Tandem mass spectrometry

Last updated

A quadrupole time-of-flight hybrid tandem mass spectrometer Q-TOF.jpg
A quadrupole time-of-flight hybrid tandem mass spectrometer

Tandem mass spectrometry, also known as MS/MS or MS2, is a technique in instrumental analysis where two or more stages of analysis using one or more mass analyzer are performed with an additional reaction step in between these analyses to increase their abilities to analyse chemical samples. [1] A common use of tandem MS is the analysis of biomolecules, such as proteins and peptides.

Contents

The molecules of a given sample are ionized and the first spectrometer (designated MS1) separates these ions by their mass-to-charge ratio (often given as m/z or m/Q). Ions of a particular m/z-ratio coming from MS1 are selected and then made to split into smaller fragment ions, e.g. by collision-induced dissociation, ion-molecule reaction, or photodissociation. These fragments are then introduced into the second mass spectrometer (MS2), which in turn separates the fragments by their m/z-ratio and detects them. The fragmentation step makes it possible to identify and separate ions that have very similar m/z-ratios in regular mass spectrometers.

Structure

Typical tandem mass spectrometry instrumentation setups include triple quadrupole mass spectrometer (QqQ), multi-sector mass spectrometer, ion trap, quadrupole–time of flight (Q-TOF), Fourier transform ion cyclotron resonance (FT-ICR), and hybrid mass spectrometers. [2]

Triple quadrupole mass spectrometer

Triple quadrupole mass spectrometers use the first and third quadrupoles as mass filters. When analytes pass the second quadrupole, the fragmentation proceeds through collision with gas.[ citation needed ]

Quadrupole–time of flight (Q-TOF)

Q-TOF mass spectrometer combines quadrupole and TOF instruments, which together enable fragmentation experiments that yield highly accurate mass quantitations for product ions. This is a method of mass spectrometry in which fragmented ion (m/z) ratios are determined through a time of flight measurement.[ citation needed ]

Hybrid mass spectrometer

Hybrid mass spectrometer consists of more than two mass analyzers.

Instrumentation

Schematic of tandem mass spectrometry MS MS.png
Schematic of tandem mass spectrometry

Multiple stages of mass analysis separation can be accomplished with individual mass spectrometer elements separated in space or using a single mass spectrometer with the MS steps separated in time. For tandem mass spectrometry in space, the different elements are often noted in a shorthand, giving the type of mass selector used.[ citation needed ]

Tandem in space

Triple quadrupole diagram; and example of tandem mass spectrometry in space Triple quadripole.png
Triple quadrupole diagram; and example of tandem mass spectrometry in space

In tandem mass spectrometry in space, the separation elements are physically separated and distinct, although there is a physical connection between the elements to maintain high vacuum. These elements can be sectors, transmission quadrupole, or time-of-flight. When using multiple quadrupoles, they can act as both mass analyzers and collision chambers.[ citation needed ]

Common notation for mass analyzers is Q – quadrupole mass analyzer; qradio frequency collision quadrupole; TOFtime-of-flight mass analyzer; B – magnetic sector, and E – electric sector. The notation can be combined to indicate various hybrid instrument, for example QqQ'triple quadrupole mass spectrometer; QTOF – quadrupole time-of-flight mass spectrometer (also QqTOF); and BEBE – four-sector (reverse geometry) mass spectrometer.

Tandem in time

An ion trap mass spectrometer is an example of a tandem mass spectrometry in time instrument. LTQ Trap And Dynodes 2.jpg
An ion trap mass spectrometer is an example of a tandem mass spectrometry in time instrument.

By doing tandem mass spectrometry in time, the separation is accomplished with ions trapped in the same place, with multiple separation steps taking place over time. A quadrupole ion trap or Fourier transform ion cyclotron resonance (FTICR) instrument can be used for such an analysis. [3] Trapping instruments can perform multiple steps of analysis, which is sometimes referred to as MSn (MS to the n). [4] Often the number of steps, n, is not indicated, but occasionally the value is specified; for example MS3 indicates three stages of separation. Tandem in time MS instruments do not use the modes described next, but typically collect all of the information from a precursor ion scan and a parent ion scan of the entire spectrum. Each instrumental configuration utilizes a unique mode of mass identification.[ citation needed ]

Tandem in space MS/MS modes

When tandem MS is performed with an in space design, the instrument must operate in one of a variety of modes. There are a number of different tandem MS/MS experimental setups and each mode has its own applications and provides different information. Tandem MS in space uses the coupling of two instrument components which measure the same mass spectrum range but with a controlled fractionation between them in space, while tandem MS in time involves the use of an ion trap.[ citation needed ]

There are four main scan experiments possible using MS/MS: precursor ion scan, product ion scan, neutral loss scan, and selected reaction monitoring.

For a precursor ion scan, the product ion is selected in the second mass analyzer, and the precursor masses are scanned in the first mass analyzer. Note that precursor ion [5] is synonymous with parent ion [6] and product ion [7] with daughter ion; [8] however the use of these anthropomorphic terms is discouraged. [9] [10]

In a product ion scan, a precursor ion is selected in the first stage, allowed to fragment and then all resultant masses are scanned in the second mass analyzer and detected in the detector that is positioned after the second mass analyzer. This experiment is commonly performed to identify transitions used for quantification by tandem MS.

In a neutral loss scan, the first mass analyzer scans all the masses. The second mass analyzer also scans, but at a set offset from the first mass analyzer. [11] This offset corresponds to a neutral loss that is commonly observed for the class of compounds. In a constant-neutral-loss scan, all precursors that undergo the loss of a specified common neutral are monitored. To obtain this information, both mass analyzers are scanned simultaneously, but with a mass offset that correlates with the mass of the specified neutral. Similar to the precursor-ion scan, this technique is also useful in the selective identification of closely related class of compounds in a mixture.

In selected reaction monitoring, both mass analyzers are set to a selected mass. This mode is analogous to selected ion monitoring for MS experiments. A selective analysis mode, which can increase sensitivity. [12]

Fragmentation

Fragmentation of gas-phase ions is essential to tandem mass spectrometry and occurs between different stages of mass analysis. There are many methods used to fragment the ions and these can result in different types of fragmentation and thus different information about the structure and composition of the molecule. [13]

In-source fragmentation

Often, the ionization process is sufficiently violent to leave the resulting ions with sufficient internal energy to fragment within the mass spectrometer. If the product ions persist in their non-equilibrium state for a moderate amount of time before auto-dissociation this process is called metastable fragmentation. [14] Nozzle-skimmer fragmentation refers to the purposeful induction of in-source fragmentation by increasing the nozzle-skimmer potential on usually electrospray based instruments. Although in-source fragmentation allows for fragmentation analysis, it is not technically tandem mass spectrometry unless metastable ions are mass analyzed or selected before auto-dissociation and a second stage of analysis is performed on the resulting fragments. In-source fragmentation can be used in lieu of tandem mass spectrometry through the utilization of Enhanced in-Source Fragmentation Annotation (EISA) technology which generates fragmentation that directly matches tandem mass spectrometry data. [15] Fragments observed by EISA have higher signal intensity than traditional fragments which suffer losses in the collision cells of tandem mass spectrometers. [16] EISA enables fragmentation data acquisition on MS1 mass analyzers such as time-of-flight and single quadrupole instruments. In-source fragmentation is often used in addition to tandem mass spectrometry (with post-source fragmentation) to allow for two steps of fragmentation in a pseudo MS3-type of experiment. [17]

