non-metals in liquid samples at very low concentrations. It can detect different isotopes of the same element, which makes it a versatile tool in isotopic labeling.

<span class="mw-page-title-main">Mass spectrometry</span> Analytical technique based on determining mass to charge ratio of ions

Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a mass spectrum, a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used in many different fields and is applied to pure samples as well as complex mixtures.

<span class="mw-page-title-main">Secondary ion mass spectrometry</span> Surface chemical analysis and imaging method

Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions. The mass/charge ratios of these secondary ions are measured with a mass spectrometer to determine the elemental, isotopic, or molecular composition of the surface to a depth of 1 to 2 nm. Due to the large variation in ionization probabilities among elements sputtered from different materials, comparison against well-calibrated standards is necessary to achieve accurate quantitative results. SIMS is the most sensitive surface analysis technique, with elemental detection limits ranging from parts per million to parts per billion.

<span class="mw-page-title-main">Tandem mass spectrometry</span> Type of mass spectrometry

Tandem mass spectrometry, also known as MS/MS or MS2, is a technique in instrumental analysis where two or more stages of analysis using one or more mass analyzer are performed with an additional reaction step in between these analyses to increase their abilities to analyse chemical samples. A common use of tandem MS is the analysis of biomolecules, such as proteins and peptides.

<span class="mw-page-title-main">Gas chromatography–mass spectrometry</span> Analytical method

Gas chromatography–mass spectrometry (GC–MS) is an analytical method that combines the features of gas-chromatography and mass spectrometry to identify different substances within a test sample. Applications of GC–MS include drug detection, fire investigation, environmental analysis, explosives investigation, food and flavor analysis, and identification of unknown samples, including that of material samples obtained from planet Mars during probe missions as early as the 1970s. GC–MS can also be used in airport security to detect substances in luggage or on human beings. Additionally, it can identify trace elements in materials that were previously thought to have disintegrated beyond identification. Like liquid chromatography–mass spectrometry, it allows analysis and detection even of tiny amounts of a substance.

<span class="mw-page-title-main">Quadrupole ion trap</span> Type of apparatus for isolating charged particles

In experimental physics, a quadrupole ion trap or paul trap is a type of ion trap that uses dynamic electric fields to trap charged particles. They are also called radio frequency (RF) traps or Paul traps in honor of Wolfgang Paul, who invented the device and shared the Nobel Prize in Physics in 1989 for this work. It is used as a component of a mass spectrometer or a trapped ion quantum computer.

<span class="mw-page-title-main">Isotope-ratio mass spectrometry</span>

Isotope-ratio mass spectrometry (IRMS) is a specialization of mass spectrometry, in which mass spectrometric methods are used to measure the relative abundance of isotopes in a given sample.

<span class="mw-page-title-main">Orbitrap</span>

In mass spectrometry, Orbitrap is an ion trap mass analyzer consisting of an outer barrel-like electrode and a coaxial inner spindle-like electrode that traps ions in an orbital motion around the spindle. The image current from the trapped ions is detected and converted to a mass spectrum using the Fourier transform of the frequency signal.

<span class="mw-page-title-main">Time-of-flight mass spectrometry</span> Method of mass spectrometry

Time-of-flight mass spectrometry (TOFMS) is a method of mass spectrometry in which an ion's mass-to-charge ratio is determined by a time of flight measurement. Ions are accelerated by an electric field of known strength. This acceleration results in an ion having the same kinetic energy as any other ion that has the same charge. The velocity of the ion depends on the mass-to-charge ratio. The time that it subsequently takes for the ion to reach a detector at a known distance is measured. This time will depend on the velocity of the ion, and therefore is a measure of its mass-to-charge ratio. From this ratio and known experimental parameters, one can identify the ion.

<span class="mw-page-title-main">Mass-analyzed ion-kinetic-energy spectrometry</span>

Mass-analyzed ion kinetic-energy spectrometry (MIKES) is a mass spectrometry technique by which mass spectra are obtained from a sector instrument that incorporates at least one magnetic sector plus one electric sector in reverse geometry. The accelerating voltage V, and the magnetic field B, are set to select the precursor ions of a particular m/z. The precursor ions then dissociate or react in an electric field-free region between the two sectors. The ratio of the kinetic energy to charge of the product ions are analyzed by scanning the electric sector field E. The width of the product ion spectrum peaks is related to the kinetic energy release distribution for the dissociation process.