Collision-induced dissociation

Post-source fragmentation is most often what is being used in a tandem mass spectrometry experiment. Energy can also be added to the ions, which are usually already vibrationally excited, through post-source collisions with neutral atoms or molecules, the absorption of radiation, or the transfer or capture of an electron by a multiply charged ion. Collision-induced dissociation (CID), also called collisionally activated dissociation (CAD), involves the collision of an ion with a neutral atom or molecule in the gas phase and subsequent dissociation of the ion. [18] [19] For example, consider

where the ion AB+ collides with the neutral species M and subsequently breaks apart. The details of this process are described by collision theory. Due to different instrumental configuration, two main different types of CID are possible: (i) beam-type (in which precursor ions are fragmented on-the-flight) [20] and (ii) ion trap-type (in which precursor ions are first trapped, and then fragmented). [21] [22]

A third and more recent type of CID fragmentation is higher-energy collisional dissociation (HCD). HCD is a CID technique specific to orbitrap mass spectrometers in which fragmentation takes place external to the ion trap, [23] [24] it happens in the HCD cell (in some instruments named "ion routing multipole"). [25] HCD is a trap-type fragmentation that has been shown to have beam-type characteristics. [26] [27] Freely available large scale high resolution tandem mass spectrometry databases exist (e.g. METLIN with 850,000 molecular standards each with experimental CID MS/MS data), [28] and are typically used to facilitate small molecule identification.

Electron capture and transfer methods

The energy released when an electron is transferred to or captured by a multiply charged ion can induce fragmentation. [29]

Electron-capture dissociation

If an electron is added to a multiply charged positive ion, the Coulomb energy is liberated. Adding a free electron is called electron-capture dissociation (ECD), [30] and is represented by

for a multiply protonated molecule M.

Electron-transfer dissociation

Adding an electron through an ion-ion reaction is called electron-transfer dissociation (ETD). [31] [32] Similar to electron-capture dissociation, ETD induces fragmentation of cations (e.g. peptides or proteins) by transferring electrons to them. It was invented by Donald F. Hunt, Joshua Coon, John E. P. Syka and Jarrod Marto at the University of Virginia. [33]

ETD does not use free electrons but employs radical anions (e.g. anthracene or azobenzene) for this purpose:

where A is the anion. [34]

ETD cleaves randomly along the peptide backbone (c and z ions) while side chains and modifications such as phosphorylation are left intact. The technique only works well for higher charge state ions (z>2), however relative to collision-induced dissociation (CID), ETD is advantageous for the fragmentation of longer peptides or even entire proteins. This makes the technique important for top-down proteomics. Much like ECD, ETD is effective for peptides with modifications such as phosphorylation. [35]

Electron-transfer and higher-energy collision dissociation (EThcD) is a combination ETD and HCD where the peptide precursor is initially subjected to an ion/ion reaction with fluoranthene anions in a linear ion trap, which generates c- and z-ions. [31] [36] In the second step HCD all-ion fragmentation is applied to all ETD derived ions to generate b- and y- ions prior to final analysis in the orbitrap analyzer. [23] This method employs dual fragmentation to generate ion- and thus data-rich MS/MS spectra for peptide sequencing and PTM localization. [37]

Negative electron-transfer dissociation

Fragmentation can also occur with a deprotonated species, in which an electron is transferred from the species to a cationic reagent in a negative electron transfer dissociation (NETD): [38]

Following this transfer event, the electron-deficient anion undergoes internal rearrangement and fragments. NETD is the ion/ion analogue of electron-detachment dissociation (EDD).

NETD is compatible with fragmenting peptide and proteins along the backbone at the Cα-C bond. The resulting fragments are usually a- and x-type product ions.

Electron-detachment dissociation

Electron-detachment dissociation (EDD) is a method for fragmenting anionic species in mass spectrometry. [39] It serves as a negative counter mode to electron capture dissociation. Negatively charged ions are activated by irradiation with electrons of moderate kinetic energy. The result is ejection of electrons from the parent ionic molecule, which causes dissociation via recombination.[ citation needed ]

Charge-transfer dissociation

Reaction between positively charged peptides and cationic reagents, [40] also known as charge transfer dissociation (CTD), [41] has recently been demonstrated as an alternative high-energy fragmentation pathway for low-charge state (1+ or 2+) peptides. The proposed mechanism of CTD using helium cations as the reagent is:

Initial reports are that CTD causes backbone Cα-C bond cleavage of peptides and provides a- and x-type product ions.

Photodissociation

The energy required for dissociation can be added by photon absorption, resulting in ion photodissociation and represented by

where represents the photon absorbed by the ion. Ultraviolet lasers can be used, but can lead to excessive fragmentation of biomolecules. [42]

Infrared multiphoton dissociation

Infrared photons will heat the ions and cause dissociation if enough of them are absorbed. This process is called infrared multiphoton dissociation (IRMPD) and is often accomplished with a carbon dioxide laser and an ion trapping mass spectrometer such as a FTMS. [43]

Blackbody infrared radiative dissociation

Blackbody radiation can be used for photodissociation in a technique known as blackbody infrared radiative dissociation (BIRD). [44] In the BIRD method, the entire mass spectrometer vacuum chamber is heated to create infrared light. BIRD uses this radiation to excite increasingly more energetic vibrations of the ions, until a bond breaks, creating fragments. [44] [45] This is similar to infrared multiphoton dissociation which also uses infrared light, but from a different source. [19] BIRD is most often used with Fourier transform ion cyclotron resonance mass spectrometry.[ citation needed ]

Surface-induced dissociation

With surface-induced dissociation (SID), the fragmentation is a result of the collision of an ion with a surface under high vacuum. [46] [47] Today, SID is used to fragment a wide range of ions. Years ago, it was only common to use SID on lower mass, singly charged species because ionization methods and mass analyzer technologies weren't advanced enough to properly form, transmit, or characterize ions of high m/z. Over time, self-assembled monolayer surfaces (SAMs) composed of CF3(CF2)10CH2CH2S on gold have been the most prominently used collision surfaces for SID in a tandem spectrometer. SAMs have acted as the most desirable collision targets due to their characteristically large effective masses for the collision of incoming ions. Additionally, these surfaces are composed of rigid fluorocarbon chains, which don't significantly dampen the energy of the projectile ions. The fluorocarbon chains are also beneficial because of their ability to resist facile electron transfer from the metal surface to the incoming ions. [48] SID's ability to produce subcomplexes that remain stable and provide valuable information on connectivity is unmatched by any other dissociation technique. Since the complexes produced from SID are stable and retain distribution of charge on the fragment, this produces a unique, spectra which the complex centers around a narrower m/z distribution. The SID products and the energy at which they form are reflective of the strengths and topology of the complex. The unique dissociation patterns help discover the Quaternary structure of the complex. The symmetric charge distribution and dissociation dependence are unique to SID and make the spectra produced distinctive from any other dissociation technique. [48]

The SID technique is also applicable to ion-mobility mass spectrometry (IM-MS). Three different methods for this technique include analyzing the characterization of topology, intersubunit connectivity, and the degree of unfolding for protein structure. Analysis of protein structure unfolding is the most commonly used application of the SID technique. For Ion-mobility mass spectrometry (IM-MS), SID is used for dissociation of the source activated precursors of three different types of protein complexes: C-reactive protein (CRP), transthyretin (TTR), and concanavalin A (Con A). This method is used to observe the unfolding degree for each of these complexes. For this observation, SID showed the precursor ions' structures that exist before the collision with the surface. IM-MS utilizes the SID as a direct measure of the conformation for each proteins' subunit. [49]

Fourier-transform ion cyclotron resonance (FTICR) are able to provide ultrahigh resolution and high mass accuracy to instruments that take mass measurements. These features make FTICR mass spectrometers a useful tool for a wide variety of applications such as several dissociation experiments [50] such as collision-induced dissociation (CID, electron transfer dissociation (ETD), [51] and others. In addition, surface-induced dissociation has been implemented with this instrument for the study of fundamental peptide fragmentation. Specifically, SID has been applied to the study of energetics and the kinetics of gas-phase fragmentation within an ICR instrument. [52] This approach has been used to understand the gas-phase fragmentation of protonated peptides, odd-electron peptide ions, non-covalent ligand-peptide complexes, and ligated metal clusters.[ citation needed ]

Quantitative proteomics

Quantitative proteomics is used to determine the relative or absolute amount of proteins in a sample. [53] [54] [55] Several quantitative proteomics methods are based on tandem mass spectrometry. MS/MS has become a benchmark procedure for the structural elucidation of complex biomolecules. [56]

One method commonly used for quantitative proteomics is isobaric tag labeling. Isobaric tag labeling enables simultaneous identification and quantification of proteins from multiple samples in a single analysis. To quantify proteins, peptides are labeled with chemical tags that have the same structure and nominal mass, but vary in the distribution of heavy isotopes in their structure. These tags, commonly referred to as tandem mass tags, are designed so that the mass tag is cleaved at a specific linker region upon higher-energy collisional-induced dissociation (HCD) during tandem mass spectrometry yielding reporter ions of different masses. Protein quantitation is accomplished by comparing the intensities of the reporter ions in the MS/MS spectra. Two commercially available isobaric tags are iTRAQ and TMT reagents.[ citation needed ]

Isobaric tags for relative and absolute quantitation (iTRAQ)

Isobaric labeling for tandem mass spectrometry: proteins are extracted from cells, digested, and labeled with tags of the same mass. When fragmented during MS/MS, the reporter ions show the relative amount of the peptides in the samples. Isobaric labeling.png
Isobaric labeling for tandem mass spectrometry: proteins are extracted from cells, digested, and labeled with tags of the same mass. When fragmented during MS/MS, the reporter ions show the relative amount of the peptides in the samples.

An isobaric tag for relative and absolute quantitation (iTRAQ) is a reagent for tandem mass spectrometry that is used to determine the amount of proteins from different sources in a single experiment. [57] [58] [59] It uses stable isotope labeled molecules that can form a covalent bond with the N-terminus and side chain amines of proteins. The iTRAQ reagents are used to label peptides from different samples that are pooled and analyzed by liquid chromatography and tandem mass spectrometry. The fragmentation of the attached tag generates a low molecular mass reporter ion that can be used to relatively quantify the peptides and the proteins from which they originated.[ citation needed ]

Tandem mass tag (TMT)

A tandem mass tag (TMT) is an isobaric mass tag chemical label used for protein quantification and identification. [60] The tags contain four regions: mass reporter, cleavable linker, mass normalization, and protein reactive group. TMT reagents can be used to simultaneously analyze 2 to 11 different peptide samples prepared from cells, tissues or biological fluids. Recent developments allow up to 16 and even 18 samples (16plex or 18plex respectively) to be analyzed. [61] [62] Three types of TMT reagents are available with different chemical reactivities: (1) a reactive NHS ester functional group for labeling primary amines (TMTduplex, TMTsixplex, TMT10plex plus TMT11-131C), (2) a reactive iodoacetyl functional group for labeling free sulfhydryls (iodoTMT) and (3) reactive alkoxyamine functional group for labeling of carbonyls (aminoxyTMT).

Multiplexed DIA (plexDIA)

The progress in data independent acquisition (DIA) enabled multiplexed quantitative proteomics with non-isobaric mass tags and a new method called plexDIA introduced in 2021. [63] This new approach increases the number of data points by parallelizing both samples and peptides, thus achieving multiplicative gains. It has the potential to continue scaling proteomic throughput with new mass tags and algorithms. [64] [65] plexDIA is applicable to both bulk [66] and single-cell samples and is particularly powerful for single-cell proteomics. [67] [68]

Applications

Peptides

Chromatography trace (top) and tandem mass spectrum (bottom) of a peptide PeptideMSMS.jpg
Chromatography trace (top) and tandem mass spectrum (bottom) of a peptide

Tandem mass spectrometry can be used for protein sequencing. [69] When intact proteins are introduced to a mass analyzer, this is called "top-down proteomics" and when proteins are digested into smaller peptides and subsequently introduced into the mass spectrometer, this is called "bottom-up proteomics". Shotgun proteomics is a variant of bottom up proteomics in which proteins in a mixture are digested prior to separation and tandem mass spectrometry.[ citation needed ]

Tandem mass spectrometry can produce a peptide sequence tag that can be used to identify a peptide in a protein database. [70] [71] [72] A notation has been developed for indicating peptide fragments that arise from a tandem mass spectrum. [73] Peptide fragment ions are indicated by a, b, or c if the charge is retained on the N-terminus and by x, y or z if the charge is maintained on the C-terminus. The subscript indicates the number of amino acid residues in the fragment. Superscripts are sometimes used to indicate neutral losses in addition to the backbone fragmentation, * for loss of ammonia and ° for loss of water. Although peptide backbone cleavage is the most useful for sequencing and peptide identification other fragment ions may be observed under high energy dissociation conditions. These include the side chain loss ions d, v, w and ammonium ions [74] [75] and additional sequence-specific fragment ions associated with particular amino acid residues. [76]

Oligosaccharides

Oligosaccharides may be sequenced using tandem mass spectrometry in a similar manner to peptide sequencing. [77] Fragmentation generally occurs on either side of the glycosidic bond (b, c, y and z ions) but also under more energetic conditions through the sugar ring structure in a cross-ring cleavage (x ions). Again trailing subscripts are used to indicate position of the cleavage along the chain. For cross ring cleavage ions the nature of the cross ring cleavage is indicated by preceding superscripts. [78] [79]

Oligonucleotides

Tandem mass spectrometry has been applied to DNA and RNA sequencing. [80] [81] A notation for gas-phase fragmentation of oligonucleotide ions has been proposed. [82]

Newborn screening

Newborn screening is the process of testing newborn babies for treatable genetic, endocrinologic, metabolic and hematologic diseases. [83] [84] The development of tandem mass spectrometry screening in the early 1990s led to a large expansion of potentially detectable congenital metabolic diseases that affect blood levels of organic acids. [85]

Small molecule analysis

It has been shown that tandem mass spectrometry data is highly consistent across instrument and manufacturer platforms including quadrupole time-of-flight (QTOF) and Q Exactive instrumentation, especially at 20 eV. [86]

Limitation

Tandem mass spectrometry cannot be applied for single-cell analyses as it is insensitive to analyze such small amounts of a cell. These limitations are primarily due to a combination of inefficient ion production and ion losses within the instruments due to chemical noise sources of solvents. [87]

Future outlook

Tandem mass spectrometry will be a useful tool for protein characterization, nucleoprotein complexes, and other biological structures. However, some challenges left such as analyzing the characterization of the proteome quantitatively and qualitatively. [88]

See also

Related Research Articles

<span class="mw-page-title-main">Mass spectrometry</span> Analytical technique based on determining mass to charge ratio of ions

Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a mass spectrum, a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used in many different fields and is applied to pure samples as well as complex mixtures.