<span class="mw-page-title-main">Ion-mobility spectrometry–mass spectrometry</span>

Ion mobility spectrometry–mass spectrometry (IMS-MS) is an analytical chemistry method that separates gas phase ions based on their interaction with a collision gas and their masses. In the first step, the ions are separated according to their mobility through a buffer gas on a millisecond timescale using an ion mobility spectrometer. The separated ions are then introduced into a mass analyzer in a second step where their mass-to-charge ratios can be determined on a microsecond timescale. The effective separation of analytes achieved with this method makes it widely applicable in the analysis of complex samples such as in proteomics and metabolomics.

<span class="mw-page-title-main">Triple quadrupole mass spectrometer</span>

A triple quadrupole mass spectrometer (TQMS), is a tandem mass spectrometer consisting of two quadrupole mass analyzers in series, with a (non-mass-resolving) radio frequency (RF)–only quadrupole between them to act as a cell for collision-induced dissociation. This configuration is often abbreviated QqQ, here Q1q2Q3.

A hybrid mass spectrometer is a device for tandem mass spectrometry that consists of a combination of two or more m/z separation devices of different types.

<span class="mw-page-title-main">Linear ion trap</span>

The linear ion trap (LIT) is a type of ion trap mass spectrometer.

<span class="mw-page-title-main">Instrumental chemistry</span> Study of analytes using scientific instruments

Instrumental analysis is a field of analytical chemistry that investigates analytes using scientific instruments.

<span class="mw-page-title-main">Collision-induced dissociation</span> Mass spectrometry technique to induce fragmentation of selected ions in the gas phase

Collision-induced dissociation (CID), also known as collisionally activated dissociation (CAD), is a mass spectrometry technique to induce fragmentation of selected ions in the gas phase. The selected ions are usually accelerated by applying an electrical potential to increase the ion kinetic energy and then allowed to collide with neutral molecules. In the collision, some of the kinetic energy is converted into internal energy which results in bond breakage and the fragmentation of the molecular ion into smaller fragments. These fragment ions can then be analyzed by tandem mass spectrometry.

<span class="mw-page-title-main">Miniature mass spectrometer</span>

A miniature mass spectrometer (MMS) is a type of mass spectrometer (MS) which has small size and weight and can be understood as a portable or handheld device. Current lab-scale mass spectrometers however, usually weigh hundreds of pounds and can cost on the range from thousands to millions of dollars. One purpose of producing MMS is for in situ analysis. This in situ analysis can lead to much simpler mass spectrometer operation such that non-technical personnel like physicians at the bedside, firefighters in a burning factory, food safety inspectors in a warehouse, or airport security at airport checkpoints, etc. can analyze samples themselves saving the time, effort, and cost of having the sample run by a trained MS technician offsite. Although, reducing the size of MS can lead to a poorer performance of the instrument versus current analytical laboratory standards, MMS is designed to maintain sufficient resolutions, detection limits, accuracy, and especially the capability of automatic operation. These features are necessary for the specific in-situ applications of MMS mentioned above.

<span class="mw-page-title-main">Digital ion trap</span> Scientific analytical tool

The digital ion trap (DIT) is an quadrupole ion trap driven by digital signals, typically in a rectangular waveform, generated by switching rapidly between discrete DC voltage levels. The digital ion trap has been mainly developed as a mass analyzer.

SCIEX is a manufacturer of mass spectrometry instrumentation used in biomedical and environmental applications. Originally started by scientists from the University of Toronto Institute for Aerospace Studies, it is now part of Danaher Corporation with the SCIExe R&D division still located in Toronto, Canada.