<span class="mw-page-title-main">Quadrupole mass analyzer</span> Type of mass spectrometer

In mass spectrometry, the quadrupole mass analyzer is a type of mass analyzer originally conceived by Nobel laureate Wolfgang Paul and his student Helmut Steinwedel. As the name implies, it consists of four cylindrical rods, set parallel to each other. In a quadrupole mass spectrometer (QMS) the quadrupole is the mass analyzer – the component of the instrument responsible for selecting sample ions based on their mass-to-charge ratio (m/z). Ions are separated in a quadrupole based on the stability of their trajectories in the oscillating electric fields that are applied to the rods.

<span class="mw-page-title-main">Electron-capture dissociation</span> Method in mass spectrometry

Electron-capture dissociation (ECD) is a method of fragmenting gas-phase ions for structure elucidation of peptides and proteins in tandem mass spectrometry. It is one of the most widely used techniques for activation and dissociation of mass selected precursor ion in MS/MS. It involves the direct introduction of low-energy electrons to trapped gas-phase ions.

Hydrogen–deuterium exchange is a chemical reaction in which a covalently bonded hydrogen atom is replaced by a deuterium atom, or vice versa. It can be applied most easily to exchangeable protons and deuterons, where such a transformation occurs in the presence of a suitable deuterium source, without any catalyst. The use of acid, base or metal catalysts, coupled with conditions of increased temperature and pressure, can facilitate the exchange of non-exchangeable hydrogen atoms, so long as the substrate is robust to the conditions and reagents employed. This often results in perdeuteration: hydrogen-deuterium exchange of all non-exchangeable hydrogen atoms in a molecule.

A peptide sequence tag is a piece of information about a peptide obtained by tandem mass spectrometry that can be used to identify this peptide in a protein database.

<span class="mw-page-title-main">Electron-transfer dissociation</span>

Electron-transfer dissociation (ETD) is a method of fragmenting multiply-charged gaseous macromolecules in a mass spectrometer between the stages of tandem mass spectrometry (MS/MS). Similar to electron-capture dissociation, ETD induces fragmentation of large, multiply-charged cations by transferring electrons to them. ETD is used extensively with polymers and biological molecules such as proteins and peptides for sequence analysis. Transferring an electron causes peptide backbone cleavage into c- and z-ions while leaving labile post translational modifications (PTM) intact. The technique only works well for higher charge state peptide or polymer ions (z>2). However, relative to collision-induced dissociation (CID), ETD is advantageous for the fragmentation of longer peptides or even entire proteins. This makes the technique important for top-down proteomics. The method was developed by Hunt and coworkers at the University of Virginia.

<span class="mw-page-title-main">Protein mass spectrometry</span> Application of mass spectrometry

Protein mass spectrometry refers to the application of mass spectrometry to the study of proteins. Mass spectrometry is an important method for the accurate mass determination and characterization of proteins, and a variety of methods and instrumentations have been developed for its many uses. Its applications include the identification of proteins and their post-translational modifications, the elucidation of protein complexes, their subunits and functional interactions, as well as the global measurement of proteins in proteomics. It can also be used to localize proteins to the various organelles, and determine the interactions between different proteins as well as with membrane lipids.

<span class="mw-page-title-main">Time-of-flight mass spectrometry</span> Method of mass spectrometry

Time-of-flight mass spectrometry (TOFMS) is a method of mass spectrometry in which an ion's mass-to-charge ratio is determined by a time of flight measurement. Ions are accelerated by an electric field of known strength. This acceleration results in an ion having the same kinetic energy as any other ion that has the same charge. The velocity of the ion depends on the mass-to-charge ratio. The time that it subsequently takes for the ion to reach a detector at a known distance is measured. This time will depend on the velocity of the ion, and therefore is a measure of its mass-to-charge ratio. From this ratio and known experimental parameters, one can identify the ion.

<span class="mw-page-title-main">Top-down proteomics</span>

Top-down proteomics is a method of protein identification that either uses an ion trapping mass spectrometer to store an isolated protein ion for mass measurement and tandem mass spectrometry (MS/MS) analysis or other protein purification methods such as two-dimensional gel electrophoresis in conjunction with MS/MS. Top-down proteomics is capable of identifying and quantitating unique proteoforms through the analysis of intact proteins. The name is derived from the similar approach to DNA sequencing. During mass spectrometry intact proteins are typically ionized by electrospray ionization and trapped in a Fourier transform ion cyclotron resonance, quadrupole ion trap or Orbitrap mass spectrometer. Fragmentation for tandem mass spectrometry is accomplished by electron-capture dissociation or electron-transfer dissociation. Effective fractionation is critical for sample handling before mass-spectrometry-based proteomics. Proteome analysis routinely involves digesting intact proteins followed by inferred protein identification using mass spectrometry (MS). Top-down MS (non-gel) proteomics interrogates protein structure through measurement of an intact mass followed by direct ion dissociation in the gas phase.

<span class="mw-page-title-main">Ion-mobility spectrometry–mass spectrometry</span>

Ion mobility spectrometry–mass spectrometry (IMS-MS) is an analytical chemistry method that separates gas phase ions based on their interaction with a collision gas and their masses. In the first step, the ions are separated according to their mobility through a buffer gas on a millisecond timescale using an ion mobility spectrometer. The separated ions are then introduced into a mass analyzer in a second step where their mass-to-charge ratios can be determined on a microsecond timescale. The effective separation of analytes achieved with this method makes it widely applicable in the analysis of complex samples such as in proteomics and metabolomics.

<span class="mw-page-title-main">Triple quadrupole mass spectrometer</span> Type of mass spectrometer

A triple quadrupole mass spectrometer (TQMS), is a tandem mass spectrometer consisting of two quadrupole mass analyzers in series, with a (non-mass-resolving) radio frequency (RF)–only quadrupole between them to act as a cell for collision-induced dissociation. This configuration is often abbreviated QqQ, here Q1q2Q3.

A hybrid mass spectrometer is a device for tandem mass spectrometry that consists of a combination of two or more m/z separation devices of different types.

Electron capture ionization is the ionization of a gas phase atom or molecule by attachment of an electron to create an ion of the form . The reaction is

<span class="mw-page-title-main">Selected reaction monitoring</span> Tandem mass spectrometry method

Selected reaction monitoring (SRM), also called multiple reaction monitoring (MRM), is a method used in tandem mass spectrometry in which an ion of a particular mass is selected in the first stage of a tandem mass spectrometer and an ion product of a fragmentation reaction of the precursor ions is selected in the second mass spectrometer stage for detection.

<span class="mw-page-title-main">Fragmentation (mass spectrometry)</span> Dissociation of molecular ions

In mass spectrometry, fragmentation is the dissociation of energetically unstable molecular ions formed from passing the molecules mass spectrum. These reactions are well documented over the decades and fragmentation patterns are useful to determine the molar weight and structural information of unknown molecules. Fragmentation that occurs in tandem mass spectrometry experiments has been a recent focus of research, because this data helps facilitate the identification of molecules.

<span class="mw-page-title-main">Collision-induced dissociation</span> Mass spectrometry technique to induce fragmentation of selected ions in the gas phase

Collision-induced dissociation (CID), also known as collisionally activated dissociation (CAD), is a mass spectrometry technique to induce fragmentation of selected ions in the gas phase. The selected ions are usually accelerated by applying an electrical potential to increase the ion kinetic energy and then allowed to collide with neutral molecules. In the collision, some of the kinetic energy is converted into internal energy which results in bond breakage and the fragmentation of the molecular ion into smaller fragments. These fragment ions can then be analyzed by tandem mass spectrometry.

In mass spectrometry, de novo peptide sequencing is the method in which a peptide amino acid sequence is determined from tandem mass spectrometry.

<span class="mw-page-title-main">Matrix-assisted ionization</span>

In mass spectrometry, matrix-assisted ionization is a low fragmentation (soft) ionization technique which involves the transfer of particles of the analyte and matrix sample from atmospheric pressure (AP) to the heated inlet tube connecting the AP region to the vacuum of the mass analyzer.

In mass spectrometry, data-independent acquisition (DIA) is a method of molecular structure determination in which all ions within a selected m/z range are fragmented and analyzed in a second stage of tandem mass spectrometry. Tandem mass spectra are acquired either by fragmenting all ions that enter the mass spectrometer at a given time or by sequentially isolating and fragmenting ranges of m/z. DIA is an alternative to data-dependent acquisition (DDA) where a fixed number of precursor ions are selected and analyzed by tandem mass spectrometry.

References

  1. IUPAC , Compendium of Chemical Terminology , 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006) " tandem mass spectrometer ". doi : 10.1351/goldbook.T06250
  2. Peters-Clarke, Trenton M.; Coon, Joshua J.; Riley, Nicholas M. (21 May 2024). "Instrumentation at the Leading Edge of Proteomics". Analytical Chemistry. 96 (20): 7976–8010. doi:10.1021/acs.analchem.3c04497. ISSN   0003-2700. PMID   38738990.
  3. Cody RB, Freiser BS (1982). "Collision-induced dissociation in a fourier-transform mass spectrometer". International Journal of Mass Spectrometry and Ion Physics. 41 (3): 199–204. Bibcode:1982IJMSI..41..199C. doi:10.1016/0020-7381(82)85035-3.
  4. Cody RB, Burnier RC, Cassady CJ, Freiser BS (1 November 1982). "Consecutive collision-induced dissociations in Fourier transform mass spectrometry". Analytical Chemistry. 54 (13): 2225–2228. doi:10.1021/ac00250a021.
  5. IUPAC , Compendium of Chemical Terminology , 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006) " precursor ion ". doi : 10.1351/goldbook.P04807
  6. IUPAC , Compendium of Chemical Terminology , 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006) " parent ion ". doi : 10.1351/goldbook.P04406
  7. IUPAC , Compendium of Chemical Terminology , 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006) " product ion ". doi : 10.1351/goldbook.P04864
  8. IUPAC , Compendium of Chemical Terminology , 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006) " daughter ion ". doi : 10.1351/goldbook.D01524
  9. Bursey, Maurice M. (1991). "Comment to readers: Style and the lack of it". Mass Spectrometry Reviews. 10 (1): 1–2. Bibcode:1991MSRv...10....1B. doi:10.1002/mas.1280100102.
  10. Adams, J. (1992). "To the editor". Journal of the American Society for Mass Spectrometry. 3 (4): 473. Bibcode:1992JASMS...3..473A. doi: 10.1016/1044-0305(92)87078-D . PMID   24243061.
  11. Louris JN, Wright LG, Cooks RG, Schoen AE (1985). "New scan modes accessed with a hybrid mass spectrometer". Analytical Chemistry. 57 (14): 2918–2924. doi:10.1021/ac00291a039.
  12. deHoffman E, Stroobant V (2003). Mass Spectrometry: Principles and Applications. Toronto: Wiley. p. 133. ISBN   978-0-471-48566-7.
  13. Brodbelt, Jennifer S. (5 January 2016). "Ion Activation Methods for Peptides and Proteins". Analytical Chemistry. 88 (1): 30–51. doi:10.1021/acs.analchem.5b04563. ISSN   0003-2700. PMC   5553572 . PMID   26630359.
  14. IUPAC , Compendium of Chemical Terminology , 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006) " transient (chemical) species ". doi : 10.1351/goldbook.T06451
  15. Domingo-Almenara, Xavier; Montenegro-Burke, J. Rafael; Guijas, Carlos; Majumder, Erica L.-W.; Benton, H. Paul; Siuzdak, Gary (5 March 2019). "Autonomous METLIN-Guided In-source Fragment Annotation for Untargeted Metabolomics". Analytical Chemistry. 91 (5): 3246–3253. doi:10.1021/acs.analchem.8b03126. PMC   6637741 . PMID   30681830.
  16. Xue, Jingchuan; Domingo-Almenara, Xavier; Guijas, Carlos; Palermo, Amelia; Rinschen, Markus M.; Isbell, John; Benton, H. Paul; Siuzdak, Gary (21 April 2020). "Enhanced in-Source Fragmentation Annotation Enables Novel Data Independent Acquisition and Autonomous METLIN Molecular Identification". Analytical Chemistry. 92 (8): 6051–6059. doi:10.1021/acs.analchem.0c00409. PMC   8966047 . PMID   32242660. S2CID   214768212.
  17. Körner R, Wilm M, Morand K, Schubert M, Mann M (February 1996). "Nano electrospray combined with a quadrupole ion trap for the analysis of peptides and protein digests". Journal of the American Society for Mass Spectrometry. 7 (2): 150–6. Bibcode:1996JASMS...7..150K. doi:10.1016/1044-0305(95)00626-5. PMID   24203235. S2CID   1030006.
  18. Wells JM, McLuckey SA (2005). "Collision-Induced Dissociation (CID) of Peptides and Proteins". Biological Mass Spectrometry. Methods in Enzymology. Vol. 402. pp. 148–85. doi:10.1016/S0076-6879(05)02005-7. ISBN   9780121828073. PMID   16401509.
  19. 1 2 Sleno L, Volmer DA (October 2004). "Ion activation methods for tandem mass spectrometry". Journal of Mass Spectrometry. 39 (10): 1091–112. Bibcode:2004JMSp...39.1091S. doi:10.1002/jms.703. PMID   15481084.
  20. Xia Y, Liang X, McLuckey SA (February 2006). "Ion trap versus low-energy beam-type collision-induced dissociation of protonated ubiquitin ions". Analytical Chemistry. 78 (4): 1218–27. doi:10.1021/ac051622b. PMID   16478115.
  21. March RE (1 April 1997). "An Introduction to Quadrupole Ion Trap Mass Spectrometry". Journal of Mass Spectrometry. 32 (4): 351–369. Bibcode:1997JMSp...32..351M. doi: 10.1002/(sici)1096-9888(199704)32:4<351::aid-jms512>3.0.co;2-y . S2CID   16506573.
  22. Bantscheff M, Boesche M, Eberhard D, Matthieson T, Sweetman G, Kuster B (September 2008). "Robust and sensitive iTRAQ quantification on an LTQ Orbitrap mass spectrometer". Molecular & Cellular Proteomics. 7 (9): 1702–13. doi: 10.1074/mcp.M800029-MCP200 . PMC   2556025 . PMID   18511480.
  23. 1 2 Olsen JV, Macek B, Lange O, Makarov A, Horning S, Mann M (September 2007). "Higher-energy C-trap dissociation for peptide modification analysis". Nature Methods. 4 (9): 709–12. doi:10.1038/nmeth1060. PMID   17721543. S2CID   2538231.