References

  1. 1 2 US 2939952, Paul, Wolfgang &Steinwedel, Helmut,"Apparatus for separating charged particles of different specific charges",published 1960-06-07, assigned to Wolfgang Paul
  2. 1 2 3 de Hoffmann, Edmond; Vincent Stroobant (2003). Mass Spectrometry: Principles and Applications (Second ed.). Toronto: John Wiley & Sons, Ltd. p. 65. ISBN   978-0-471-48566-7.
  3. Gerald Teschl (2012). Ordinary Differential Equations and Dynamical Systems. Providence: American Mathematical Society. ISBN   978-0-8218-8328-0.
  4. Brunnée, Curt (May 27, 1997). "50 Years of MAT in Bremen". Rapid Communications in Mass Spectrometry. 11 (6): 694–707. doi:10.1002/(SICI)1097-0231(199704)11:6<694::AID-RCM888>3.0.CO;2-K via Wiley Online Library.
  5. Morrison, J. D. (1991). "Personal reminiscences of forty years of mass spectrometry in Australia". Organic Mass Spectrometry. 26 (4): 183–194. doi:10.1002/oms.1210260404.
  6. Yost, R. A.; Enke, C. G. (1978). "Selected ion fragmentation with a tandem quadrupole mass spectrometer" (PDF). Journal of the American Chemical Society. 100 (7): 2274. doi:10.1021/ja00475a072. Archived from the original (PDF) on 2012-02-19. Retrieved 2008-12-06.
  7. Glish, G.; Scott A. McLuckey; Ridley, T; Cooks, R (1982). "A new "hybrid" sector/quadrupole mass spectrometer for mass spectrometry/mass spectrometry". International Journal of Mass Spectrometry and Ion Physics. 41 (3): 157. Bibcode:1982IJMSI..41..157G. doi:10.1016/0020-7381(82)85032-8.
  8. Shevchenko A; Loboda A; Shevchenko A; Ens W; Standing KG (May 2000). "MALDI quadrupole time-of-flight mass spectrometry: a powerful tool for proteomic research". Anal. Chem. 72 (9): 2132–41. doi:10.1021/ac9913659. PMID   10815976.
  9. Steen H; Küster B; Mann M (July 2001). "Quadrupole time-of-flight versus triple-quadrupole mass spectrometry for the determination of phosphopeptides by precursor ion scanning". J Mass Spectrom. 36 (7): 782–90. Bibcode:2001JMSp...36..782S. doi:10.1002/jms.174. PMID   11473401.
  10. Chernushevich, Igor V. (2001). "An introduction to quadrupole–time-of-flight mass spectrometry". Journal of Mass Spectrometry. 36 (8): 849–865. Bibcode:2001JMSp...36..849C. doi:10.1002/jms.207. PMID   11523084.
  11. Oberacher, Herbert; Pitterl, Florian (June 2009). Fabris, Dan (ed.). "On the use of ESI-QqTOF-MS/MS for the comparative sequencing of nucleic acids". Biopolymers. 91 (6): 401–409. doi:10.1002/bip.21156. PMID   19189378.
  12. U. von Zahn (1963). "Monopole Spectrometer, a New Electric Field Mass Spectrometer". Rev. Sci. Instrum. 34 (1): 1–4. Bibcode:1963RScI...34....1V. doi:10.1063/1.1718110.
  13. Syed S.; Maher S.; Taylor S. (2013). "Quadrupole mass filter operation under the influence of magnetic field". Journal of Mass Spectrometry. 48 (12): 1325–1339. Bibcode:2013JMSp...48.1325S. doi:10.1002/jms.3293. PMID   24338888.
  14. Maher S; Syed S; Hughes D; Gibson J; Taylor S (2013). "Mapping the stability diagram of a quadrupole mass spectrometer with a static transverse magnetic field applied". Journal of the American Society for Mass Spectrometry. 24 (8): 1307–1314. Bibcode:2013JASMS..24.1307M. doi:10.1007/s13361-013-0654-5. PMID   23720050. S2CID   45734248.
Listen to this article (5 minutes)
Sound-icon.svg
This audio file was created from a revision of this article dated 8 September 2012 (2012-09-08), and does not reflect subsequent edits.