  24. Senko MW, Remes PM, Canterbury JD, Mathur R, Song Q, Eliuk SM, Mullen C, Earley L, Hardman M, Blethrow JD, Bui H, Specht A, Lange O, Denisov E, Makarov A, Horning S, Zabrouskov V (December 2013). "Novel parallelized quadrupole/linear ion trap/Orbitrap tribrid mass spectrometer improving proteome coverage and peptide identification rates". Analytical Chemistry. 85 (24): 11710–4. doi:10.1021/ac403115c. PMID   24251866.
  25. Riley NM, Westphall MS, Coon JJ (July 2017). "Activated Ion-Electron Transfer Dissociation Enables Comprehensive Top-Down Protein Fragmentation". Journal of Proteome Research. 16 (7): 2653–2659. doi:10.1021/acs.jproteome.7b00249. PMC   5555583 . PMID   28608681.
  26. Nagaraj N, D'Souza RC, Cox J, Olsen JV, Mann M (December 2010). "Feasibility of large-scale phosphoproteomics with higher energy collisional dissociation fragmentation". Journal of Proteome Research. 9 (12): 6786–94. doi:10.1021/pr100637q. PMID   20873877.
  27. Jora M, Burns AP, Ross RL, Lobue PA, Zhao R, Palumbo CM, Beal PA, Addepalli B, Limbach PA (August 2018). "Differentiating Positional Isomers of Nucleoside Modifications by Higher-Energy Collisional Dissociation Mass Spectrometry (HCD MS)". Journal of the American Society for Mass Spectrometry. 29 (8): 1745–1756. Bibcode:2018JASMS..29.1745J. doi:10.1007/s13361-018-1999-6. PMC   6062210 . PMID   29949056.
  28. "Article Metrics - METLIN MS 2 molecular standards database: a broad chemical and biological resource | Nature Methods". ISSN   1548-7105.{{cite journal}}: Cite journal requires |journal= (help)
  29. Macias, Luis A.; Santos, Inês C.; Brodbelt, Jennifer S. (7 January 2020). "Ion Activation Methods for Peptides and Proteins". Analytical Chemistry. 92 (1): 227–251. doi:10.1021/acs.analchem.9b04859. ISSN   0003-2700. PMC   6949381 . PMID   31665881.
  30. Cooper HJ, Håkansson K, Marshall AG (2005). "The role of electron capture dissociation in biomolecular analysis". Mass Spectrometry Reviews. 24 (2): 201–22. Bibcode:2005MSRv...24..201C. doi:10.1002/mas.20014. PMID   15389856.
  31. 1 2 Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (June 2004). "Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry". Proceedings of the National Academy of Sciences of the United States of America. 101 (26): 9528–33. Bibcode:2004PNAS..101.9528S. doi: 10.1073/pnas.0402700101 . PMC   470779 . PMID   15210983.
  32. Mikesh LM, Ueberheide B, Chi A, Coon JJ, Syka JE, Shabanowitz J, Hunt DF (December 2006). "The utility of ETD mass spectrometry in proteomic analysis". Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 1764 (12): 1811–22. doi:10.1016/j.bbapap.2006.10.003. PMC   1853258 . PMID   17118725.
  33. USpatent 7534622,Donald F. Hunt, Joshua J. Coon, John E.P. Syka, Jarrod A. Marto,"Electron transfer dissociation for biopolymer sequence mass spectrometric analysis",issued 2009-05-19
  34. McLuckey SA, Stephenson JL (1998). "Ion/ion chemistry of high-mass multiply charged ions". Mass Spectrometry Reviews. 17 (6): 369–407. Bibcode:1998MSRv...17..369M. doi:10.1002/(SICI)1098-2787(1998)17:6<369::AID-MAS1>3.0.CO;2-J. PMID   10360331.
  35. Chi A, Huttenhower C, Geer LY, Coon JJ, Syka JE, Bai DL, Shabanowitz J, Burke DJ, Troyanskaya OG, Hunt DF (February 2007). "Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry". Proceedings of the National Academy of Sciences of the United States of America. 104 (7): 2193–8. Bibcode:2007PNAS..104.2193C. doi: 10.1073/pnas.0607084104 . PMC   1892997 . PMID   17287358.
  36. Frese CK, Altelaar AF, van den Toorn H, Nolting D, Griep-Raming J, Heck AJ, Mohammed S (November 2012). "Toward full peptide sequence coverage by dual fragmentation combining electron-transfer and higher-energy collision dissociation tandem mass spectrometry". Analytical Chemistry. 84 (22): 9668–73. doi:10.1021/ac3025366. PMID   23106539.
  37. Frese CK, Zhou H, Taus T, Altelaar AF, Mechtler K, Heck AJ, Mohammed S (March 2013). "Unambiguous phosphosite localization using electron-transfer/higher-energy collision dissociation (EThcD)". Journal of Proteome Research. 12 (3): 1520–5. doi:10.1021/pr301130k. PMC   3588588 . PMID   23347405.
  38. Coon JJ, Shabanowitz J, Hunt DF, Syka JE (June 2005). "Electron transfer dissociation of peptide anions". Journal of the American Society for Mass Spectrometry. 16 (6): 880–2. Bibcode:2005JASMS..16..880C. doi:10.1016/j.jasms.2005.01.015. PMID   15907703.
  39. Budnik BA, Haselmann KF, Zubarev RA (2001). "Electron detachment dissociation of peptide di-anions: an electron–hole recombination phenomenon". Chemical Physics Letters. 342 (3–4): 299–302. Bibcode:2001CPL...342..299B. doi:10.1016/S0009-2614(01)00501-2.
  40. Chingin K, Makarov A, Denisov E, Rebrov O, Zubarev RA (January 2014). "Fragmentation of positively-charged biological ions activated with a beam of high-energy cations". Analytical Chemistry. 86 (1): 372–9. doi:10.1021/ac403193k. PMID   24236851.
  41. Hoffmann WD, Jackson GP (November 2014). "Charge transfer dissociation (CTD) mass spectrometry of peptide cations using kiloelectronvolt helium cations". Journal of the American Society for Mass Spectrometry. 25 (11): 1939–43. Bibcode:2014JASMS..25.1939H. doi:10.1007/s13361-014-0989-6. PMID   25231159. S2CID   1400057.
  42. Morgan JW, Hettick JM, Russell DH (2005). "Peptide Sequencing by MALDI 193-nm Photodissociation TOF MS". Biological Mass Spectrometry. Methods in Enzymology. Vol. 402. pp. 186–209. doi:10.1016/S0076-6879(05)02006-9. ISBN   9780121828073. PMID   16401510.
  43. Little DP, Speir JP, Senko MW, O'Connor PB, McLafferty FW (September 1994). "Infrared multiphoton dissociation of large multiply charged ions for biomolecule sequencing". Analytical Chemistry. 66 (18): 2809–15. doi:10.1021/ac00090a004. PMID   7526742.
  44. 1 2 Schnier PD, Price WD, Jockusch RA, Williams ER (July 1996). "Blackbody infrared radiative dissociation of bradykinin and its analogues: energetics, dynamics, and evidence for salt-bridge structures in the gas phase". Journal of the American Chemical Society. 118 (30): 7178–89. doi:10.1021/ja9609157. PMC   1393282 . PMID   16525512.
  45. Dunbar RC (2004). "BIRD (blackbody infrared radiative dissociation): evolution, principles, and applications". Mass Spectrometry Reviews. 23 (2): 127–58. Bibcode:2004MSRv...23..127D. doi: 10.1002/mas.10074 . PMID   14732935.
  46. Grill V, Shen J, Evans C, Cooks RG (2001). "Collisions of ions with surfaces at chemically relevant energies: Instrumentation and phenomena". Review of Scientific Instruments. 72 (8): 3149. Bibcode:2001RScI...72.3149G. doi:10.1063/1.1382641.
  47. Mabud, M. (1985). "Surface-induced dissociation of molecular ions". International Journal of Mass Spectrometry and Ion Processes. 67 (3): 285–294. Bibcode:1985IJMSI..67..285M. doi:10.1016/0168-1176(85)83024-X.
  48. 1 2 Stiving, Alyssa; VanAernum, Zachary; Busch, Florian; Harvey, Sophie; Sarni, Samantha; Wysocki, Vicki (9 November 2018). "Surface-Induced Dissociation: An Effective Method for Characterization of Protein Quaternary Structure". Analytical Chemistry. 91 (1): 190–191. doi:10.1021/acs.analchem.8b05071. PMC   6571034 . PMID   30412666.
  49. Quintyn, Royston S.; Zhou, Mowei; Yan, Jing; Wysocki, Vicki H. (1 December 2015). "Surface-Induced Dissociation Mass Spectra as a Tool for Distinguishing Different Structural Forms of Gas-Phase Multimeric Protein Complexes". Analytical Chemistry. 87 (23): 11879–11886. doi:10.1021/acs.analchem.5b03441. ISSN   0003-2700. PMID   26499904.
  50. Laskin, Julia; Futrell, Jean H. (2005). "Activation of large lons in FT-ICR mass spectrometry". Mass Spectrometry Reviews. 24 (2): 135–167. Bibcode:2005MSRv...24..135L. doi:10.1002/mas.20012. ISSN   0277-7037. PMID   15389858.
  51. Kaplan, Desmond A.; Hartmer, Ralf; Speir, J. Paul; Stoermer, Carsten; Gumerov, Dmitry; Easterling, Michael L.; Brekenfeld, Andreas; Kim, Taeman; Laukien, Frank; Park, Melvin A. (2008). "Electron transfer dissociation in the hexapole collision cell of a hybrid quadrupole-hexapole Fourier transform ion cyclotron resonance mass spectrometer". Rapid Communications in Mass Spectrometry. 22 (3): 271–278. Bibcode:2008RCMS...22..271K. doi:10.1002/rcm.3356. ISSN   0951-4198. PMID   18181247.
  52. Laskin, Julia (June 2015). "Surface-Induced Dissociation: A Unique Tool for Studying Energetics and Kinetics of the Gas-Phase Fragmentation of Large Ions". European Journal of Mass Spectrometry. 21 (3): 377–389. doi:10.1255/ejms.1358. ISSN   1469-0667. PMID   26307719. S2CID   19837927.
  53. Ong SE, Mann M (October 2005). "Mass spectrometry-based proteomics turns quantitative". Nature Chemical Biology. 1 (5): 252–62. doi:10.1038/nchembio736. PMID   16408053. S2CID   32054251.
  54. Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (October 2007). "Quantitative mass spectrometry in proteomics: a critical review". Analytical and Bioanalytical Chemistry. 389 (4): 1017–31. doi: 10.1007/s00216-007-1486-6 . PMID   17668192.
  55. Nikolov M, Schmidt C, Urlaub H (2012). "Quantitative Mass Spectrometry-Based Proteomics: An Overview". Quantitative Methods in Proteomics. Methods in Molecular Biology. Vol. 893. pp. 85–100. doi:10.1007/978-1-61779-885-6_7. hdl:11858/00-001M-0000-0029-1A75-8. ISBN   978-1-61779-884-9. PMID   22665296. S2CID   33009117.
  56. Maher S, Jjunju FP, Taylor S (2015). "100 years of mass spectrometry: Perspectives and future trends". Rev. Mod. Phys. 87 (1): 113–135. Bibcode:2015RvMP...87..113M. doi:10.1103/RevModPhys.87.113.
  57. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (December 2004). "Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents". Molecular & Cellular Proteomics. 3 (12): 1154–69. doi: 10.1074/mcp.M400129-MCP200 . PMID   15385600. S2CID   1979097.
  58. Zieske LR (2006). "A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies". Journal of Experimental Botany. 57 (7): 1501–8. doi: 10.1093/jxb/erj168 . PMID   16574745.
  59. Gafken PR, Lampe PD (2006). "Methodologies for characterizing phosphoproteins by mass spectrometry". Cell Communication & Adhesion. 13 (5–6): 249–62. doi:10.1080/15419060601077917. PMC   2185548 . PMID   17162667.
  60. Thompson A, Schäfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK, Hamon C (April 2003). "Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS". Analytical Chemistry. 75 (8): 1895–904. doi:10.1021/ac0262560. PMID   12713048.
  61. Li, Jiaming; Van Vranken, Jonathan G.; Pontano Vaites, Laura; Schweppe, Devin K.; Huttlin, Edward L.; Etienne, Chris; Nandhikonda, Premchendar; Viner, Rosa; Robitaille, Aaron M.; Thompson, Andrew H.; Kuhn, Karsten; Pike, Ian; Bomgarden, Ryan D.; Rogers, John C.; Gygi, Steven P. (April 2020). "TMTpro reagents: a set of isobaric labeling mass tags enables simultaneous proteome-wide measurements across 16 samples". Nature Methods. 17 (4): 399–404. doi:10.1038/s41592-020-0781-4. ISSN   1548-7105. PMC   7302421 . PMID   32203386.
  62. Li, Jiaming; Cai, Zhenying; Bomgarden, Ryan D.; Pike, Ian; Kuhn, Karsten; Rogers, John C.; Roberts, Thomas M.; Gygi, Steven P.; Paulo, Joao A. (7 May 2021). "TMTpro-18plex: The Expanded and Complete Set of TMTpro Reagents for Sample Multiplexing". Journal of Proteome Research. 20 (5): 2964–2972. doi:10.1021/acs.jproteome.1c00168. ISSN   1535-3893. PMC   8210943 . PMID   33900084.
  63. Derks, Jason; Leduc, Andrew; Wallmann, Georg; Huffman, R. Gray; Willetts, Matthew; Khan, Saad; Specht, Harrison; Ralser, Markus; Demichev, Vadim; Slavov, Nikolai (2023). "Increasing the throughput of sensitive proteomics by plexDIA". Nature Biotechnology. 41 (1): 50–59. bioRxiv   10.1101/2021.11.03.467007 . doi:10.1038/s41587-022-01389-w. PMC   9839897 . PMID   35835881.
  64. Derks, Jason; Slavov, Nikolai (3 March 2023). "Strategies for Increasing the Depth and Throughput of Protein Analysis by plexDIA". Journal of Proteome Research. 22 (3): 697–705. doi:10.1021/acs.jproteome.2c00721. ISSN   1535-3893. PMC   9992289 . PMID   36735898.
  65. Slavov, Nikolai (January 2022). "Scaling Up Single-Cell Proteomics". Molecular & Cellular Proteomics. 21 (1): 100179. doi:10.1016/j.mcpro.2021.100179. ISSN   1535-9476. PMC   8683604 . PMID   34808355.
  66. Wallmann, Georg; Leduc, Andrew; Slavov, Nikolai (6 October 2023). "Data-Driven Optimization of DIA Mass Spectrometry by DO-MS". Journal of Proteome Research. 22 (10): 3149–3158. doi:10.1021/acs.jproteome.3c00177. ISSN   1535-3893. PMC   10591957 . PMID   37695820.
  67. Slavov, Nikolai (5 November 2021). "Driving Single Cell Proteomics Forward with Innovation". Journal of Proteome Research. 20 (11): 4915–4918. doi:10.1021/acs.jproteome.1c00639. ISSN   1535-3893. PMC   8571067 . PMID   34597050.
  68. Gatto, Laurent; Aebersold, Ruedi; Cox, Juergen; Demichev, Vadim; Derks, Jason; Emmott, Edward; Franks, Alexander M.; Ivanov, Alexander R.; Kelly, Ryan T.; Khoury, Luke; Leduc, Andrew; MacCoss, Michael J.; Nemes, Peter; Perlman, David H.; Petelski, Aleksandra A. (March 2023). "Initial recommendations for performing, benchmarking and reporting single-cell proteomics experiments". Nature Methods. 20 (3): 375–386. doi:10.1038/s41592-023-01785-3. ISSN   1548-7105. PMC   10130941 . PMID   36864200.
  69. Angel TE, Aryal UK, Hengel SM, Baker ES, Kelly RT, Robinson EW, Smith RD (May 2012). "Mass spectrometry-based proteomics: existing capabilities and future directions". Chemical Society Reviews. 41 (10): 3912–28. doi:10.1039/c2cs15331a. PMC   3375054 . PMID   22498958.
  70. Hardouin J (2007). "Protein sequence information by matrix-assisted laser desorption/ionization in-source decay mass spectrometry". Mass Spectrometry Reviews. 26 (5): 672–82. Bibcode:2007MSRv...26..672H. doi:10.1002/mas.20142. PMID   17492750.
  71. Shadforth I, Crowther D, Bessant C (November 2005). "Protein and peptide identification algorithms using MS for use in high-throughput, automated pipelines". Proteomics. 5 (16): 4082–95. doi:10.1002/pmic.200402091. PMID   16196103. S2CID   38068737.
  72. Mørtz E, O'Connor PB, Roepstorff P, Kelleher NL, Wood TD, McLafferty FW, Mann M (August 1996). "Sequence tag identification of intact proteins by matching tanden mass spectral data against sequence data bases". Proceedings of the National Academy of Sciences of the United States of America. 93 (16): 8264–7. Bibcode:1996PNAS...93.8264M. doi: 10.1073/pnas.93.16.8264 . PMC   38658 . PMID   8710858.
  73. Roepstorff P, Fohlman J (November 1984). "Proposal for a common nomenclature for sequence ions in mass spectra of peptides". Biomedical Mass Spectrometry. 11 (11): 601. doi:10.1002/bms.1200111109. PMID   6525415.
  74. Johnson RS, Martin SA, Klaus Biemann (December 1988). "Collision-induced fragmentation of (M + H)+ ions of peptides. Side chain specific sequence ions". International Journal of Mass Spectrometry and Ion Processes. 86: 137–154. Bibcode:1988IJMSI..86..137J. doi:10.1016/0168-1176(88)80060-0.
  75. Falick AM, Hines WM, Medzihradszky KF, Baldwin MA, Gibson BW (November 1993). "Low-mass ions produced from peptides by high-energy collision-induced dissociation in tandem mass spectrometry". Journal of the American Society for Mass Spectrometry. 4 (11): 882–93. Bibcode:1993JASMS...4..882F. doi:10.1016/1044-0305(93)87006-X. PMID   24227532. S2CID   38931760.
  76. Downard KM, Biemann K (January 1995). "Methionine specific sequence ions formed by the dissociation of protonated peptides at high collision energies". Journal of Mass Spectrometry. 30 (1): 25–32. Bibcode:1995JMSp...30...25D. doi:10.1002/jms.1190300106.
  77. Zaia J (2004). "Mass spectrometry of oligosaccharides". Mass Spectrometry Reviews. 23 (3): 161–227. Bibcode:2004MSRv...23..161Z. doi:10.1002/mas.10073. PMID   14966796.
  78. Bruno Domon; Catherine E Costello (1988). "A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates". Glycoconj. J. 5 (4): 397–409. doi:10.1007/BF01049915. S2CID   206787925.
  79. Spina E, Cozzolino R, Ryan E, Garozzo D (August 2000). "Sequencing of oligosaccharides by collision-induced dissociation matrix-assisted laser desorption/ionization mass spectrometry". Journal of Mass Spectrometry. 35 (8): 1042–8. Bibcode:2000JMSp...35.1042S. doi:10.1002/1096-9888(200008)35:8<1042::AID-JMS33>3.0.CO;2-Y. PMID   10973004.
  80. Banoub JH, Newton RP, Esmans E, Ewing DF, Mackenzie G (May 2005). "Recent developments in mass spectrometry for the characterization of nucleosides, nucleotides, oligonucleotides, and nucleic acids". Chemical Reviews. 105 (5): 1869–915. doi:10.1021/cr030040w. PMID   15884792.
  81. Thomas B, Akoulitchev AV (March 2006). "Mass spectrometry of RNA". Trends in Biochemical Sciences. 31 (3): 173–81. doi:10.1016/j.tibs.2006.01.004. PMID   16483781.
  82. Wu J, McLuckey SA (2004). "Gas-phase fragmentation of oligonucleotide ions". International Journal of Mass Spectrometry. 237 (2–3): 197–241. Bibcode:2004IJMSp.237..197W. doi:10.1016/j.ijms.2004.06.014.
  83. Tarini BA (August 2007). "The current revolution in newborn screening: new technology, old controversies". Archives of Pediatrics & Adolescent Medicine. 161 (8): 767–72. doi:10.1001/archpedi.161.8.767. PMID   17679658.
  84. Kayton A (2007). "Newborn screening: a literature review". Neonatal Network. 26 (2): 85–95. doi:10.1891/0730-0832.26.2.85. PMID   17402600. S2CID   28372085.
  85. Chace DH, Kalas TA, Naylor EW (November 2003). "Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns". Clinical Chemistry. 49 (11): 1797–817. doi: 10.1373/clinchem.2003.022178 . PMID   14578311.
  86. Hoang, Corey; Uritboonthai, Winnie; Hoang, Linh; Billings, Elizabeth M.; Aisporna, Aries; Nia, Farshad A.; Derks, Rico J. E.; Williamson, James R.; Giera, Martin; Siuzdak, Gary (26 March 2024). "Tandem Mass Spectrometry across Platforms". Analytical Chemistry. 96 (14): 5478–5488. doi: 10.1021/acs.analchem.3c05576 . ISSN   0003-2700. PMC   11007677 . PMID   38529642.
  87. Angel, Thomas E.; Aryal, Uma K.; Hengel, Shawna M.; Baker, Erin S.; Kelly, Ryan T.; Robinson, Errol W.; Smith, Richard D. (21 May 2012). "Mass spectrometry based proteomics: existing capabilities and future directions". Chemical Society Reviews. 41 (10): 3912–3928. doi:10.1039/c2cs15331a. ISSN   0306-0012. PMC   3375054 . PMID   22498958.
  88. Han, Xuemei; Aslanian, Aaron; Yates, John R. (October 2008). "Mass Spectrometry for Proteomics". Current Opinion in Chemical Biology. 12 (5): 483–490. doi:10.1016/j.cbpa.2008.07.024. ISSN   1367-5931. PMC   2642903 . PMID   18718552.

Bibliography